Abstract

We show momentum-space characteristics of X-rays affected by Berry’s phase in a deformed crystal, allowing a 15 keV beam inside a silicon crystal to be translated parallel to its optical axis while retaining its angular divergence and wave front. This data is the first evidence supporting the whole theoretical picture of Sawada et al., Phys. Rev. Lett. 96, 154802 (2006), consisting of two equations of motion about the X-ray propagation. An output beam was as much as 3.3% of the incident after propagating through 1.3 mm silicon along a lateral direction of the chip inclined at 17.722°. As its initial practical application we further utilized the device as an X-ray intensity modulator. Our results revealed a new aspect of the Berry phase and lead to an X-ray waveguide that can enhance the flexibility of future high-energy experiments.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid diamond-silicon angular-dispersive x-ray monochromator with 0.25-meV energy bandwidth and high spectral efficiency

S. Stoupin, Y. V. Shvyd’ko, D. Shu, V. D. Blank, S. A. Terentyev, S. N. Polyakov, M. S. Kuznetsov, I. Lemesh, K. Mundboth, S. P. Collins, J. P. Sutter, and M. Tolkiehn
Opt. Express 21(25) 30932-30946 (2013)

Direct measure of the phase shift of an x-ray beam

T. J. Davis and A. W. Stevenson
J. Opt. Soc. Am. A 13(6) 1193-1198 (1996)

Boundary value problem for phase retrieval from unidirectional X-ray differential phase images

Sergei Gasilov, Alberto Mittone, Annie Horng, Alberto Bravin, Tilo Baumbach, Tobias Geith, Maximilian Reiser, and Paola Coan
Opt. Express 23(10) 13294-13308 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, Photonic Crystal Fibers, Science 299, 358–362 (2003).
    [Crossref] [PubMed]
  2. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [Crossref]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [Crossref] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref] [PubMed]
  5. Y. Kohmura, K. Sawada, and T. Ishikawa, “Berry-phase translation of x-rays by a deformed crystal,” Phys. Rev. Lett. 104, 244801 (2010).
    [Crossref]
  6. Y. Kohmura, K. Sawada, S. Fukatsu, and T. Ishikawa, “Controlling the propagation of x-ray waves inside a heteroepitaxial crystal containing quantum dots using Berry’s phase,” Phys. Rev. Lett. 110, 057402 (2013).
    [Crossref]
  7. P. P. Ewald, “Zur Begründung der Kristalloptik,” Ann. Phys. 354, 1–38 (1916).
    [Crossref]
  8. C. G. Darwin, “The theory of x-ray reflexion,” Phil. Mag. 27, 315–333 (1914).
    [Crossref]
  9. N. Kato, “Pendellösung fringes in distorted crystals I. Fermat’s principle for Bloch waves,” J. Phys. Soc. Japan 18, 1785 (1963).
    [Crossref]
  10. N. Kato, “Pendellösung fringes in distorted crystals II. application to two-beam cases,” J. Phys. Soc. Japan 19, 67 (1964).
    [Crossref]
  11. D. Taupin, “Théorie dynamique de la diffraction des rayons x par les cristaux Déformés,” Bull. Soc. Fr. Minér. Crist. 87, 469–511 (1964).
  12. D. Taupin, “Prévision de quelques images de dislocations par transmission des rayons X (cas de Laue Symétrique),” Acta Cryst. 23, 25–35 (1967).
    [Crossref]
  13. S. Takagi, “A dynamical theory of diffraction for a distorted crystal,” J. Phys. Soc. Japan 26, 1239 (1969).
    [Crossref]
  14. K. Sawada, S. Murakami, and N. Nagaosa, “Dynamical diffraction theory for wave packet propagation in deformed crystals,” Phys. Rev. Lett. 96, 154802 (2006).
    [Crossref] [PubMed]
  15. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. A 392, 45–57 (1984).
    [Crossref]
  16. K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray Optics,” Nucl. Instrum. Methods Phys. Res. A 467, 686–689 (2001).
    [Crossref]
  17. T. Ishikawa, K. Tamasaku, M. Yabashi, S. Goto, Y. Tanaka, H. Yamazaki, K. T. Takeshita, H. Kimura, H. Ohashi, T. Matsushita, and T. Ohata, SPIE Conference Series, vol. 4145, A. K. Freund, T. Ishikawa, A. M. Khounsary, D. C. Mancini, A. G. Michette, and S. Oestreich, eds. (SPIE, 2001), pp. 1–10.
  18. M. Sanchez del Rio and R. J. Dejus, SPIE Conference Series, vol. 5536, M. Sanchez del Rio, ed. (SPIE, 2004), pp. 171–174.
  19. B. L. Henke, E. M. Gullikson, and J. C. Davies, “X-Ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92,” Atomic Data Nucl. Data Tables 54, 181–342 (1993).
    [Crossref]
  20. W. Cash, A. Shipley, S. Osterman, and M. Joy, “Laboratory detection of x-ray fringes with a grazing-incidence interferometer,” Nature 407, 160–162 (2000).
    [Crossref] [PubMed]
  21. K. C. Gendreau, W. C. Cash, A. F. Shipley, and N. White, SPIE Conference Series, vol. 4851, J. E. Truemper and H. D. Tananbaum, eds. (SPIE, 2003), pp. 353–364.

