Abstract

Increasing reliance on the Internet places greater and greater demands for high-speed optical communication systems. Increasing their data transfer rate allows more data to be transferred over existing links. With optical receivers being essential to all optical links, bandwidth performance of key components in receivers, such as avalanche photodiodes (APDs), must be improved. The APDs rely on In0.53Ga0.47As (grown lattice-matched to InP substrates) to efficiently absorb and detect the optical signals with 1310 or 1550 nm wavelength, the optimal wavelengths of operation for these optical links. Thus developing InP-compatible APDs with high gain-bandwidth product (GBP) is important to the overall effort of increasing optical links’ data transfer rate. Here we demonstrate a novel InGaAs/AlGaAsSb APD, grown on an InP substrate, with a GBP of 424 GHz, the highest value reported for InP-compatible APDs, which is clearly applicable to future optical communication systems at or above 10 Gb/s. The data reported in this article are available from the figshare digital repository (https://dx.doi.org/10.15131/shef.data.3827460.v1).

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Proton radiation effect on InAs avalanche photodiodes

Xinxin Zhou, Benjamin White, Xiao Meng, Shiyong Zhang, Marina Gutierrez, Mark Robbins, Luis Gomez Rojas, Nick Nelms, Chee Hing Tan, and Jo Shien Ng
Opt. Express 25(3) 2818-2825 (2017)

Investigation of temperature and temporal stability of AlGaAsSb avalanche photodiodes

Salman Abdullah, Chee Hing Tan, Xinxin Zhou, Shiyong Zhang, Lucas Pinel, and Jo Shien Ng
Opt. Express 25(26) 33610-33616 (2017)

High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit

Andrew R. J. Marshall, Pin Jern Ker, Andrey Krysa, John P. R. David, and Chee Hing Tan
Opt. Express 19(23) 23341-23349 (2011)

References

  • View by:
  • |
  • |
  • |

  1. High throughput Computing Data Center Architecture, Huawei Technologies Co., Ltd., Shenzhen, China, (2014).
  2. R. B. Emmons, “Avalanche-Photodiode Frequency Response,” J. Appl. Phys. 38(9), 3705 (1967).
    [Crossref]
  3. D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, “Sensitivity of High-Speed Lightwave System Receivers Using InAlAs Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 23(4), 233–235 (2011).
    [Crossref]
  4. J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
    [Crossref]
  5. L. E. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 5(6), 672–674 (1993).
    [Crossref]
  6. A.-W. Yue, R.-F. Wang, B. Xiong, and J. Shi, “Fabrication of a 10 Gb/s InGaAs/InP Avalanche Photodiode with an AlGaInAs/InP Distributed Bragg Reflector,” Chin. Phys. Lett. 30(3), 038501 (2013).
    [Crossref]
  7. T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10 Gbit/s high sensitivity, low-voltage-operation avalanche photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36(24), 2033–2034 (2000).
    [Crossref]
  8. A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High Gain × Bandwidth Product Over 140-GHz Planar Junction AlInAs Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
    [Crossref]
  9. S. Xie, S. Zhang, and C. H. Tan, “InGaAs/InAlAs avalanche photodiode with low dark current for high-speed operation,” IEEE Photonics Technol. Lett. 27(16), 1745–1748 (2015).
    [Crossref]
  10. I. Watanabe, M. Tsuji, M. Hayashi, K. Makita, and K. Taguchi, “Design and performance of InAlGaAs/InAlAs superlattice avalanche photodiode,” J. Lightwave Technol. 15(6), 1012–1019 (1997).
    [Crossref]
  11. M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W. GHz for 25 Gbit/s high-speed operations,” Electron. Lett. 48(7), 397–399 (2012).
    [Crossref]
  12. M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, “AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes,” Appl. Phys. Lett. 108(19), 191108 (2016).
    [Crossref]
  13. A. R. J. Marshall, P. J. Ker, A. Krysa, J. P. R. David, and C. H. Tan, “High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit,” Opt. Express 19(23), 23341–23349 (2011).
    [Crossref] [PubMed]
  14. Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
    [Crossref]
  15. N. Duan, T.-Y. Liow, A. E.-J. Lim, L. Ding, and G. Q. Lo, “310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection,” Opt. Express 20(10), 11031–11036 (2012).
    [Crossref] [PubMed]
  16. L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
    [Crossref] [PubMed]
  17. J. Xie, S. Xie, R. C. Tozer, and C. H. Tan, “Excess noise characteristics of thin AlAsSb APDs,” IEEE Trans. Electron Dev. 59(5), 1475–1479 (2012).
    [Crossref]
  18. S. Xie and C. H. Tan, “AlAsSb avalanche photodiodes with a sub-mV/K temperature coefficient of breakdown voltage,” IEEE J. Quantum Electron. 47(11), 1391–1395 (2011).
    [Crossref]
  19. X. Zhou, S. Zhang, J. P. R. David, J. S. Ng, and C. H. Tan, “Avalanche breakdown characteristics of Al1-xGaxAs0.56Sb0.44 quaternary alloys,” IEEE Photonics Technol. Lett. (to be published).
  20. Z. Hang, H. Shen, and F. H. Pollak, “Temperature dependence of the Eo and Δo gaps of InP up to 600 °C,” Solid-St. Commun. 73, 15–18 (1990).
  21. D. K. Gaskill, N. Bottka, L. Aina, and M. Mattingly, “Band-gap determination by photoreflectance of InGaAs and InAlAs lattice matched to InP,” Appl. Phys. Lett. 56(13), 1269 (1990).
    [Crossref]
  22. L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
    [Crossref]
  23. W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
    [Crossref] [PubMed]
  24. J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, “A general method for estimating the duration of avalanche multiplication,” Semicond. Sci. Technol. 17(10), 1067–1071 (2002).
    [Crossref]

