Abstract

The spatial resolution in far-field mid-infrared (λ>2.5 µm) microscopy and micro-spectroscopy remains limited with the full-width at half maximum of the point-spread function ca. λ/1.3; a value that is very poor in comparison to that commonly accessible with visible and near-infrared optics. Hereafter, it is demonstrated however that polymer beads that are centre-to-centre spaced by λ/2.6 can be resolved in the mid-infrared. The more than 2-fold improvement in resolution in the far-field is achieved by exploiting a newly constructed scanning microscope built around a mid-infrared optical parametric oscillator and a central solid-immersion lens, and by enforcing the linear polarization unidirectional resolution enhancement with a novel and robust specimen error minimization based on a particle swarm optimization. The method is demonstrated with specimens immersed in air and in water, and its robustness shown by the analysis of dense and complex self-assembled bead islands.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial-domain filter enhanced subtraction microscopy and application to mid-IR imaging

Mahendar Kumbham, Rabah Mouras, Aladin Mani, Susan Daly, Kevin O’Dwyer, Andrea Toma, Paolo Bianchini, Alberto Diaspro, Ning Liu, Syed A. M. Tofail, and Christophe Silien
Opt. Express 25(12) 13145-13152 (2017)

Subdiffraction resolution in far-field fluorescence microscopy

Thomas A. Klar and Stefan W. Hell
Opt. Lett. 24(14) 954-956 (1999)

A framework for far-field infrared absorption microscopy beyond the diffraction limit