2013 (1)

Y. Kohmura, K. Sawada, S. Fukatsu, and T. Ishikawa, “Controlling the propagation of x-ray waves inside a heteroepitaxial crystal containing quantum dots using Berry’s phase,” Phys. Rev. Lett. 110, 057402 (2013).
[Crossref]

2010 (1)

Y. Kohmura, K. Sawada, and T. Ishikawa, “Berry-phase translation of x-rays by a deformed crystal,” Phys. Rev. Lett. 104, 244801 (2010).
[Crossref]

2008 (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

K. Sawada, S. Murakami, and N. Nagaosa, “Dynamical diffraction theory for wave packet propagation in deformed crystals,” Phys. Rev. Lett. 96, 154802 (2006).
[Crossref] [PubMed]

2003 (1)

P. Russell, Photonic Crystal Fibers, Science 299, 358–362 (2003).
[Crossref] [PubMed]

2001 (1)

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray Optics,” Nucl. Instrum. Methods Phys. Res. A 467, 686–689 (2001).
[Crossref]

2000 (1)

W. Cash, A. Shipley, S. Osterman, and M. Joy, “Laboratory detection of x-ray fringes with a grazing-incidence interferometer,” Nature 407, 160–162 (2000).
[Crossref] [PubMed]

1993 (1)

B. L. Henke, E. M. Gullikson, and J. C. Davies, “X-Ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92,” Atomic Data Nucl. Data Tables 54, 181–342 (1993).
[Crossref]

1984 (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. A 392, 45–57 (1984).
[Crossref]

1969 (1)

S. Takagi, “A dynamical theory of diffraction for a distorted crystal,” J. Phys. Soc. Japan 26, 1239 (1969).
[Crossref]

1967 (1)

D. Taupin, “Prévision de quelques images de dislocations par transmission des rayons X (cas de Laue Symétrique),” Acta Cryst. 23, 25–35 (1967).
[Crossref]

1964 (2)

N. Kato, “Pendellösung fringes in distorted crystals II. application to two-beam cases,” J. Phys. Soc. Japan 19, 67 (1964).
[Crossref]

D. Taupin, “Théorie dynamique de la diffraction des rayons x par les cristaux Déformés,” Bull. Soc. Fr. Minér. Crist. 87, 469–511 (1964).

1963 (1)

N. Kato, “Pendellösung fringes in distorted crystals I. Fermat’s principle for Bloch waves,” J. Phys. Soc. Japan 18, 1785 (1963).
[Crossref]

1916 (1)

P. P. Ewald, “Zur Begründung der Kristalloptik,” Ann. Phys. 354, 1–38 (1916).
[Crossref]

1914 (1)

C. G. Darwin, “The theory of x-ray reflexion,” Phil. Mag. 27, 315–333 (1914).
[Crossref]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

Berry, M. V.