2016 (1)

M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, “AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes,” Appl. Phys. Lett. 108(19), 191108 (2016).
[Crossref]

2015 (1)

S. Xie, S. Zhang, and C. H. Tan, “InGaAs/InAlAs avalanche photodiode with low dark current for high-speed operation,” IEEE Photonics Technol. Lett. 27(16), 1745–1748 (2015).
[Crossref]

2014 (1)

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref] [PubMed]

2013 (1)

A.-W. Yue, R.-F. Wang, B. Xiong, and J. Shi, “Fabrication of a 10 Gb/s InGaAs/InP Avalanche Photodiode with an AlGaInAs/InP Distributed Bragg Reflector,” Chin. Phys. Lett. 30(3), 038501 (2013).
[Crossref]

2012 (3)

J. Xie, S. Xie, R. C. Tozer, and C. H. Tan, “Excess noise characteristics of thin AlAsSb APDs,” IEEE Trans. Electron Dev. 59(5), 1475–1479 (2012).
[Crossref]

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W. GHz for 25 Gbit/s high-speed operations,” Electron. Lett. 48(7), 397–399 (2012).
[Crossref]

N. Duan, T.-Y. Liow, A. E.-J. Lim, L. Ding, and G. Q. Lo, “310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection,” Opt. Express 20(10), 11031–11036 (2012).
[Crossref] [PubMed]

2011 (3)

A. R. J. Marshall, P. J. Ker, A. Krysa, J. P. R. David, and C. H. Tan, “High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit,” Opt. Express 19(23), 23341–23349 (2011).
[Crossref] [PubMed]

S. Xie and C. H. Tan, “AlAsSb avalanche photodiodes with a sub-mV/K temperature coefficient of breakdown voltage,” IEEE J. Quantum Electron. 47(11), 1391–1395 (2011).
[Crossref]

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, “Sensitivity of High-Speed Lightwave System Receivers Using InAlAs Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 23(4), 233–235 (2011).
[Crossref]

2010 (1)

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

2009 (2)

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

2008 (1)

A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High Gain × Bandwidth Product Over 140-GHz Planar Junction AlInAs Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
[Crossref]

2002 (1)

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, “A general method for estimating the duration of avalanche multiplication,” Semicond. Sci. Technol. 17(10), 1067–1071 (2002).
[Crossref]

2000 (1)