Christophe Silien, Ning Liu, Nordine Hendaoui, Syed A. M. Tofail, and André Peremans
Opt. Express 20(28) 29694-29704 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87(1), 485–493 (2015).
    [Crossref] [PubMed]
  2. F. Lu and M. A. Belkin, “Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers,” Opt. Express 19(21), 19942–19947 (2011).
    [Crossref] [PubMed]
  3. I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
    [Crossref]
  4. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
    [Crossref] [PubMed]
  5. L. M. Miller, G. D. Smith, and G. L. Carr, “Synchrotron-based biological microspectroscopy: from the mid-infrared through the far-infrared regimes,” J. Biol. Phys. 29(2/3), 219–230 (2003).
    [Crossref] [PubMed]
  6. L. M. Miller and P. Dumas, “Chemical imaging of biological tissue with synchrotron infrared light,” Biochim. Biophys. Acta 1758(7), 846–857 (2006).
    [Crossref] [PubMed]
  7. G. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum. 72(3), 1613–1619 (2001).
    [Crossref]
  8. C. Silien, N. Liu, N. Hendaoui, S. A. Tofail, and A. Peremans, “A framework for far-field infrared absorption microscopy beyond the diffraction limit,” Opt. Express 20(28), 29694–29704 (2012).
    [Crossref] [PubMed]
  9. M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
    [Crossref] [PubMed]
  10. C. Petibois and G. Déléris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24(10), 455–462 (2006).
    [Crossref] [PubMed]
  11. M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1502–1513 (2012).
    [Crossref]
  12. S. M. Mansfield and G. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990).
    [Crossref]
  13. Q. Wu, G. Feke, R. D. Grober, and L. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
    [Crossref]
  14. F. H. Köklü, S. Ippolito, J. Quesnel, B. Goldberg, and M. Unlü, “Subsurface microscopy of integrated circuits with apodization and polarization control,” in Proceedings of the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2008), pp. 344–345.
    [Crossref]
  15. K. Agarwal, R. Chen, L. S. Koh, C. J. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: Targeting 10-nm node technology,” Phys. Rev. X 5(2), 021014 (2015).
    [Crossref]
  16. M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85(9), 6923–6925 (1999).
    [Crossref]
  17. C. A. Michaels, “Mid-infrared imaging with a solid immersion lens and broadband laser source,” Appl. Phys. Lett. 90(12), 121131 (2007).
    [Crossref]
  18. K. L. Chan and S. G. Kazarian, “Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows,” Anal. Chem. 85(2), 1029–1036 (2013).
    [Crossref] [PubMed]
  19. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. 253(1274), 358–379 (1959).
    [Crossref]
  20. F. H. Köklü and M. S. Unlü, “Subsurface microscopy of interconnect layers of an integrated circuit,” Opt. Lett. 35(2), 184–186 (2010).
    [Crossref] [PubMed]
  21. T. B. Cilingiroglu, A. Uyar, A. Tuysuzoglu, W. C. Karl, J. Konrad, B. B. Goldberg, and M. S. Ünlü, “Dictionary-based image reconstruction for superresolution in integrated circuit imaging,” Opt. Express 23(11), 15072–15087 (2015).
    [Crossref] [PubMed]
  22. T. B. Cilingiroglu, “Image reconstruction techniques for high numerical aperture integrated circuit imaging,” in Proceedings of the 38th International Symposium for Testing and Failure Analysis (ASM International, 2012), pp. 551–556.
  23. F. H. Köklü, S. B. Ippolito, B. B. Goldberg, and M. S. Unlü, “Subsurface microscopy of integrated circuits with angular spectrum and polarization control,” Opt. Lett. 34(8), 1261–1263 (2009).
    [Crossref] [PubMed]
  24. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge, 2006).
  25. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
    [Crossref]
  26. R. Chen, K. Agarwal, C. J. Sheppard, J. C. Phang, and X. Chen, “A complete and computationally efficient numerical model of aplanatic solid immersion lens scanning microscope,” Opt. Express 21(12), 14316–14330 (2013).
    [Crossref] [PubMed]
  27. R. Chen, K. Agarwal, Y. Zhong, C. J. Sheppard, J. C. Phang, and X. Chen, “Complete modeling of subsurface microscopy system based on aplanatic solid immersion lens,” J. Opt. Soc. Am. A 29(11), 2350–2359 (2012).
    [Crossref] [PubMed]
  28. A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
    [Crossref] [PubMed]
  29. P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
    [Crossref] [PubMed]
  30. B. Birge, “PSOt-a particle swarm optimization toolbox for use with Matlab,” in Proceeding of the 3rd IEEE Swarm Intelligence Symposium (IEEE, 2003), pp. 973–990.
    [Crossref]
  31. S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009).
    [Crossref] [PubMed]
  32. M. M. Marim, E. D. Angelini, and J.-C. Olivo-Marin, “A compressed sensing approach for biological microscopic image processing,” in Proceeding of the 6th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2009), pp. 1374–1377.
    [Crossref]
  33. J. Min, S. J. Holden, L. Carlini, M. Unser, S. Manley, and J. C. Ye, “3D high-density localization microscopy using hybrid astigmatic/ biplane imaging and sparse image reconstruction,” Biomed. Opt. Express 5(11), 3935–3948 (2014).
    [Crossref] [PubMed]
  34. J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J. C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).
    [Crossref] [PubMed]
  35. D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12(8), 717–724 (2015).
    [Crossref] [PubMed]
  36. V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
    [Crossref] [PubMed]
  37. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  38. X. Hao, C. Kuang, T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett. 35(23), 3928–3930 (2010).
    [Crossref] [PubMed]
  39. X. Li, P. Venugopalan, H. Ren, M. Hong, and M. Gu, “Super-resolved pure-transverse focal fields with an enhanced energy density through focus of an azimuthally polarized first-order vortex beam,” Opt. Lett. 39(20), 5961–5964 (2014).
    [Crossref] [PubMed]
  40. R. Chen, K. Agarwal, C. J. Sheppard, and X. Chen, “Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system,” Opt. Lett. 38(16), 3111–3114 (2013).
    [Crossref] [PubMed]
  41. J. Kennedy, “Particle swarm optimization,” in Encyclopedia of Machine Learning, C. Sammut and G. I. Webb, eds. (Springer, 2011), pp. 760–766.