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. A 392, 45–57 (1984).
[Crossref]

Cash, W.

W. Cash, A. Shipley, S. Osterman, and M. Joy, “Laboratory detection of x-ray fringes with a grazing-incidence interferometer,” Nature 407, 160–162 (2000).
[Crossref] [PubMed]

Cash, W. C.

K. C. Gendreau, W. C. Cash, A. F. Shipley, and N. White, SPIE Conference Series, vol. 4851, J. E. Truemper and H. D. Tananbaum, eds. (SPIE, 2003), pp. 353–364.

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Darwin, C. G.

C. G. Darwin, “The theory of x-ray reflexion,” Phil. Mag. 27, 315–333 (1914).
[Crossref]

Davies, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davies, “X-Ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92,” Atomic Data Nucl. Data Tables 54, 181–342 (1993).
[Crossref]

Dejus, R. J.

M. Sanchez del Rio and R. J. Dejus, SPIE Conference Series, vol. 5536, M. Sanchez del Rio, ed. (SPIE, 2004), pp. 171–174.

Ewald, P. P.

P. P. Ewald, “Zur Begründung der Kristalloptik,” Ann. Phys. 354, 1–38 (1916).
[Crossref]

Fukatsu, S.

Y. Kohmura, K. Sawada, S. Fukatsu, and T. Ishikawa, “Controlling the propagation of x-ray waves inside a heteroepitaxial crystal containing quantum dots using Berry’s phase,” Phys. Rev. Lett. 110, 057402 (2013).
[Crossref]

Gendreau, K. C.

K. C. Gendreau, W. C. Cash, A. F. Shipley, and N. White, SPIE Conference Series, vol. 4851, J. E. Truemper and H. D. Tananbaum, eds. (SPIE, 2003), pp. 353–364.

Goto, S.

T. Ishikawa, K. Tamasaku, M. Yabashi, S. Goto, Y. Tanaka, H. Yamazaki, K. T. Takeshita, H. Kimura, H. Ohashi, T. Matsushita, and T. Ohata, SPIE Conference Series, vol. 4145, A. K. Freund, T. Ishikawa, A. M. Khounsary, D. C. Mancini, A. G. Michette, and S. Oestreich, eds. (SPIE, 2001), pp. 1–10.

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, and J. C. Davies, “X-Ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92,” Atomic Data Nucl. Data Tables 54, 181–342 (1993).
[Crossref]

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davies, “X-Ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92,” Atomic Data Nucl. Data Tables 54, 181–342 (1993).
[Crossref]

Ishikawa, T.

Y. Kohmura, K. Sawada, S. Fukatsu, and T. Ishikawa, “Controlling the propagation of x-ray waves inside a heteroepitaxial crystal containing quantum dots using Berry’s phase,” Phys. Rev. Lett. 110, 057402 (2013).
[Crossref]

Y. Kohmura, K. Sawada, and T. Ishikawa, “Berry-phase translation of x-rays by a deformed crystal,” Phys. Rev. Lett. 104, 244801 (2010).
[Crossref]

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray Optics,” Nucl. Instrum. Methods Phys. Res. A 467, 686–689 (2001).
[Crossref]

T. Ishikawa, K. Tamasaku, M. Yabashi, S. Goto, Y. Tanaka, H. Yamazaki, K. T. Takeshita, H. Kimura, H. Ohashi, T. Matsushita, and T. Ohata, SPIE Conference Series, vol. 4145, A. K. Freund, T. Ishikawa, A. M. Khounsary, D. C. Mancini, A. G. Michette, and S. Oestreich, eds. (SPIE, 2001), pp. 1–10.

Joy, M.

