Abstract

We demonstrate a high-efficiency, high-average-power, CW master oscillator power amplifier based on a conduction-cooled, end-pumped Yb:YAG slab architecture at room temperature (RT). Firstly, the CW amplification property is theoretically analyzed based on the kinetics model for Yb:YAG. To realize high-efficiency laser amplification extraction for RT Yb:YAG, not only intense pump but also a high-power seed laser is of great importance. Experimentally, a composite Yb:YAG crystal slab with three doped and two un-doped segments symmetrically is employed as the gain medium, which is end-pumped by two high-power, 940-nm diode lasers. A high-power, narrow-spectral-width, 1030-nm fiber seed laser then double passes the composite slab to realize efficient power amplification. For 0.8-kW seed input, maximum output power of 3.54 kW is obtained at 6.7 kW of pump power, with the optical conversion efficiency of 41% and the highest slope efficiency of 59%. To the best of our knowledge, this is the highest power and efficiency reported for Yb:YAG lasing at RT except thin-disk lasers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Yb:YAG master oscillator power amplifier for remote wind sensing

A. K. Sridharan, S. Saraf, and R. L. Byer
Appl. Opt. 46(30) 7552-7565 (2007)

High brightness laser based on Yb:YAG MOPA chain and adaptive optics system at room temperature

Liu Xu, Yingchen Wu, Yinglei Du, Dan Wang, Xiangchao An, Mi Li, Tangjian Zhou, Jianli Shang, Juntao Wang, Zhangwen Liu, Long Ou, Na Zhao, Rujian Xiang, Lixin Tong, Honghuan Lin, Qingsong Gao, Yanhua Lu, Kai Zhang, and Chun Tang
Opt. Express 26(11) 14592-14600 (2018)

Hybrid ultra-short Yb:YAG ceramic master-oscillator high-power fiber amplifier

Hui Zhou, Wenxue Li, Kangwen Yang, Niannian Lin, Benxue Jiang, Yubai Pan, and Heping Zeng
Opt. Express 20(S4) A489-A495 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, “Ytterbium solid-state lasers. The first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
    [Crossref]
  2. D. S. Sumida, H. W. Bruesselbach, R. W. Byren, M. S. Mangir, and R. Reeder, “High-power Yb:YAG rod oscillators and amplifiers,” Proc. SPIE 3265, 100–105 (1998).
    [Crossref]
  3. H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005).
    [Crossref]
  4. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [Crossref]
  5. G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, “Yb:YAG power oscillator with high brightness and linear polarization,” Opt. Lett. 26(21), 1672–1674 (2001).
    [Crossref] [PubMed]
  6. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [Crossref]
  7. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [Crossref]
  8. S. Redmond, S. Mcnaught, J. Zamel, L. Iwaki, S. Bammert, R. Simpson, S. B. Weiss, J. Szot, B. Flegal, and T. Lee, “15 kW near-diffraction-limited single-frequency Nd:YAG laser,” in Conference on Lasers and Electro-Optics (2007), pp. 1–2.
    [Crossref]
  9. G. D. Goodno, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, “Coherent combination of high-power, zigzag slab lasers,” Opt. Lett. 31(9), 1247–1249 (2006).
    [Crossref] [PubMed]
  10. R. Wilhelm, D. Freiburg, M. Frede, D. Kracht, and C. Fallnich, “Design and comparison of composite rod crystals for power scaling of diode end-pumped Nd:YAG lasers,” Opt. Express 17(10), 8229–8236 (2009).
    [Crossref] [PubMed]
  11. Y. J. Huang and Y. F. Chen, “High-power diode-end-pumped laser with multi-segmented Nd-doped yttrium vanadate,” Opt. Express 21(13), 16063–16068 (2013).
    [Crossref] [PubMed]
  12. D. C. Brown and V. A. Vitali, “Yb:YAG kinetics model including saturation and power conservation,” IEEE J. Quantum Electron. 47(1), 3–12 (2011).
    [Crossref]
  13. G. L. Bourdet, “Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers,” Appl. Opt. 39(6), 966–971 (2000).
    [Crossref] [PubMed]
  14. C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38(3), 306–311 (2002).
    [Crossref]
  15. J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
    [Crossref]
  16. M. Ganija, D. J. Ottaway, P. J. Veitch, and J. Munch, “Cryogenic, conduction cooled, end pumped, zigzag slab laser, suitable for power scaling,” in Conference on Lasers and Electro-Optics, CM3D.7, (2012).
    [Crossref]
  17. S. Matsubara, T. Ueda, T. Takamido, and S. Kawato, “Nearly quantum-efficiency limited oscillation of Yb:YAG laser at room temperature,” in Conference on Lasers and Electro-Optics (2005), pp. 325–327.
    [Crossref]
  18. J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on CW Yb:YAG microchip laser performance at ambient temperature – Part II: Theoretical modeling,” Appl. Phys. B 89(2-3), 367–376 (2007).
    [Crossref]
  19. H. Yoshioka, S. Nakamura, Y. Matsubara, T. Ogawa, and S. Wada, “Efficient tunable diode-pumped Yb:YAG ceramic laser,” in Conference on Quantum Electronics and Laser Science (2008), pp. 1–2.