2015 (6)

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

K. Agarwal, R. Chen, L. S. Koh, C. J. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: Targeting 10-nm node technology,” Phys. Rev. X 5(2), 021014 (2015).
[Crossref]

T. B. Cilingiroglu, A. Uyar, A. Tuysuzoglu, W. C. Karl, J. Konrad, B. B. Goldberg, and M. S. Ünlü, “Dictionary-based image reconstruction for superresolution in integrated circuit imaging,” Opt. Express 23(11), 15072–15087 (2015).
[Crossref] [PubMed]

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12(8), 717–724 (2015).
[Crossref] [PubMed]

2014 (4)

J. Min, S. J. Holden, L. Carlini, M. Unser, S. Manley, and J. C. Ye, “3D high-density localization microscopy using hybrid astigmatic/ biplane imaging and sparse image reconstruction,” Biomed. Opt. Express 5(11), 3935–3948 (2014).
[Crossref] [PubMed]

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J. C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).
[Crossref] [PubMed]

X. Li, P. Venugopalan, H. Ren, M. Hong, and M. Gu, “Super-resolved pure-transverse focal fields with an enhanced energy density through focus of an azimuthally polarized first-order vortex beam,” Opt. Lett. 39(20), 5961–5964 (2014).
[Crossref] [PubMed]

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (6)

R. Chen, K. Agarwal, Y. Zhong, C. J. Sheppard, J. C. Phang, and X. Chen, “Complete modeling of subsurface microscopy system based on aplanatic solid immersion lens,” J. Opt. Soc. Am. A 29(11), 2350–2359 (2012).
[Crossref] [PubMed]

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1502–1513 (2012).
[Crossref]

C. Silien, N. Liu, N. Hendaoui, S. A. Tofail, and A. Peremans, “A framework for far-field infrared absorption microscopy beyond the diffraction limit,” Opt. Express 20(28), 29694–29704 (2012).
[Crossref] [PubMed]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

2009 (2)

2007 (1)

C. A. Michaels, “Mid-infrared imaging with a solid immersion lens and broadband laser source,” Appl. Phys. Lett. 90(12), 121131 (2007).
[Crossref]

2006 (2)

C. Petibois and G. Déléris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24(10), 455–462 (2006).
[Crossref] [PubMed]

L. M. Miller and P. Dumas, “Chemical imaging of biological tissue with synchrotron infrared light,” Biochim. Biophys. Acta 1758(7), 846–857 (2006).
[Crossref] [PubMed]

2003 (2)

L. M. Miller, G. D. Smith, and G. L. Carr, “Synchrotron-based biological microspectroscopy: from the mid-infrared through the far-infrared regimes,” J. Biol. Phys. 29(2/3), 219–230 (2003).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

2001 (1)

G. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum. 72(3), 1613–1619 (2001).
[Crossref]

1999 (2)

Q. Wu, G. Feke, R. D. Grober, and L. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[Crossref]

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85(9), 6923–6925 (1999).
[Crossref]

1996 (1)

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

1990 (1)

S. M. Mansfield and G. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990).
[Crossref]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. 253(1274), 358–379 (1959).
[Crossref]

Agarwal, K.

Agger, C.

Akiyama, H.

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85(9), 6923–6925 (1999).
[Crossref]

Angelini, E. D.

M. M. Marim, E. D. Angelini, and J.-C. Olivo-Marin, “A compressed sensing approach for biological microscopic image processing,” in Proceeding of the 6th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2009), pp. 1374–1377.
[Crossref]

Apolonski, A.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Baba, M.

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85(9), 6923–6925 (1999).
[Crossref]

Baker, M. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Bang, O.

Bassan, P.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Belkin, M. A.

Bhargava, R.

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1502–1513 (2012).
[Crossref]

Biegert, J.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Birge, B.