T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10 Gbit/s high sensitivity, low-voltage-operation avalanche photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36(24), 2033–2034 (2000).
[Crossref]

1997 (1)

I. Watanabe, M. Tsuji, M. Hayashi, K. Makita, and K. Taguchi, “Design and performance of InAlGaAs/InAlAs superlattice avalanche photodiode,” J. Lightwave Technol. 15(6), 1012–1019 (1997).
[Crossref]

1993 (1)

L. E. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 5(6), 672–674 (1993).
[Crossref]

1990 (2)

Z. Hang, H. Shen, and F. H. Pollak, “Temperature dependence of the Eo and Δo gaps of InP up to 600 °C,” Solid-St. Commun. 73, 15–18 (1990).

D. K. Gaskill, N. Bottka, L. Aina, and M. Mattingly, “Band-gap determination by photoreflectance of InGaAs and InAlAs lattice matched to InP,” Appl. Phys. Lett. 56(13), 1269 (1990).
[Crossref]

1988 (1)

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[Crossref]

1967 (1)

R. B. Emmons, “Avalanche-Photodiode Frequency Response,” J. Appl. Phys. 38(9), 3705 (1967).
[Crossref]

Achouche, M.

A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High Gain × Bandwidth Product Over 140-GHz Planar Junction AlInAs Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
[Crossref]

Aina, L.

D. K. Gaskill, N. Bottka, L. Aina, and M. Mattingly, “Band-gap determination by photoreflectance of InGaAs and InAlAs lattice matched to InP,” Appl. Phys. Lett. 56(13), 1269 (1990).
[Crossref]

Baird, T.

L. E. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 5(6), 672–674 (1993).
[Crossref]

Bank, S. R.

M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, “AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes,” Appl. Phys. Lett. 108(19), 191108 (2016).
[Crossref]

Beling, A.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Boeuf, F.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref] [PubMed]

Bottka, N.

D. K. Gaskill, N. Bottka, L. Aina, and M. Mattingly, “Band-gap determination by photoreflectance of InGaAs and InAlAs lattice matched to InP,” Appl. Phys. Lett. 56(13), 1269 (1990).
[Crossref]

Bowers, J. E.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Bruce, R.

L. E. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 5(6), 672–674 (1993).
[Crossref]

Campbell, J. C.

M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, “AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes,” Appl. Phys. Lett. 108(19), 191108 (2016).
[Crossref]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[Crossref]

Carpentier, D.

A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High Gain × Bandwidth Product Over 140-GHz Planar Junction AlInAs Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
[Crossref]

Cassan, E.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref] [PubMed]

Chen, H.-W.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Chen, Y.

M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, “AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes,” Appl. Phys. Lett. 108(19), 191108 (2016).
[Crossref]

Crozat, P.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref] [PubMed]

David, J. P. R.

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, “Sensitivity of High-Speed Lightwave System Receivers Using InAlAs Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 23(4), 233–235 (2011).
[Crossref]

A. R. J. Marshall, P. J. Ker, A. Krysa, J. P. R. David, and C. H. Tan, “High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit,” Opt. Express 19(23), 23341–23349 (2011).
[Crossref] [PubMed]

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, “A general method for estimating the duration of avalanche multiplication,” Semicond. Sci. Technol. 17(10), 1067–1071 (2002).
[Crossref]

X. Zhou, S. Zhang, J. P. R. David, J. S. Ng, and C. H. Tan, “Avalanche breakdown characteristics of Al1-xGaxAs0.56Sb0.44 quaternary alloys,” IEEE Photonics Technol. Lett. (to be published).

Decobert, J.

A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High Gain × Bandwidth Product Over 140-GHz Planar Junction AlInAs Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
[Crossref]

Ding, L.

Duan, N.

Emmons, R. B.

R. B. Emmons, “Avalanche-Photodiode Frequency Response,” J. Appl. Phys. 38(9), 3705 (1967).
[Crossref]

Fédéli, J.-M.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref] [PubMed]

Gaskill, D. K.

D. K. Gaskill, N. Bottka, L. Aina, and M. Mattingly, “Band-gap determination by photoreflectance of InGaAs and InAlAs lattice matched to InP,” Appl. Phys. Lett. 56(13), 1269 (1990).
[Crossref]

Hang, Z.