2013 (1)

2011 (1)

D. C. Brown and V. A. Vitali, “Yb:YAG kinetics model including saturation and power conservation,” IEEE J. Quantum Electron. 47(1), 3–12 (2011).
[Crossref]

2009 (1)

2008 (1)

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[Crossref]

2007 (3)

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on CW Yb:YAG microchip laser performance at ambient temperature – Part II: Theoretical modeling,” Appl. Phys. B 89(2-3), 367–376 (2007).
[Crossref]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

2006 (1)

2005 (2)

H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

2002 (1)

C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38(3), 306–311 (2002).
[Crossref]

2001 (1)

2000 (2)

W. F. Krupke, “Ytterbium solid-state lasers. The first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

G. L. Bourdet, “Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers,” Appl. Opt. 39(6), 966–971 (2000).
[Crossref] [PubMed]

1998 (1)

D. S. Sumida, H. W. Bruesselbach, R. W. Byren, M. S. Mangir, and R. Reeder, “High-power Yb:YAG rod oscillators and amplifiers,” Proc. SPIE 3265, 100–105 (1998).
[Crossref]

Abeeluck, A. K.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[Crossref]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Awtry, A. R.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[Crossref]

Bammert, S.

S. Redmond, S. Mcnaught, J. Zamel, L. Iwaki, S. Bammert, R. Simpson, S. B. Weiss, J. Szot, B. Flegal, and T. Lee, “15 kW near-diffraction-limited single-frequency Nd:YAG laser,” in Conference on Lasers and Electro-Optics (2007), pp. 1–2.
[Crossref]

Bourdet, G. L.

Brasseur, J. K.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[Crossref]

Brown, D. C.

D. C. Brown and V. A. Vitali, “Yb:YAG kinetics model including saturation and power conservation,” IEEE J. Quantum Electron. 47(1), 3–12 (2011).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

Bruesselbach, H.

H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005).
[Crossref]

Bruesselbach, H. W.

D. S. Sumida, H. W. Bruesselbach, R. W. Byren, M. S. Mangir, and R. Reeder, “High-power Yb:YAG rod oscillators and amplifiers,” Proc. SPIE 3265, 100–105 (1998).
[Crossref]

Byren, R. W.

D. S. Sumida, H. W. Bruesselbach, R. W. Byren, M. S. Mangir, and R. Reeder, “High-power Yb:YAG rod oscillators and amplifiers,” Proc. SPIE 3265, 100–105 (1998).
[Crossref]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Chen, Y. F.

Cheung, E. C.

Cuchiara, M. H.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[Crossref]

Dong, J.

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on CW Yb:YAG microchip laser performance at ambient temperature – Part II: Theoretical modeling,” Appl. Phys. B 89(2-3), 367–376 (2007).
[Crossref]

Epp, P.

Fallnich, C.

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Flegal, B.

S. Redmond, S. Mcnaught, J. Zamel, L. Iwaki, S. Bammert, R. Simpson, S. B. Weiss, J. Szot, B. Flegal, and T. Lee, “15 kW near-diffraction-limited single-frequency Nd:YAG laser,” in Conference on Lasers and Electro-Optics (2007), pp. 1–2.
[Crossref]

Frede, M.

Freiburg, D.

Ganija, M.

M. Ganija, D. J. Ottaway, P. J. Veitch, and J. Munch, “Cryogenic, conduction cooled, end pumped, zigzag slab laser, suitable for power scaling,” in Conference on Lasers and Electro-Optics, CM3D.7, (2012).
[Crossref]

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Goodno, G. D.