W. Cash, A. Shipley, S. Osterman, and M. Joy, “Laboratory detection of x-ray fringes with a grazing-incidence interferometer,” Nature 407, 160–162 (2000).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Kato, N.

N. Kato, “Pendellösung fringes in distorted crystals II. application to two-beam cases,” J. Phys. Soc. Japan 19, 67 (1964).
[Crossref]

N. Kato, “Pendellösung fringes in distorted crystals I. Fermat’s principle for Bloch waves,” J. Phys. Soc. Japan 18, 1785 (1963).
[Crossref]

Kawamura, N.

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray Optics,” Nucl. Instrum. Methods Phys. Res. A 467, 686–689 (2001).
[Crossref]

Kimura, H.

T. Ishikawa, K. Tamasaku, M. Yabashi, S. Goto, Y. Tanaka, H. Yamazaki, K. T. Takeshita, H. Kimura, H. Ohashi, T. Matsushita, and T. Ohata, SPIE Conference Series, vol. 4145, A. K. Freund, T. Ishikawa, A. M. Khounsary, D. C. Mancini, A. G. Michette, and S. Oestreich, eds. (SPIE, 2001), pp. 1–10.

Kohmura, Y.

Y. Kohmura, K. Sawada, S. Fukatsu, and T. Ishikawa, “Controlling the propagation of x-ray waves inside a heteroepitaxial crystal containing quantum dots using Berry’s phase,” Phys. Rev. Lett. 110, 057402 (2013).
[Crossref]

Y. Kohmura, K. Sawada, and T. Ishikawa, “Berry-phase translation of x-rays by a deformed crystal,” Phys. Rev. Lett. 104, 244801 (2010).
[Crossref]

Matsushita, T.

T. Ishikawa, K. Tamasaku, M. Yabashi, S. Goto, Y. Tanaka, H. Yamazaki, K. T. Takeshita, H. Kimura, H. Ohashi, T. Matsushita, and T. Ohata, SPIE Conference Series, vol. 4145, A. K. Freund, T. Ishikawa, A. M. Khounsary, D. C. Mancini, A. G. Michette, and S. Oestreich, eds. (SPIE, 2001), pp. 1–10.

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Murakami, S.

K. Sawada, S. Murakami, and N. Nagaosa, “Dynamical diffraction theory for wave packet propagation in deformed crystals,” Phys. Rev. Lett. 96, 154802 (2006).
[Crossref] [PubMed]

Nagaosa, N.

K. Sawada, S. Murakami, and N. Nagaosa, “Dynamical diffraction theory for wave packet propagation in deformed crystals,” Phys. Rev. Lett. 96, 154802 (2006).
[Crossref] [PubMed]

Ohashi, H.

T. Ishikawa, K. Tamasaku, M. Yabashi, S. Goto, Y. Tanaka, H. Yamazaki, K. T. Takeshita, H. Kimura, H. Ohashi, T. Matsushita, and T. Ohata, SPIE Conference Series, vol. 4145, A. K. Freund, T. Ishikawa, A. M. Khounsary, D. C. Mancini, A. G. Michette, and S. Oestreich, eds. (SPIE, 2001), pp. 1–10.

Ohata, T.

T. Ishikawa, K. Tamasaku, M. Yabashi, S. Goto, Y. Tanaka, H. Yamazaki, K. T. Takeshita, H. Kimura, H. Ohashi, T. Matsushita, and T. Ohata, SPIE Conference Series, vol. 4145, A. K. Freund, T. Ishikawa, A. M. Khounsary, D. C. Mancini, A. G. Michette, and S. Oestreich, eds. (SPIE, 2001), pp. 1–10.

Osterman, S.

W. Cash, A. Shipley, S. Osterman, and M. Joy, “Laboratory detection of x-ray fringes with a grazing-incidence interferometer,” Nature 407, 160–162 (2000).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Russell, P.

P. Russell, Photonic Crystal Fibers, Science 299, 358–362 (2003).
[Crossref] [PubMed]

Sanchez del Rio, M.