B. Birge, “PSOt-a particle swarm optimization toolbox for use with Matlab,” in Proceeding of the 3rd IEEE Swarm Intelligence Symposium (IEEE, 2003), pp. 973–990.
[Crossref]

Bobin, J.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Bullkich, E.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Butler, H. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Candes, E.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Carlini, L.

J. Min, S. J. Holden, L. Carlini, M. Unser, S. Manley, and J. C. Ye, “3D high-density localization microscopy using hybrid astigmatic/ biplane imaging and sparse image reconstruction,” Biomed. Opt. Express 5(11), 3935–3948 (2014).
[Crossref] [PubMed]

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J. C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).
[Crossref] [PubMed]

Carr, G.

G. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum. 72(3), 1613–1619 (2001).
[Crossref]

Carr, G. L.

L. M. Miller, G. D. Smith, and G. L. Carr, “Synchrotron-based biological microspectroscopy: from the mid-infrared through the far-infrared regimes,” J. Biol. Phys. 29(2/3), 219–230 (2003).
[Crossref] [PubMed]

Chahid, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Chan, K. L.

K. L. Chan and S. G. Kazarian, “Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows,” Anal. Chem. 85(2), 1029–1036 (2013).
[Crossref] [PubMed]

Chen, R.

Chen, X.

Cilingiroglu, T. B.

T. B. Cilingiroglu, A. Uyar, A. Tuysuzoglu, W. C. Karl, J. Konrad, B. B. Goldberg, and M. S. Ünlü, “Dictionary-based image reconstruction for superresolution in integrated circuit imaging,” Opt. Express 23(11), 15072–15087 (2015).
[Crossref] [PubMed]

T. B. Cilingiroglu, “Image reconstruction techniques for high numerical aperture integrated circuit imaging,” in Proceedings of the 38th International Symposium for Testing and Failure Analysis (ASM International, 2012), pp. 551–556.

Cohen, O.

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Cohen-Hyams, T.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Dahan, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Dana, H.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Déléris, G.

C. Petibois and G. Déléris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24(10), 455–462 (2006).
[Crossref] [PubMed]

Dorling, K. M.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Dumas, P.

L. M. Miller and P. Dumas, “Chemical imaging of biological tissue with synchrotron infrared light,” Biochim. Biophys. Acta 1758(7), 846–857 (2006).
[Crossref] [PubMed]

Dupont, S.

Eldar, Y. C.

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009).
[Crossref] [PubMed]

Feke, G.

Q. Wu, G. Feke, R. D. Grober, and L. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[Crossref]

Fielden, P. R.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Fill, E.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Fleischer, A.

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

Fogarty, S. W.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Fullwood, N. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Gardner, P.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Gazit, S.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009).
[Crossref] [PubMed]

Ghislain, L.

Q. Wu, G. Feke, R. D. Grober, and L. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[Crossref]

Goldberg, B.

F. H. Köklü, S. Ippolito, J. Quesnel, B. Goldberg, and M. Unlü, “Subsurface microscopy of integrated circuits with apodization and polarization control,” in Proceedings of the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2008), pp. 344–345.
[Crossref]

Goldberg, B. B.

Grober, R. D.

Q. Wu, G. Feke, R. D. Grober, and L. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[Crossref]

Gu, M.

Hao, X.

Hendaoui, N.

Heys, K. A.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Holden, S.

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J. C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).
[Crossref] [PubMed]

Holden, S. J.

Hong, M.

Hughes, C.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Ippolito, S.

F. H. Köklü, S. Ippolito, J. Quesnel, B. Goldberg, and M. Unlü, “Subsurface microscopy of integrated circuits with apodization and polarization control,” in Proceedings of the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2008), pp. 344–345.
[Crossref]

Ippolito, S. B.

Karl, W. C.

Karpowicz, N.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Kazarian, S. G.

K. L. Chan and S. G. Kazarian, “Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows,” Anal. Chem. 85(2), 1029–1036 (2013).
[Crossref] [PubMed]

Keiding, S. R.

