Abstract

Direct detection systems with advanced modulation schemes are of great importance in metropolitan networks, because of their low cost and low power requirements. In particular, PAM-4 has attracted considerable attention, but has significant transmission distance limitations in the C-band. To extend its reach, we used a dual drive Mach-Zehnder modulator to generate a chromatic dispersion (CD) pre-compensated signal with an extra (j-1) multiplication to align the optical carrier and the modulated optical signal; by doing so, we achieved successful 128 Gbit/s transmission over an 80 km SSMF link, the longest reported reach of single lane 100 Gbit/s PAM-4 signals over DCF-free links. Synchronized bandwidth pre-compensation was also used, to reduce the influence of bandwidth-limitations.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital chromatic dispersion pre-management enabled single-lane 112  Gb/s PAM-4 signal transmission over 80  km SSMF

Songnian Fu, Chen Chen, Fan Gao, Xiaolei Li, Lei Deng, Ming Tang, and Deming Liu
Opt. Lett. 43(7) 1495-1498 (2018)

Single-lane 180  Gb/s DB-PAM-4-signal transmission over an 80  km DCF-free SSMF link

Qiang Zhang, Nebojsa Stojanovic, Jinlong Wei, and Changsong Xie
Opt. Lett. 42(4) 883-886 (2017)

112 Gb/s transmission over 80 km SSMF using PDM-PAM4 and coherent detection without optical amplifier

Xian Zhou, Kangping Zhong, Jiahao Huo, Lei Gao, Yiguang Wang, Liang Wang, Yanfu Yang, Jinhui Yuan, Keping Long, Li Zeng, Alan Pak Tao Lau, and Chao Lu
Opt. Express 24(15) 17359-17371 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Zuo, L. Zhang, E. Zhou, G. N. Liu, and X. Xu, “112-Gb/s Duobinary 4-PAM transmission over 200-m multi-mode fibre,” in European Conference and Exhibition on Optical Communication (ECOC, 2015), paper P5.19.
    [Crossref]
  2. T. Rahman, D. Rafique, B. Spinnler, M. Bohn, A. Napoli, C. M. Okonkwo, and H. de Waardt, “38.4Tb/s transmission of single-carrier serial line-rate 400Gb/s PM-64QAM over 328km for metro and data center interconnect applications,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3G.1.
    [Crossref]
  3. S. Zhou, X. Li, L. Yi, Q. Yang, and S. Fu, “Transmission of 2 × 56 Gb/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs,” Opt. Lett. 41(8), 1805–1808 (2016).
    [Crossref] [PubMed]
  4. N. Kikuchi, R. Hirai, and T. Fukui, “Quasi single-sideband (SSB) IM/DD Nyquist PAM signaling for high-spectral efficiency DWDM transmission,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th2A.41.
    [Crossref]
  5. N. Eiselt, S. van der Heide, H. Griesser, M. Eiselt, C. Okonkwo, J. V. O. Juan, and I. T. Monroy, “Experimental demonstration of 112-Gbit/s PAM-4 over up to 80 km SSMF at 1550 nm for inter-DCI applications,” in European Conference and Exhibition on Optical Communication (ECOC, 2016), paper M.2.D.1.
  6. M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightwave Technol. 32(4), 798–804 (2014).
    [Crossref]
  7. J. L. Wei, L. Geng, R. V. Penty, I. H. White, and D. G. Cunningham, “100 gigabit ethernet transmission enabled by carRIERLESS AMPLITUDE AND PHASE MODULATION using QAM receivers,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OW4A.5.
    [Crossref]
  8. Q. Zhang, Y. Fang, E. Zhou, T. Zuo, L. Zhang, G. N. Liu, and X. Xu, “C-band 56Gbps transmission over 80-km single mode fiber without chromatic dispersion compensation by using intensity-modulation direct-detection,” in European Conference and Exhibition on Optical Communication (ECOC, 2014), paper P5.19.
    [Crossref]
  9. L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G. N. Liu, and X. Xu, “Beyond 100-Gb/s transmission over 80-km SMF using direct-detection SSB-DMT at C-band,” J. Lightwave Technol. 34(2), 723–729 (2016).
    [Crossref]
  10. Z. Li, M. S. Erkılınç, S. Pachnicke, H. Griesser, R. Bouziane, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation,” Opt. Express 23(18), 23694–23709 (2015).
    [Crossref] [PubMed]
  11. M. Sezer Erkilinc, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Dispersion-precompensated direct-detection Nyquist-pulse-shaped subcarrier modulation using a dual-drive Mach–Zehnder modulator,” Optoelectronics Communications Conf. (OECC, 2015) paper 1570087413.
    [Crossref]
  12. R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
    [Crossref]
  13. H. Keang-Po and H.-W. Cuei, “Generation of arbitrary quadrature signals using one dual-drive Modulator,” J. Lightwave Technol. 23(2), 764–770 (2005).
    [Crossref]
  14. K. H. Mueller and M. S. Muller, “Timing recovery in digital synchronous data receivers,” IEEE Trans. Commun. 24(5), 516–531 (1976).
    [Crossref]
  15. W. R. Peng, T. Tsuritani, and I. Morita, “Transmission of high-baud PDM-64QAM signals,” J. Lightwave Technol. 31(13), 2146–2162 (2013).
    [Crossref]
  16. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
    [Crossref]
  17. D. J. Fernandes Barros and J. M. Kahn, “Optical modulator optimization for orthogonal frequency-division multiplexing,” J. Lightwave Technol. 27(13), 2370–2378 (2009).
    [Crossref]
  18. H. Mardoyan, M. A. Mestre, R. Rios-Muller, A. Konczykowska, J. Renaudier, F. Jorge, B. Duval, J. Y. Dupuy, A. Ghazisaeidi, P. Jenneve, M. Achouche, and S. Bigo, “Single carrier 168-Gb/s line-rate PAM direct detection transmission using high-speed selector Power DAC for optical interconnects,” J. Lightwave Technol. 34(7), 1593–1598 (2016).
    [Crossref]
  19. M. Sieben, J. Conradi, and D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightwave Technol. 17(10), 1742–1749 (1999).
    [Crossref]