M. Sanchez del Rio and R. J. Dejus, SPIE Conference Series, vol. 5536, M. Sanchez del Rio, ed. (SPIE, 2004), pp. 171–174.

Sawada, K.

Y. Kohmura, K. Sawada, S. Fukatsu, and T. Ishikawa, “Controlling the propagation of x-ray waves inside a heteroepitaxial crystal containing quantum dots using Berry’s phase,” Phys. Rev. Lett. 110, 057402 (2013).
[Crossref]

Y. Kohmura, K. Sawada, and T. Ishikawa, “Berry-phase translation of x-rays by a deformed crystal,” Phys. Rev. Lett. 104, 244801 (2010).
[Crossref]

K. Sawada, S. Murakami, and N. Nagaosa, “Dynamical diffraction theory for wave packet propagation in deformed crystals,” Phys. Rev. Lett. 96, 154802 (2006).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

Shipley, A.

W. Cash, A. Shipley, S. Osterman, and M. Joy, “Laboratory detection of x-ray fringes with a grazing-incidence interferometer,” Nature 407, 160–162 (2000).
[Crossref] [PubMed]

Shipley, A. F.

K. C. Gendreau, W. C. Cash, A. F. Shipley, and N. White, SPIE Conference Series, vol. 4851, J. E. Truemper and H. D. Tananbaum, eds. (SPIE, 2003), pp. 353–364.

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Suzuki, M.

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray Optics,” Nucl. Instrum. Methods Phys. Res. A 467, 686–689 (2001).
[Crossref]

Takagi, S.

S. Takagi, “A dynamical theory of diffraction for a distorted crystal,” J. Phys. Soc. Japan 26, 1239 (1969).
[Crossref]

Takeshita, K. T.

T. Ishikawa, K. Tamasaku, M. Yabashi, S. Goto, Y. Tanaka, H. Yamazaki, K. T. Takeshita, H. Kimura, H. Ohashi, T. Matsushita, and T. Ohata, SPIE Conference Series, vol. 4145, A. K. Freund, T. Ishikawa, A. M. Khounsary, D. C. Mancini, A. G. Michette, and S. Oestreich, eds. (SPIE, 2001), pp. 1–10.

Tamasaku, K.

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray Optics,” Nucl. Instrum. Methods Phys. Res. A 467, 686–689 (2001).
[Crossref]

T. Ishikawa, K. Tamasaku, M. Yabashi, S. Goto, Y. Tanaka, H. Yamazaki, K. T. Takeshita, H. Kimura, H. Ohashi, T. Matsushita, and T. Ohata, SPIE Conference Series, vol. 4145, A. K. Freund, T. Ishikawa, A. M. Khounsary, D. C. Mancini, A. G. Michette, and S. Oestreich, eds. (SPIE, 2001), pp. 1–10.

Tanaka, Y.

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray Optics,” Nucl. Instrum. Methods Phys. Res. A 467, 686–689 (2001).
[Crossref]

T. Ishikawa, K. Tamasaku, M. Yabashi, S. Goto, Y. Tanaka, H. Yamazaki, K. T. Takeshita, H. Kimura, H. Ohashi, T. Matsushita, and T. Ohata, SPIE Conference Series, vol. 4145, A. K. Freund, T. Ishikawa, A. M. Khounsary, D. C. Mancini, A. G. Michette, and S. Oestreich, eds. (SPIE, 2001), pp. 1–10.

Taupin, D.

D. Taupin, “Prévision de quelques images de dislocations par transmission des rayons X (cas de Laue Symétrique),” Acta Cryst. 23, 25–35 (1967).
[Crossref]

D. Taupin, “Théorie dynamique de la diffraction des rayons x par les cristaux Déformés,” Bull. Soc. Fr. Minér. Crist. 87, 469–511 (1964).

White, N.

K. C. Gendreau, W. C. Cash, A. F. Shipley, and N. White, SPIE Conference Series, vol. 4851, J. E. Truemper and H. D. Tananbaum, eds. (SPIE, 2003), pp. 353–364.