Hampton, R. K.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[Crossref]

Harkenrider, J.

Howland, D.

Huang, Y. J.

Injeyan, H.

Iwaki, L.

S. Redmond, S. Mcnaught, J. Zamel, L. Iwaki, S. Bammert, R. Simpson, S. B. Weiss, J. Szot, B. Flegal, and T. Lee, “15 kW near-diffraction-limited single-frequency Nd:YAG laser,” in Conference on Lasers and Electro-Optics (2007), pp. 1–2.
[Crossref]

Izawa, Y.

C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38(3), 306–311 (2002).
[Crossref]

Kaminskii, A. A.

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on CW Yb:YAG microchip laser performance at ambient temperature – Part II: Theoretical modeling,” Appl. Phys. B 89(2-3), 367–376 (2007).
[Crossref]

Kawato, S.

S. Matsubara, T. Ueda, T. Takamido, and S. Kawato, “Nearly quantum-efficiency limited oscillation of Yb:YAG laser at room temperature,” in Conference on Lasers and Electro-Optics (2005), pp. 325–327.
[Crossref]

Komine, H.

Kracht, D.

Krupke, W. F.

W. F. Krupke, “Ytterbium solid-state lasers. The first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

Lee, T.

S. Redmond, S. Mcnaught, J. Zamel, L. Iwaki, S. Bammert, R. Simpson, S. B. Weiss, J. Szot, B. Flegal, and T. Lee, “15 kW near-diffraction-limited single-frequency Nd:YAG laser,” in Conference on Lasers and Electro-Optics (2007), pp. 1–2.
[Crossref]

Lim, C.

C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38(3), 306–311 (2002).
[Crossref]

Long, W.

Mangir, M. S.

D. S. Sumida, H. W. Bruesselbach, R. W. Byren, M. S. Mangir, and R. Reeder, “High-power Yb:YAG rod oscillators and amplifiers,” Proc. SPIE 3265, 100–105 (1998).
[Crossref]

Matsubara, S.

S. Matsubara, T. Ueda, T. Takamido, and S. Kawato, “Nearly quantum-efficiency limited oscillation of Yb:YAG laser at room temperature,” in Conference on Lasers and Electro-Optics (2005), pp. 325–327.
[Crossref]

Matsubara, Y.

H. Yoshioka, S. Nakamura, Y. Matsubara, T. Ogawa, and S. Wada, “Efficient tunable diode-pumped Yb:YAG ceramic laser,” in Conference on Quantum Electronics and Laser Science (2008), pp. 1–2.

McClellan, M.

Mcnaught, S.

S. Redmond, S. Mcnaught, J. Zamel, L. Iwaki, S. Bammert, R. Simpson, S. B. Weiss, J. Szot, B. Flegal, and T. Lee, “15 kW near-diffraction-limited single-frequency Nd:YAG laser,” in Conference on Lasers and Electro-Optics (2007), pp. 1–2.
[Crossref]

McNaught, S. J.

Meng, L. S.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[Crossref]

Miller, N. J.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[Crossref]

Munch, J.

M. Ganija, D. J. Ottaway, P. J. Veitch, and J. Munch, “Cryogenic, conduction cooled, end pumped, zigzag slab laser, suitable for power scaling,” in Conference on Lasers and Electro-Optics, CM3D.7, (2012).
[Crossref]

Nakamura, S.

H. Yoshioka, S. Nakamura, Y. Matsubara, T. Ogawa, and S. Wada, “Efficient tunable diode-pumped Yb:YAG ceramic laser,” in Conference on Quantum Electronics and Laser Science (2008), pp. 1–2.

Neumann, D. K.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[Crossref]

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Ogawa, T.

H. Yoshioka, S. Nakamura, Y. Matsubara, T. Ogawa, and S. Wada, “Efficient tunable diode-pumped Yb:YAG ceramic laser,” in Conference on Quantum Electronics and Laser Science (2008), pp. 1–2.

Ottaway, D. J.

M. Ganija, D. J. Ottaway, P. J. Veitch, and J. Munch, “Cryogenic, conduction cooled, end pumped, zigzag slab laser, suitable for power scaling,” in Conference on Lasers and Electro-Optics, CM3D.7, (2012).
[Crossref]

Palese, S.