Kenkel, S.

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

Kfir, O.

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

Kino, G.

S. M. Mansfield and G. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990).
[Crossref]

Kirshner, H.

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12(8), 717–724 (2015).
[Crossref] [PubMed]

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J. C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).
[Crossref] [PubMed]

Kley, E. B.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Koh, L. S.

K. Agarwal, R. Chen, L. S. Koh, C. J. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: Targeting 10-nm node technology,” Phys. Rev. X 5(2), 021014 (2015).
[Crossref]

Köklü, F. H.

F. H. Köklü and M. S. Unlü, “Subsurface microscopy of interconnect layers of an integrated circuit,” Opt. Lett. 35(2), 184–186 (2010).
[Crossref] [PubMed]

F. H. Köklü, S. B. Ippolito, B. B. Goldberg, and M. S. Unlü, “Subsurface microscopy of integrated circuits with angular spectrum and polarization control,” Opt. Lett. 34(8), 1261–1263 (2009).
[Crossref] [PubMed]

F. H. Köklü, S. Ippolito, J. Quesnel, B. Goldberg, and M. Unlü, “Subsurface microscopy of integrated circuits with apodization and polarization control,” in Proceedings of the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2008), pp. 344–345.
[Crossref]

Konrad, J.

Krausz, F.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Kuang, C.

Lasch, P.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Li, X.

Lilienfein, N.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Liu, J. N.

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

Liu, N.

Liu, X.

Lu, F.

Manley, S.

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12(8), 717–724 (2015).
[Crossref] [PubMed]

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J. C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).
[Crossref] [PubMed]

J. Min, S. J. Holden, L. Carlini, M. Unser, S. Manley, and J. C. Ye, “3D high-density localization microscopy using hybrid astigmatic/ biplane imaging and sparse image reconstruction,” Biomed. Opt. Express 5(11), 3935–3948 (2014).
[Crossref] [PubMed]

Mansfield, S. M.

S. M. Mansfield and G. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990).
[Crossref]

Marim, M. M.

M. M. Marim, E. D. Angelini, and J.-C. Olivo-Marin, “A compressed sensing approach for biological microscopic image processing,” in Proceeding of the 6th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2009), pp. 1374–1377.
[Crossref]

Martin, F. L.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Martin-Hirsch, P. L.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Michaels, C. A.

C. A. Michaels, “Mid-infrared imaging with a solid immersion lens and broadband laser source,” Appl. Phys. Lett. 90(12), 121131 (2007).
[Crossref]

Miller, L. M.

L. M. Miller and P. Dumas, “Chemical imaging of biological tissue with synchrotron infrared light,” Biochim. Biophys. Acta 1758(7), 846–857 (2006).
[Crossref] [PubMed]

L. M. Miller, G. D. Smith, and G. L. Carr, “Synchrotron-based biological microspectroscopy: from the mid-infrared through the far-infrared regimes,” J. Biol. Phys. 29(2/3), 219–230 (2003).
[Crossref] [PubMed]

Min, J.

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12(8), 717–724 (2015).
[Crossref] [PubMed]

J. Min, S. J. Holden, L. Carlini, M. Unser, S. Manley, and J. C. Ye, “3D high-density localization microscopy using hybrid astigmatic/ biplane imaging and sparse image reconstruction,” Biomed. Opt. Express 5(11), 3935–3948 (2014).
[Crossref] [PubMed]

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J. C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).
[Crossref] [PubMed]

Mousavi, H. S.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Obinaju, B.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Olivier, N.

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J. C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).
[Crossref] [PubMed]

Olivo-Marin, J.-C.

M. M. Marim, E. D. Angelini, and J.-C. Olivo-Marin, “A compressed sensing approach for biological microscopic image processing,” in Proceeding of the 6th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2009), pp. 1374–1377.
[Crossref]

Osherovich, E.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Paasch-Colberg, T.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Pengo, T.