Yabashi, M.

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray Optics,” Nucl. Instrum. Methods Phys. Res. A 467, 686–689 (2001).
[Crossref]

T. Ishikawa, K. Tamasaku, M. Yabashi, S. Goto, Y. Tanaka, H. Yamazaki, K. T. Takeshita, H. Kimura, H. Ohashi, T. Matsushita, and T. Ohata, SPIE Conference Series, vol. 4145, A. K. Freund, T. Ishikawa, A. M. Khounsary, D. C. Mancini, A. G. Michette, and S. Oestreich, eds. (SPIE, 2001), pp. 1–10.

Yamazaki, H.

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray Optics,” Nucl. Instrum. Methods Phys. Res. A 467, 686–689 (2001).
[Crossref]

T. Ishikawa, K. Tamasaku, M. Yabashi, S. Goto, Y. Tanaka, H. Yamazaki, K. T. Takeshita, H. Kimura, H. Ohashi, T. Matsushita, and T. Ohata, SPIE Conference Series, vol. 4145, A. K. Freund, T. Ishikawa, A. M. Khounsary, D. C. Mancini, A. G. Michette, and S. Oestreich, eds. (SPIE, 2001), pp. 1–10.

Acta Cryst. (1)

D. Taupin, “Prévision de quelques images de dislocations par transmission des rayons X (cas de Laue Symétrique),” Acta Cryst. 23, 25–35 (1967).
[Crossref]

Ann. Phys. (1)

P. P. Ewald, “Zur Begründung der Kristalloptik,” Ann. Phys. 354, 1–38 (1916).
[Crossref]

Atomic Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, and J. C. Davies, “X-Ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92,” Atomic Data Nucl. Data Tables 54, 181–342 (1993).
[Crossref]

Bull. Soc. Fr. Minér. Crist. (1)

D. Taupin, “Théorie dynamique de la diffraction des rayons x par les cristaux Déformés,” Bull. Soc. Fr. Minér. Crist. 87, 469–511 (1964).

J. Phys. Soc. Japan (3)

S. Takagi, “A dynamical theory of diffraction for a distorted crystal,” J. Phys. Soc. Japan 26, 1239 (1969).
[Crossref]

N. Kato, “Pendellösung fringes in distorted crystals I. Fermat’s principle for Bloch waves,” J. Phys. Soc. Japan 18, 1785 (1963).
[Crossref]

N. Kato, “Pendellösung fringes in distorted crystals II. application to two-beam cases,” J. Phys. Soc. Japan 19, 67 (1964).
[Crossref]

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

Nature (1)

W. Cash, A. Shipley, S. Osterman, and M. Joy, “Laboratory detection of x-ray fringes with a grazing-incidence interferometer,” Nature 407, 160–162 (2000).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. A (1)

K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, “SPring-8 RIKEN beamline III for coherent X-ray Optics,” Nucl. Instrum. Methods Phys. Res. A 467, 686–689 (2001).
[Crossref]

Phil. Mag. (1)

C. G. Darwin, “The theory of x-ray reflexion,” Phil. Mag. 27, 315–333 (1914).
[Crossref]

Phys. Rev. Lett. (3)

Y. Kohmura, K. Sawada, and T. Ishikawa, “Berry-phase translation of x-rays by a deformed crystal,” Phys. Rev. Lett. 104, 244801 (2010).
[Crossref]

Y. Kohmura, K. Sawada, S. Fukatsu, and T. Ishikawa, “Controlling the propagation of x-ray waves inside a heteroepitaxial crystal containing quantum dots using Berry’s phase,” Phys. Rev. Lett. 110, 057402 (2013).
[Crossref]

K. Sawada, S. Murakami, and N. Nagaosa, “Dynamical diffraction theory for wave packet propagation in deformed crystals,” Phys. Rev. Lett. 96, 154802 (2006).
[Crossref] [PubMed]