Z. Hang, H. Shen, and F. H. Pollak, “Temperature dependence of the Eo and Δo gaps of InP up to 600 °C,” Solid-St. Commun. 73, 15–18 (1990).

Hartmann, J.-M.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref] [PubMed]

Hayashi, M.

I. Watanabe, M. Tsuji, M. Hayashi, K. Makita, and K. Taguchi, “Design and performance of InAlGaAs/InAlAs superlattice avalanche photodiode,” J. Lightwave Technol. 15(6), 1012–1019 (1997).
[Crossref]

Hayat, M. M.

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, “Sensitivity of High-Speed Lightwave System Receivers Using InAlAs Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 23(4), 233–235 (2011).
[Crossref]

Ishibashi, T.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W. GHz for 25 Gbit/s high-speed operations,” Electron. Lett. 48(7), 397–399 (2012).
[Crossref]

Johnson, B. C.

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[Crossref]

Jones, S. K.

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

Kang, Y.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Ker, P. J.

Knight, D. G.

L. E. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 5(6), 672–674 (1993).
[Crossref]

Kodama, S.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W. GHz for 25 Gbit/s high-speed operations,” Electron. Lett. 48(7), 397–399 (2012).
[Crossref]

Krysa, A.

Kuo, Y.-H.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Lagay, N.

A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High Gain × Bandwidth Product Over 140-GHz Planar Junction AlInAs Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
[Crossref]

Lim, A. E.-J.

Liow, T.-Y.

Litski, S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Liu, H.-D.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Lo, G. Q.

Maddox, S. J.

M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, “AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes,” Appl. Phys. Lett. 108(19), 191108 (2016).
[Crossref]

Makita, K.

T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10 Gbit/s high sensitivity, low-voltage-operation avalanche photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36(24), 2033–2034 (2000).
[Crossref]

I. Watanabe, M. Tsuji, M. Hayashi, K. Makita, and K. Taguchi, “Design and performance of InAlGaAs/InAlAs superlattice avalanche photodiode,” J. Lightwave Technol. 15(6), 1012–1019 (1997).
[Crossref]

Marris-Morini, D.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref] [PubMed]

Marshall, A. R. J.

Mattingly, M.

D. K. Gaskill, N. Bottka, L. Aina, and M. Mattingly, “Band-gap determination by photoreflectance of InGaAs and InAlAs lattice matched to InP,” Appl. Phys. Lett. 56(13), 1269 (1990).
[Crossref]

Mcintosh, D. C.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Morse, M.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Muramoto, Y.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W. GHz for 25 Gbit/s high-speed operations,” Electron. Lett. 48(7), 397–399 (2012).
[Crossref]

Nada, M.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W. GHz for 25 Gbit/s high-speed operations,” Electron. Lett. 48(7), 397–399 (2012).
[Crossref]

Nakata, T.

T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10 Gbit/s high sensitivity, low-voltage-operation avalanche photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36(24), 2033–2034 (2000).
[Crossref]

Ng, J. S.

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, “Sensitivity of High-Speed Lightwave System Receivers Using InAlAs Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 23(4), 233–235 (2011).
[Crossref]

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, “A general method for estimating the duration of avalanche multiplication,” Semicond. Sci. Technol. 17(10), 1067–1071 (2002).
[Crossref]

X. Zhou, S. Zhang, J. P. R. David, J. S. Ng, and C. H. Tan, “Avalanche breakdown characteristics of Al1-xGaxAs0.56Sb0.44 quaternary alloys,” IEEE Photonics Technol. Lett. (to be published).

Ong, D. S. G.

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, “Sensitivity of High-Speed Lightwave System Receivers Using InAlAs Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 23(4), 233–235 (2011).
[Crossref]

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

Oosterbrink, B.

L. E. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 5(6), 672–674 (1993).
[Crossref]

Paniccia, M. J.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Pauchard, A.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Pollak, F. H.

Z. Hang, H. Shen, and F. H. Pollak, “Temperature dependence of the Eo and Δo gaps of InP up to 600 °C,” Solid-St. Commun. 73, 15–18 (1990).