2016 (3)

2015 (1)

2014 (1)

2013 (1)

2010 (1)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

2009 (1)

2005 (2)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

H. Keang-Po and H.-W. Cuei, “Generation of arbitrary quadrature signals using one dual-drive Modulator,” J. Lightwave Technol. 23(2), 764–770 (2005).
[Crossref]

1999 (1)

1976 (1)

K. H. Mueller and M. S. Muller, “Timing recovery in digital synchronous data receivers,” IEEE Trans. Commun. 24(5), 516–531 (1976).
[Crossref]

Achouche, M.

Bayvel, P.

Z. Li, M. S. Erkılınç, S. Pachnicke, H. Griesser, R. Bouziane, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation,” Opt. Express 23(18), 23694–23709 (2015).
[Crossref] [PubMed]

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Bigo, S.

Bosco, G.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Bouziane, R.

Carena, A.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Conradi, J.

Cuei, H.-W.

Curri, V.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Dodds, D. E.

Dupuy, J. Y.

Duval, B.

Erkilinç, M. S.

Fernandes Barros, D. J.

Forghieri, F.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Fu, S.

Ghazisaeidi, A.

Glick, M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Griesser, H.

Jenneve, P.

Jensen, J. B.

Jorge, F.

Kahn, J. M.

Keang-Po, H.

Killey, R. I.

Z. Li, M. S. Erkılınç, S. Pachnicke, H. Griesser, R. Bouziane, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation,” Opt. Express 23(18), 23694–23709 (2015).
[Crossref] [PubMed]

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Konczykowska, A.

Li, X.

Li, Z.

Liu, G. N.

Mao, Y.

Mardoyan, H.

Mestre, M. A.

Mikhailov, V.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Monroy, I. T.

Morita, I.

Mueller, K. H.

K. H. Mueller and M. S. Muller, “Timing recovery in digital synchronous data receivers,” IEEE Trans. Commun. 24(5), 516–531 (1976).
[Crossref]

Muller, M. S.

K. H. Mueller and M. S. Muller, “Timing recovery in digital synchronous data receivers,” IEEE Trans. Commun. 24(5), 516–531 (1976).
[Crossref]

Olmedo, M. I.

Pachnicke, S.

Peng, W. R.

Poggiolini, P.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Popov, S.

Renaudier, J.

Rios-Muller, R.

Sieben, M.

Thomsen, B. C.

Tsuritani, T.

Watts, P. M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Xu, X.

Yang, Q.

Yi, L.

Zhang, L.

Zhang, Q.

Zhong, Q.

Zhou, E.

Zhou, S.

Zuo, T.

IEEE Photonics Technol. Lett. (2)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

IEEE Trans. Commun. (1)

K. H. Mueller and M. S. Muller, “Timing recovery in digital synchronous data receivers,” IEEE Trans. Commun. 24(5), 516–531 (1976).
[Crossref]

J. Lightwave Technol. (7)

W. R. Peng, T. Tsuritani, and I. Morita, “Transmission of high-baud PDM-64QAM signals,” J. Lightwave Technol. 31(13), 2146–2162 (2013).
[Crossref]

H. Keang-Po and H.-W. Cuei, “Generation of arbitrary quadrature signals using one dual-drive Modulator,” J. Lightwave Technol. 23(2), 764–770 (2005).
[Crossref]

D. J. Fernandes Barros and J. M. Kahn, “Optical modulator optimization for orthogonal frequency-division multiplexing,” J. Lightwave Technol. 27(13), 2370–2378 (2009).
[Crossref]

H. Mardoyan, M. A. Mestre, R. Rios-Muller, A. Konczykowska, J. Renaudier, F. Jorge, B. Duval, J. Y. Dupuy, A. Ghazisaeidi, P. Jenneve, M. Achouche, and S. Bigo, “Single carrier 168-Gb/s line-rate PAM direct detection transmission using high-speed selector Power DAC for optical interconnects,” J. Lightwave Technol. 34(7), 1593–1598 (2016).
[Crossref]