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12(8), 717–724 (2015).
[Crossref] [PubMed]

Peremans, A.

Pervak, V.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Pescher, M.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Petersen, C.

Petibois, C.

C. Petibois and G. Déléris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24(10), 455–462 (2006).
[Crossref] [PubMed]

Phang, J. C.

Pronin, O.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Pupeza, I.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Quesnel, J.

F. H. Köklü, S. Ippolito, J. Quesnel, B. Goldberg, and M. Unlü, “Subsurface microscopy of integrated circuits with apodization and polarization control,” in Proceedings of the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2008), pp. 344–345.
[Crossref]

Reddy, R. K.

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1502–1513 (2012).
[Crossref]

Ren, H.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. 253(1274), 358–379 (1959).
[Crossref]

Sage, D.

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12(8), 717–724 (2015).
[Crossref] [PubMed]

Sánchez, D.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Sasaki, T.

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85(9), 6923–6925 (1999).
[Crossref]

Schweinberger, W.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Segev, M.

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009).
[Crossref] [PubMed]

Seidel, M.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Shechtman, Y.

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Sheppard, C. J.

Shoham, S.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Sidorenko, P.

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Silien, C.

Smith, G. D.

L. M. Miller, G. D. Smith, and G. L. Carr, “Synchrotron-based biological microspectroscopy: from the mid-infrared through the far-infrared regimes,” J. Biol. Phys. 29(2/3), 219–230 (2003).
[Crossref] [PubMed]

Sockalingum, G. D.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Steiner, S.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Strong, R. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Studer, V.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Stuurman, N.

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12(8), 717–724 (2015).
[Crossref] [PubMed]

Sulé-Suso, J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Szameit, A.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009).
[Crossref] [PubMed]

Thøgersen, J.

Tofail, S. A.

Trevisan, J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Tuysuzoglu, A.

Unlü, M.

F. H. Köklü, S. Ippolito, J. Quesnel, B. Goldberg, and M. Unlü, “Subsurface microscopy of integrated circuits with apodization and polarization control,” in Proceedings of the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2008), pp. 344–345.
[Crossref]

Unlü, M. S.

Ünlü, M. S.

Unser, M.

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12(8), 717–724 (2015).
[Crossref] [PubMed]

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J. C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).
[Crossref] [PubMed]

J. Min, S. J. Holden, L. Carlini, M. Unser, S. Manley, and J. C. Ye, “3D high-density localization microscopy using hybrid astigmatic/ biplane imaging and sparse image reconstruction,” Biomed. Opt. Express 5(11), 3935–3948 (2014).
[Crossref] [PubMed]

Uyar, A.

Venugopalan, P.

Vonesch, C.

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J. C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).
[Crossref] [PubMed]

Walsh, M. J.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1502–1513 (2012).
[Crossref]

Wang, T.

Webb, R. H.

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

Wei, Z.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. 253(1274), 358–379 (1959).
[Crossref]

Wood, B. R.

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Wu, Q.

Q. Wu, G. Feke, R. D. Grober, and L. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[Crossref]

Yavneh, I.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Ye, J. C.

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J. C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).
[Crossref] [PubMed]

J. Min, S. J. Holden, L. Carlini, M. Unser, S. Manley, and J. C. Ye, “3D high-density localization microscopy using hybrid astigmatic/ biplane imaging and sparse image reconstruction,” Biomed. Opt. Express 5(11), 3935–3948 (2014).
[Crossref] [PubMed]

Yeh, K.

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

Yoshita, M.

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85(9), 6923–6925 (1999).
[Crossref]

Zhang, J.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Zhong, Y.