Pommereau, F.

A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High Gain × Bandwidth Product Over 140-GHz Planar Junction AlInAs Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
[Crossref]

Qian, Y.

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

Qua, G. J.

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[Crossref]

Rees, G. J.

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, “A general method for estimating the duration of avalanche multiplication,” Semicond. Sci. Technol. 17(10), 1067–1071 (2002).
[Crossref]

Ren, M.

M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, “AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes,” Appl. Phys. Lett. 108(19), 191108 (2016).
[Crossref]

Rouvie, A.

A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High Gain × Bandwidth Product Over 140-GHz Planar Junction AlInAs Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
[Crossref]

Sarid, G.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Shen, H.

Z. Hang, H. Shen, and F. H. Pollak, “Temperature dependence of the Eo and Δo gaps of InP up to 600 °C,” Solid-St. Commun. 73, 15–18 (1990).

Shi, J.

A.-W. Yue, R.-F. Wang, B. Xiong, and J. Shi, “Fabrication of a 10 Gb/s InGaAs/InP Avalanche Photodiode with an AlGaInAs/InP Distributed Bragg Reflector,” Chin. Phys. Lett. 30(3), 038501 (2013).
[Crossref]

Taguchi, K.

I. Watanabe, M. Tsuji, M. Hayashi, K. Makita, and K. Taguchi, “Design and performance of InAlGaAs/InAlAs superlattice avalanche photodiode,” J. Lightwave Technol. 15(6), 1012–1019 (1997).
[Crossref]

Takeuchi, T.

T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10 Gbit/s high sensitivity, low-voltage-operation avalanche photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36(24), 2033–2034 (2000).
[Crossref]

Tan, C. H.

S. Xie, S. Zhang, and C. H. Tan, “InGaAs/InAlAs avalanche photodiode with low dark current for high-speed operation,” IEEE Photonics Technol. Lett. 27(16), 1745–1748 (2015).
[Crossref]

J. Xie, S. Xie, R. C. Tozer, and C. H. Tan, “Excess noise characteristics of thin AlAsSb APDs,” IEEE Trans. Electron Dev. 59(5), 1475–1479 (2012).
[Crossref]

S. Xie and C. H. Tan, “AlAsSb avalanche photodiodes with a sub-mV/K temperature coefficient of breakdown voltage,” IEEE J. Quantum Electron. 47(11), 1391–1395 (2011).
[Crossref]

A. R. J. Marshall, P. J. Ker, A. Krysa, J. P. R. David, and C. H. Tan, “High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit,” Opt. Express 19(23), 23341–23349 (2011).
[Crossref] [PubMed]

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, “A general method for estimating the duration of avalanche multiplication,” Semicond. Sci. Technol. 17(10), 1067–1071 (2002).
[Crossref]

X. Zhou, S. Zhang, J. P. R. David, J. S. Ng, and C. H. Tan, “Avalanche breakdown characteristics of Al1-xGaxAs0.56Sb0.44 quaternary alloys,” IEEE Photonics Technol. Lett. (to be published).

Tan, L. J. J.

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

Tarof, L. E.

L. E. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 5(6), 672–674 (1993).
[Crossref]

Torikai, T.

T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10 Gbit/s high sensitivity, low-voltage-operation avalanche photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36(24), 2033–2034 (2000).
[Crossref]

Tozer, R. C.

J. Xie, S. Xie, R. C. Tozer, and C. H. Tan, “Excess noise characteristics of thin AlAsSb APDs,” IEEE Trans. Electron Dev. 59(5), 1475–1479 (2012).
[Crossref]

Tsang, W. T.

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[Crossref]

Tsuji, M.

I. Watanabe, M. Tsuji, M. Hayashi, K. Makita, and K. Taguchi, “Design and performance of InAlGaAs/InAlAs superlattice avalanche photodiode,” J. Lightwave Technol. 15(6), 1012–1019 (1997).
[Crossref]

Virot, L.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref] [PubMed]

Vivien, L.

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref] [PubMed]

Wang, R.-F.