M. Sieben, J. Conradi, and D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightwave Technol. 17(10), 1742–1749 (1999).
[Crossref]

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightwave Technol. 32(4), 798–804 (2014).
[Crossref]

L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G. N. Liu, and X. Xu, “Beyond 100-Gb/s transmission over 80-km SMF using direct-detection SSB-DMT at C-band,” J. Lightwave Technol. 34(2), 723–729 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Other (7)

N. Kikuchi, R. Hirai, and T. Fukui, “Quasi single-sideband (SSB) IM/DD Nyquist PAM signaling for high-spectral efficiency DWDM transmission,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th2A.41.
[Crossref]

N. Eiselt, S. van der Heide, H. Griesser, M. Eiselt, C. Okonkwo, J. V. O. Juan, and I. T. Monroy, “Experimental demonstration of 112-Gbit/s PAM-4 over up to 80 km SSMF at 1550 nm for inter-DCI applications,” in European Conference and Exhibition on Optical Communication (ECOC, 2016), paper M.2.D.1.

T. Zuo, L. Zhang, E. Zhou, G. N. Liu, and X. Xu, “112-Gb/s Duobinary 4-PAM transmission over 200-m multi-mode fibre,” in European Conference and Exhibition on Optical Communication (ECOC, 2015), paper P5.19.
[Crossref]

T. Rahman, D. Rafique, B. Spinnler, M. Bohn, A. Napoli, C. M. Okonkwo, and H. de Waardt, “38.4Tb/s transmission of single-carrier serial line-rate 400Gb/s PM-64QAM over 328km for metro and data center interconnect applications,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3G.1.
[Crossref]

M. Sezer Erkilinc, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Dispersion-precompensated direct-detection Nyquist-pulse-shaped subcarrier modulation using a dual-drive Mach–Zehnder modulator,” Optoelectronics Communications Conf. (OECC, 2015) paper 1570087413.
[Crossref]

J. L. Wei, L. Geng, R. V. Penty, I. H. White, and D. G. Cunningham, “100 gigabit ethernet transmission enabled by carRIERLESS AMPLITUDE AND PHASE MODULATION using QAM receivers,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OW4A.5.
[Crossref]

Q. Zhang, Y. Fang, E. Zhou, T. Zuo, L. Zhang, G. N. Liu, and X. Xu, “C-band 56Gbps transmission over 80-km single mode fiber without chromatic dispersion compensation by using intensity-modulation direct-detection,” in European Conference and Exhibition on Optical Communication (ECOC, 2014), paper P5.19.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Bandwidth pre-compensation, as implemented in this work.
Fig. 2
Fig. 2 Experimental setup and offline DSP used in the experiment.
Fig. 3
Fig. 3 (a) System transfer function. (b, c) Eye-diagrams (b) before and (c) after bandwidth pre-compensation.
Fig. 4
Fig. 4 Optical spectra of the transmitted signal.
Fig. 5
Fig. 5 (a) Statistic transfer function of DDMZM; experimental parameters optimization over 80 km SSMF: (b) bias voltage; (c) RF PAPR; and (d) CSPR.
Fig. 6
Fig. 6 BER versus OSNR for different equalization configurations; the insets are the eye-diagrams after FFE, for an OSNR of 36 dB.
Fig. 7
Fig. 7 BER versus OSNR with and without (j-1) multiplication.
Fig. 8
Fig. 8 System performance with different fiber lengths.
Fig. 9
Fig. 9 Power spectral density (PSD) of the received signals in the B2B condition, and after the 80 km SSMF link.
Fig. 10
Fig. 10 Optical spectra of the received signals in the B2B condition and with the 80 km SSMF link.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E out = 1 2 e jωt ( e j V 1 V π π + e j V 2 V π π )= e jωt cos( V 1 V 2 2 V π π ) e j V 1 + V 2 2 V π π ,
V 1 = V b1 + s 1 ,      V 2 = V b2 + s 2 ,
E out = 1 2 e jωt e jπ/4 ( e j s 1 V π π j e j s 2 V π π ).
E out = 1 2 e jωt e jπ/4 ( 1+j s 1 V π j+ s 2 V π + O 2 ),
I= E out E out * 1 s 1 V π + s 2 V π +SSBI+ O 2 ,
SSBI= ( s 1 V π ) 2 + ( s 2 V π ) 2 .
E out = 1 2 e jωt e jπ/4 ( 1+j s 1 V π j s 1 V π + O 2 )= 1 2 e jωt e jπ/4 [ 1j+ s 1 V π ( j1 )+ O 2 ].
E tx = 1 2 ( 1+j s 1 V π j+ s 2 V π )=| E tx | e jΦ .
V 1 = V π π [ ϕ+ cos 1 | E tx | | E tx | max ],  V 2 = V π π [ ϕ cos 1 | E tx | | E tx | max ].
E Tx ( ω )= E TAR ( ω )exp( j β 2 2 2 ),
S out ={ A,       if S in <A S in ,   if A S in A A,   if S in >A,

Metrics