Zibulevsky, M.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Znakovskaya, I.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Anal. Chem. (2)

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

K. L. Chan and S. G. Kazarian, “Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows,” Anal. Chem. 85(2), 1029–1036 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

S. M. Mansfield and G. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990).
[Crossref]

Q. Wu, G. Feke, R. D. Grober, and L. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[Crossref]

C. A. Michaels, “Mid-infrared imaging with a solid immersion lens and broadband laser source,” Appl. Phys. Lett. 90(12), 121131 (2007).
[Crossref]

Biochim. Biophys. Acta (1)

L. M. Miller and P. Dumas, “Chemical imaging of biological tissue with synchrotron infrared light,” Biochim. Biophys. Acta 1758(7), 846–857 (2006).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1502–1513 (2012).
[Crossref]

J. Appl. Phys. (1)

M. Baba, T. Sasaki, M. Yoshita, and H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85(9), 6923–6925 (1999).
[Crossref]

J. Biol. Phys. (1)

L. M. Miller, G. D. Smith, and G. L. Carr, “Synchrotron-based biological microspectroscopy: from the mid-infrared through the far-infrared regimes,” J. Biol. Phys. 29(2/3), 219–230 (2003).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Commun. (1)

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Nat. Methods (1)

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12(8), 717–724 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Nat. Protoc. (1)

M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, and F. L. Martin, “Using Fourier transform IR spectroscopy to analyze biological materials,” Nat. Protoc. 9(8), 1771–1791 (2014).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Phys. Rev. X (1)

K. Agarwal, R. Chen, L. S. Koh, C. J. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: Targeting 10-nm node technology,” Phys. Rev. X 5(2), 021014 (2015).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Proc. R. Soc. Lond. (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. 253(1274), 358–379 (1959).
[Crossref]

Rep. Prog. Phys. (1)

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

Rev. Sci. Instrum. (1)

G. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum. 72(3), 1613–1619 (2001).
[Crossref]

Sci. Rep. (1)

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J. C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).
[Crossref] [PubMed]

Trends Biotechnol. (1)

C. Petibois and G. Déléris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24(10), 455–462 (2006).
[Crossref] [PubMed]

Other (6)

F. H. Köklü, S. Ippolito, J. Quesnel, B. Goldberg, and M. Unlü, “Subsurface microscopy of integrated circuits with apodization and polarization control,” in Proceedings of the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2008), pp. 344–345.
[Crossref]

M. M. Marim, E. D. Angelini, and J.-C. Olivo-Marin, “A compressed sensing approach for biological microscopic image processing,” in Proceeding of the 6th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2009), pp. 1374–1377.
[Crossref]

B. Birge, “PSOt-a particle swarm optimization toolbox for use with Matlab,” in Proceeding of the 3rd IEEE Swarm Intelligence Symposium (IEEE, 2003), pp. 973–990.
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge, 2006).

T. B. Cilingiroglu, “Image reconstruction techniques for high numerical aperture integrated circuit imaging,” in Proceedings of the 38th International Symposium for Testing and Failure Analysis (ASM International, 2012), pp. 551–556.