A.-W. Yue, R.-F. Wang, B. Xiong, and J. Shi, “Fabrication of a 10 Gb/s InGaAs/InP Avalanche Photodiode with an AlGaInAs/InP Distributed Bragg Reflector,” Chin. Phys. Lett. 30(3), 038501 (2013).
[Crossref]

Watanabe, I.

T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10 Gbit/s high sensitivity, low-voltage-operation avalanche photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36(24), 2033–2034 (2000).
[Crossref]

I. Watanabe, M. Tsuji, M. Hayashi, K. Makita, and K. Taguchi, “Design and performance of InAlGaAs/InAlAs superlattice avalanche photodiode,” J. Lightwave Technol. 15(6), 1012–1019 (1997).
[Crossref]

Woodson, M. E.

M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, “AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes,” Appl. Phys. Lett. 108(19), 191108 (2016).
[Crossref]

Xie, J.

J. Xie, S. Xie, R. C. Tozer, and C. H. Tan, “Excess noise characteristics of thin AlAsSb APDs,” IEEE Trans. Electron Dev. 59(5), 1475–1479 (2012).
[Crossref]

Xie, S.

S. Xie, S. Zhang, and C. H. Tan, “InGaAs/InAlAs avalanche photodiode with low dark current for high-speed operation,” IEEE Photonics Technol. Lett. 27(16), 1745–1748 (2015).
[Crossref]

J. Xie, S. Xie, R. C. Tozer, and C. H. Tan, “Excess noise characteristics of thin AlAsSb APDs,” IEEE Trans. Electron Dev. 59(5), 1475–1479 (2012).
[Crossref]

S. Xie and C. H. Tan, “AlAsSb avalanche photodiodes with a sub-mV/K temperature coefficient of breakdown voltage,” IEEE J. Quantum Electron. 47(11), 1391–1395 (2011).
[Crossref]

Xiong, B.

A.-W. Yue, R.-F. Wang, B. Xiong, and J. Shi, “Fabrication of a 10 Gb/s InGaAs/InP Avalanche Photodiode with an AlGaInAs/InP Distributed Bragg Reflector,” Chin. Phys. Lett. 30(3), 038501 (2013).
[Crossref]

Yokoyama, H.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W. GHz for 25 Gbit/s high-speed operations,” Electron. Lett. 48(7), 397–399 (2012).
[Crossref]

Yu, J.

L. E. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 5(6), 672–674 (1993).
[Crossref]

Yue, A.-W.

A.-W. Yue, R.-F. Wang, B. Xiong, and J. Shi, “Fabrication of a 10 Gb/s InGaAs/InP Avalanche Photodiode with an AlGaInAs/InP Distributed Bragg Reflector,” Chin. Phys. Lett. 30(3), 038501 (2013).
[Crossref]

Zadka, M.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Zaoui, W. S.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Zhang, S.

S. Xie, S. Zhang, and C. H. Tan, “InGaAs/InAlAs avalanche photodiode with low dark current for high-speed operation,” IEEE Photonics Technol. Lett. 27(16), 1745–1748 (2015).
[Crossref]

X. Zhou, S. Zhang, J. P. R. David, J. S. Ng, and C. H. Tan, “Avalanche breakdown characteristics of Al1-xGaxAs0.56Sb0.44 quaternary alloys,” IEEE Photonics Technol. Lett. (to be published).

Zheng, X.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Zhou, X.

X. Zhou, S. Zhang, J. P. R. David, J. S. Ng, and C. H. Tan, “Avalanche breakdown characteristics of Al1-xGaxAs0.56Sb0.44 quaternary alloys,” IEEE Photonics Technol. Lett. (to be published).