Redmond, S.

G. D. Goodno, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, “Coherent combination of high-power, zigzag slab lasers,” Opt. Lett. 31(9), 1247–1249 (2006).
[Crossref] [PubMed]

S. Redmond, S. Mcnaught, J. Zamel, L. Iwaki, S. Bammert, R. Simpson, S. B. Weiss, J. Szot, B. Flegal, and T. Lee, “15 kW near-diffraction-limited single-frequency Nd:YAG laser,” in Conference on Lasers and Electro-Optics (2007), pp. 1–2.
[Crossref]

Reeder, R.

D. S. Sumida, H. W. Bruesselbach, R. W. Byren, M. S. Mangir, and R. Reeder, “High-power Yb:YAG rod oscillators and amplifiers,” Proc. SPIE 3265, 100–105 (1998).
[Crossref]

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Shirakawa, A.

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on CW Yb:YAG microchip laser performance at ambient temperature – Part II: Theoretical modeling,” Appl. Phys. B 89(2-3), 367–376 (2007).
[Crossref]

Shortoff, K. E.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[Crossref]

Simpson, R.

G. D. Goodno, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, “Coherent combination of high-power, zigzag slab lasers,” Opt. Lett. 31(9), 1247–1249 (2006).
[Crossref] [PubMed]

S. Redmond, S. Mcnaught, J. Zamel, L. Iwaki, S. Bammert, R. Simpson, S. B. Weiss, J. Szot, B. Flegal, and T. Lee, “15 kW near-diffraction-limited single-frequency Nd:YAG laser,” in Conference on Lasers and Electro-Optics (2007), pp. 1–2.
[Crossref]

Sollee, J.

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Sumida, D. S.

H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005).
[Crossref]

D. S. Sumida, H. W. Bruesselbach, R. W. Byren, M. S. Mangir, and R. Reeder, “High-power Yb:YAG rod oscillators and amplifiers,” Proc. SPIE 3265, 100–105 (1998).
[Crossref]

Szot, J.

S. Redmond, S. Mcnaught, J. Zamel, L. Iwaki, S. Bammert, R. Simpson, S. B. Weiss, J. Szot, B. Flegal, and T. Lee, “15 kW near-diffraction-limited single-frequency Nd:YAG laser,” in Conference on Lasers and Electro-Optics (2007), pp. 1–2.
[Crossref]

Takamido, T.

S. Matsubara, T. Ueda, T. Takamido, and S. Kawato, “Nearly quantum-efficiency limited oscillation of Yb:YAG laser at room temperature,” in Conference on Lasers and Electro-Optics (2005), pp. 325–327.
[Crossref]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Ueda, K. I.

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on CW Yb:YAG microchip laser performance at ambient temperature – Part II: Theoretical modeling,” Appl. Phys. B 89(2-3), 367–376 (2007).
[Crossref]

Ueda, T.

S. Matsubara, T. Ueda, T. Takamido, and S. Kawato, “Nearly quantum-efficiency limited oscillation of Yb:YAG laser at room temperature,” in Conference on Lasers and Electro-Optics (2005), pp. 325–327.
[Crossref]

Veitch, P. J.

M. Ganija, D. J. Ottaway, P. J. Veitch, and J. Munch, “Cryogenic, conduction cooled, end pumped, zigzag slab laser, suitable for power scaling,” in Conference on Lasers and Electro-Optics, CM3D.7, (2012).
[Crossref]

Vitali, V. A.

D. C. Brown and V. A. Vitali, “Yb:YAG kinetics model including saturation and power conservation,” IEEE J. Quantum Electron. 47(1), 3–12 (2011).
[Crossref]

Wada, S.

H. Yoshioka, S. Nakamura, Y. Matsubara, T. Ogawa, and S. Wada, “Efficient tunable diode-pumped Yb:YAG ceramic laser,” in Conference on Quantum Electronics and Laser Science (2008), pp. 1–2.

Weber, M.

Weiss, S. B.

G. D. Goodno, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, “Coherent combination of high-power, zigzag slab lasers,” Opt. Lett. 31(9), 1247–1249 (2006).
[Crossref] [PubMed]

S. Redmond, S. Mcnaught, J. Zamel, L. Iwaki, S. Bammert, R. Simpson, S. B. Weiss, J. Szot, B. Flegal, and T. Lee, “15 kW near-diffraction-limited single-frequency Nd:YAG laser,” in Conference on Lasers and Electro-Optics (2007), pp. 1–2.
[Crossref]

Wilhelm, R.