Proc. R. Soc. A (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. A 392, 45–57 (1984).
[Crossref]

Science (3)

P. Russell, Photonic Crystal Fibers, Science 299, 358–362 (2003).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Other (3)

T. Ishikawa, K. Tamasaku, M. Yabashi, S. Goto, Y. Tanaka, H. Yamazaki, K. T. Takeshita, H. Kimura, H. Ohashi, T. Matsushita, and T. Ohata, SPIE Conference Series, vol. 4145, A. K. Freund, T. Ishikawa, A. M. Khounsary, D. C. Mancini, A. G. Michette, and S. Oestreich, eds. (SPIE, 2001), pp. 1–10.

M. Sanchez del Rio and R. J. Dejus, SPIE Conference Series, vol. 5536, M. Sanchez del Rio, ed. (SPIE, 2004), pp. 171–174.

K. C. Gendreau, W. C. Cash, A. F. Shipley, and N. White, SPIE Conference Series, vol. 4851, J. E. Truemper and H. D. Tananbaum, eds. (SPIE, 2003), pp. 353–364.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic views of the X-ray translation: (a) X-rays penetrate through a distortion-free silicon crystal with no macroscopic shift. (b) X-rays show parallel translation due to atomic displacement that can be controlled by the piezoelectric device.
Fig. 2
Fig. 2 Schematic view of the experiment. The original beam of 15 keV X-rays was first shaped by the 0.5 mm-square Front-End (FE) slit. The double-crystal Si(111) monochromator was introduced to make an energy dispersion sufficiently small. Then the X-ray beam passed through the 2 mm-square Transport Channel (TC) slit, and is collimated by Slit A of (Vertical, Horizontal) = (10, 500) μm. The channel-cut Si(100) crystal was further placed to collimate the reference beam. The test optics and a combination of the phosphor screen, the 3% transmission neutral density filter, the optical zoom lens, and the CCD detector were finally arranged downstream. The sample crystal was a 100 μm-thick well-polished 20×20 mm Si(100) chip, and the beam incidence angle was aimed at near Bragg’s condition of 17.722° for 400 reflection. X-ray fluxes were monitored by the ionization chambers (ICs), and a part of the Bragg reflection was observed by a photodiode (PD). The rocking curves were measured using the blade (for blocking non-target signals), the analyzer Si(111) crystal, and another PD. The bottom ruler and the labels indicate the distances from the light source.
Fig. 3
Fig. 3 Comparison of transmission images taken by the CCD camera: (a) The reference beam without the test optics. (b) The signals through the crystal chip with the incidence at an off-Bragg angle, confirming that the silicon refraction was negligible. (c) The output of the Berry-phase translation, yielding the splitting into Beam-I and Beam-II. (d) An exposure-corrected absorption map constructed by an X-axis raw-beam scan with a 0.5 mm step size, showing the positions of the crystal and the output beams. The red and green contours indicate the shapes/positions of (c) and an X-ray beam without the narrow Slit A, respectively. Beam-I was from the side surface of the crystal, and Beam-II was near from the position of the reference beam. The bottom labels of each panel show the combinations of optical elements for taking respective images.
Fig. 4
Fig. 4 Summary of the observed signals: (a) The vertical projection profiles of Figs. 3(a), 3(b), and 3(c) are shown color-coded. (b) The rocking curves are by the same colors as (a); the red line indicates the signal of Beam-I. (c) The oscilloscope measurements of the Beam-I fluxes using IC3. The red and green lines show background-subtracted and background profiles, respectively. (d) Comparison of the vertical projection profiles of Beam-I taken by Z-axis scanning of the test optics. The red solid line shows the same of that in (a), and the dashed-and-dotted lines show data observed at other positions. The peak values are plotted in black, showing the steep decline in the output flux at 0.4 mm in distance from the position of the reference beam.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d r d t = v g d r d t Ω k r ,
d k d t = ω r + d k d t Ω r k ,

Metrics