Appl. Phys. Lett. (2)

M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, “AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes,” Appl. Phys. Lett. 108(19), 191108 (2016).
[Crossref]

D. K. Gaskill, N. Bottka, L. Aina, and M. Mattingly, “Band-gap determination by photoreflectance of InGaAs and InAlAs lattice matched to InP,” Appl. Phys. Lett. 56(13), 1269 (1990).
[Crossref]

Chin. Phys. Lett. (1)

A.-W. Yue, R.-F. Wang, B. Xiong, and J. Shi, “Fabrication of a 10 Gb/s InGaAs/InP Avalanche Photodiode with an AlGaInAs/InP Distributed Bragg Reflector,” Chin. Phys. Lett. 30(3), 038501 (2013).
[Crossref]

Electron. Lett. (2)

T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10 Gbit/s high sensitivity, low-voltage-operation avalanche photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36(24), 2033–2034 (2000).
[Crossref]

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W. GHz for 25 Gbit/s high-speed operations,” Electron. Lett. 48(7), 397–399 (2012).
[Crossref]

IEEE J. Quantum Electron. (3)

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[Crossref]

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

S. Xie and C. H. Tan, “AlAsSb avalanche photodiodes with a sub-mV/K temperature coefficient of breakdown voltage,” IEEE J. Quantum Electron. 47(11), 1391–1395 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (4)

L. E. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 5(6), 672–674 (1993).
[Crossref]

A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High Gain × Bandwidth Product Over 140-GHz Planar Junction AlInAs Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
[Crossref]

S. Xie, S. Zhang, and C. H. Tan, “InGaAs/InAlAs avalanche photodiode with low dark current for high-speed operation,” IEEE Photonics Technol. Lett. 27(16), 1745–1748 (2015).
[Crossref]

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, “Sensitivity of High-Speed Lightwave System Receivers Using InAlAs Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 23(4), 233–235 (2011).
[Crossref]

IEEE Trans. Electron Dev. (1)

J. Xie, S. Xie, R. C. Tozer, and C. H. Tan, “Excess noise characteristics of thin AlAsSb APDs,” IEEE Trans. Electron Dev. 59(5), 1475–1479 (2012).
[Crossref]

J. Appl. Phys. (1)

R. B. Emmons, “Avalanche-Photodiode Frequency Response,” J. Appl. Phys. 38(9), 3705 (1967).
[Crossref]

J. Lightwave Technol. (1)

I. Watanabe, M. Tsuji, M. Hayashi, K. Makita, and K. Taguchi, “Design and performance of InAlGaAs/InAlAs superlattice avalanche photodiode,” J. Lightwave Technol. 15(6), 1012–1019 (1997).
[Crossref]

Nat. Commun. (1)

L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Opt. Express (3)

Semicond. Sci. Technol. (1)

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, “A general method for estimating the duration of avalanche multiplication,” Semicond. Sci. Technol. 17(10), 1067–1071 (2002).
[Crossref]

Solid-St. Commun. (1)

Z. Hang, H. Shen, and F. H. Pollak, “Temperature dependence of the Eo and Δo gaps of InP up to 600 °C,” Solid-St. Commun. 73, 15–18 (1990).

Other (2)

X. Zhou, S. Zhang, J. P. R. David, J. S. Ng, and C. H. Tan, “Avalanche breakdown characteristics of Al1-xGaxAs0.56Sb0.44 quaternary alloys,” IEEE Photonics Technol. Lett. (to be published).

High throughput Computing Data Center Architecture, Huawei Technologies Co., Ltd., Shenzhen, China, (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Comparison of typical experimental gain-bandwidth products of APDs with InP [4–6] and InAlAs [7–10] avalanche layers.
Fig. 2
Fig. 2 (a) A top-view photo and (b) a 3-D cross-sectional illustration of the InGaAs/AlGaAsSb APD.
Fig. 3
Fig. 3 Current-Voltage characteristics of 20 μm diameter APDs. (a) Dark current at room temperature down to 77 K. (b) Room temperature dark current and photocurrent around −15 V.
Fig. 4
Fig. 4 High frequency performance of 20 μm diameter APDs. (a) Response versus frequency with the APD biased at −15 to −21 V, in 1 V step. (b) −3dB bandwidth and GBP versus avalanche gain.
Fig. 5
Fig. 5 10 Gb/s eye diagram for InGaAs/AlGaAsSb SAM APD with 20 μm diameter at bias of (a) −15 V and (b) −19 V. The vertical scale is 2 mV/division and the time scale is 50 ps/division.

Tables (1)

Tables Icon

Table 1 Wafer Structure

Metrics