Yoshioka, H.

H. Yoshioka, S. Nakamura, Y. Matsubara, T. Ogawa, and S. Wada, “Efficient tunable diode-pumped Yb:YAG ceramic laser,” in Conference on Quantum Electronics and Laser Science (2008), pp. 1–2.

Zamel, J.

S. Redmond, S. Mcnaught, J. Zamel, L. Iwaki, S. Bammert, R. Simpson, S. B. Weiss, J. Szot, B. Flegal, and T. Lee, “15 kW near-diffraction-limited single-frequency Nd:YAG laser,” in Conference on Lasers and Electro-Optics (2007), pp. 1–2.
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on CW Yb:YAG microchip laser performance at ambient temperature – Part II: Theoretical modeling,” Appl. Phys. B 89(2-3), 367–376 (2007).
[Crossref]

IEEE J. Quantum Electron. (2)

C. Lim and Y. Izawa, “Modeling of end-pumped CW quasi-three-level lasers,” IEEE J. Quantum Electron. 38(3), 306–311 (2002).
[Crossref]

D. C. Brown and V. A. Vitali, “Yb:YAG kinetics model including saturation and power conservation,” IEEE J. Quantum Electron. 47(1), 3–12 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005).
[Crossref]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

W. F. Krupke, “Ytterbium solid-state lasers. The first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (2)

D. S. Sumida, H. W. Bruesselbach, R. W. Byren, M. S. Mangir, and R. Reeder, “High-power Yb:YAG rod oscillators and amplifiers,” Proc. SPIE 3265, 100–105 (1998).
[Crossref]

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, “2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[Crossref]

Other (4)

M. Ganija, D. J. Ottaway, P. J. Veitch, and J. Munch, “Cryogenic, conduction cooled, end pumped, zigzag slab laser, suitable for power scaling,” in Conference on Lasers and Electro-Optics, CM3D.7, (2012).
[Crossref]

S. Matsubara, T. Ueda, T. Takamido, and S. Kawato, “Nearly quantum-efficiency limited oscillation of Yb:YAG laser at room temperature,” in Conference on Lasers and Electro-Optics (2005), pp. 325–327.
[Crossref]

S. Redmond, S. Mcnaught, J. Zamel, L. Iwaki, S. Bammert, R. Simpson, S. B. Weiss, J. Szot, B. Flegal, and T. Lee, “15 kW near-diffraction-limited single-frequency Nd:YAG laser,” in Conference on Lasers and Electro-Optics (2007), pp. 1–2.
[Crossref]

H. Yoshioka, S. Nakamura, Y. Matsubara, T. Ogawa, and S. Wada, “Efficient tunable diode-pumped Yb:YAG ceramic laser,” in Conference on Quantum Electronics and Laser Science (2008), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Calculated minimum IP/IPS for g > 0 as a function of material temperature and (b) relationship between IL/ILS and IP/IPS for ηex = 50% when T = 300, 350 and 400 K respectively.
Fig. 2
Fig. 2 (a) Schematic of the experimental setup, (b) the optical isolator and (c) the far-field beam pattern of the signal beam after the optical isolator and beam shaping system.
Fig. 3
Fig. 3 Amplifier output power and optical conversion efficiency as a function of pump power when the input signal power is (a) 0.55 kW and (b) 0.8 kW, respectively.
Fig. 4
Fig. 4 (a) The fluorescence distribution induced by the pump beam and (b) the optical path difference information of the slab along the y direction at the pump power of 2.5 kW (without signal inputting).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g= σ L ( f 11 n 1 f 03 n 0 )= σ L n d I P I P S ( f 01 f 11 f 03 f 12 ) f 03 1+ I P I P S ( f 01 + f 12 )+ I L I L S ( f 03 + f 11 ) .
η ex = P ex P ST = P out P in P ST = 1 f 03 f 01 f 11 f 03 f 12 I P S I P 1+ f 01 f 01 f 11 f 03 f 12 I L S I L ,
I P I P S > f 03 f 01 f 11 f 03 f 12 ,

Metrics