J. Kennedy, “Particle swarm optimization,” in Encyclopedia of Machine Learning, C. Sammut and G. I. Webb, eds. (Springer, 2011), pp. 760–766.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Mid-IR scanning microscope scheme with c-SIL. M: mirror; F1 and F2: near-IR filters; L1 and L2: beam expander/collimation; CH: mechanical chopper wheel (500 Hz); LP: linear polarizer; OBJ: reflective objective; BS: pellicle beam splitter; S: beam shutter (blocking the vertically polarized beam path as shown or used to block the horizontally polarized beam path); TP: thin plate; MCT1 and MCT2: mid-IR MCT detectors; SPL: sample with specimen side immersed in air or water; 1/2WP: wavelength tunable half-wave plate; SIL: silicon solid-immersion lens. The vertical and horizontal polarizations (versus optical bench surface) are marked in green. A close-up on the 4 mm thick SIL and 1 mm thick silicon SPL substrate is also shown, highlighting the optically unmatched interface between SIL and SPL, as well as the imaging media at the SIL central plane.
Fig. 2
Fig. 2 Images and line profiles of single 1 µm PS beads recorded at the air/silicon interface with the linear polarization set along the X axis (a) and Y axis (b), with X and Y defined as the horizontal and vertical directions in the images. Same at the water/silicon interface (c,d). For all data the background is normalized to unity. Scale bars 2.0 µm, color scales in arbitrary units and identical for (a) and (b). Same for (c) and (d). The double-tipped white arrows mark the direction of polarization. The inset in (b) shows the axial image where Z is the longitudinal (depth) axis, with the scale bar at 5 µm.
Fig. 3
Fig. 3 Images of 1 µm PS bead deposited on a glass slide and recorded (a) with the reflective objective of NA 0.65 and (b) NA 0.4 in reflection mode without SIL. (c) and (d) are line profiles extracted from the images (a) and (b), respectively. The beads are imaged as circular depressions with FWHM 2.8 ± 0.1 and 4.8 ± 0.1 µm (i.e., ca. 10% wider than λ/2NA).
Fig. 4
Fig. 4 Pairs of X and Y polarization images of PS beads at the air/silicon (a,b,c,d) and water/silicon (e,f,g,h) interfaces, with X and Y defined as the horizontal and vertical directions in the images. Scale bars are 5 µm, color scales in arbitrary units and identical for (a), (b), (c), and (d). Same for (e), (f), (g), and (h). The double-tipped arrows mark the beam polarization.
Fig. 5
Fig. 5 Graphical representation of the adapted PSO iterative algorithm used for PS bead specimen reconstruction from pairs of X and Y polarization images.
Fig. 6
Fig. 6 Images recorded with X and Y polarizations at the air/silicon interface showing two isolated and two unresolved PS beads and with incomplete features masked for simplicity (a,b). Reconstructed specimen (9 beads, yellow circles) and reconstructed X and Y polarizations images, with X and Y polarizations simultaneously (c,d,e). The specimen reconstruction optimized with a 4 beads set is also shown in blue in (c). Reconstruction error as a function of the number of beads tested with the PSO algorithm (f). The reconstruction error with scattering magnitude limited to 0.7 is shown in inset. Recontructed X polarization image of a fully optimized 9 bead specimen with the optimization completed with Y polarization only (g). Recontructed Y polarization image of a fully optimized 9 bead specimen with the optimization completed with X polarization only (h). Specimen reconstruction corresponding to the 2-polarization (yellow, Error = 30.06), Y-polarization (brown, Error = 31.78), and X-polarization (purple, Error = 31.25) optimization for 9 beads (i). Scale bars 5 µm. All images and image reconstructions are at same intensity scale, given in arbitrary units.
Fig. 7
Fig. 7 Images recorded with X and Y polarizations at the water/silicon interface, and combined (averaged) experimental X and Y polarization images of same data (a,b,c). The frames show a readily interpreted area (i) including 7 beads (see inset of c) and a dense area (ii) where the bead arrangement cannot be a priori proposed. Reconstruction error as a function of the number of beads tested with the PSO algorithm for the area (ii) (d). Recontructed X and Y polarization images (e,f). Optimized structure for area (ii) (5 best optimizations highlighting the variation between tests) (g). Scale bars are 5 µm, and all images are shown with same colorscale given in arbitrary units. Double tipped arrow shows the direction of polarization. Wide-field visible white light microscopy (NA 0.75, 100 × , reflection) image of PS beads (1 µm) drop-casted on silicon (h). In-plane calibration was established using a copper grid (40 µm). Scale bar: 10 µm. The beads are not systematically observed to be close-packed (iii and iv). Self-assembled and close-packed arrangements (v, vi) are however also found. The center-to-center distance between adjacent beads is then 1.30 ± 0.05 µm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v ' j,i  = ω× v j,i + c 1 ε 1 ×(pbes t j r j,i )+ c 2 ε 2 ×(gbest r j,i ) r ' j,i = r j,i +v ' j,i

Metrics