Abstract

A high sensitivity ammonia sensor based on a tapered small core singlemode fiber (SCSMF) structure for measurement of ammonia concentration in water is reported. Two tapered SCSMF fiber structures with different waist diameters of 23 µm and 13.5 µm are fabricated by using a customized microheater brushing technique. The silica based material prepared by the sol-gel method is used as a coating applied to the surface of the tapered fiber structures. To investigate the influence of the coating thickness on the sensitivity to ammonia in water, silica coatings with different thicknesses (2-pass and 8-pass coatings) are deposited on the surface of the fiber sensor with a waist diameter of 23 µm. Experiments demonstrate that the sensor with a thicker (8-pass) silica coating shows better sensitivity of 0.131 nm/ppm to ammonia compared to that of 0.069 nm/ppm for the thinner silica coating (2-pass). To further improve the sensor sensitivity, the taper waist diameter is reduced. For an 8-pass coating (249nm at the taper waist section) applied to a tapered SCSMF structure based fiber sensor with a reduced waist diameter of 13.5 µm. Experimental results show that the sensitivity to ammonia is significantly improved to 2.47nm/ppm. The best measurement resolution for ammonia concentration in water is estimated to be 4 ppb while the response and recovery times are less than 2 and 5 minutes respectively. The proposed sensor also offers good performance in terms of repeatability and good selectivity for sensing ammonia compared to that of other common ions and organic molecules in water.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Room temperature ammonia sensing using tapered multimode fiber coated with polyaniline nanofibers

S. A. Ibrahim, N. A. Rahman, M. H. Abu Bakar, S. H. Girei, M. H. Yaacob, H. Ahmad, and M. A. Mahdi
Opt. Express 23(3) 2837-2845 (2015)

Fabrication and calibration of Oxazine-based optic fiber sensor for detection of ammonia in water

Ahmed Hasnain Jalal, Jinsong Yu, and A. G. Agwu Nnanna
Appl. Opt. 51(17) 3768-3775 (2012)

High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure

Dejun Liu, Arun Kumar Mallik, Jinhui Yuan, Chongxiu Yu, Gerald Farrell, Yuliya Semenova, and Qiang Wu
Opt. Lett. 40(17) 4166-4169 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Warneck, Chemistry of the Natural Atmosphere (Academic, 1998).
  2. S. Mukherjee, T. Sakorikar, A. Mukherjee, and A. Misra, “Water-responsive carbon nanotubes for selective detection of toxic gases,” Appl. Phys. Lett. 106(11), 113108 (2015).
    [Crossref]
  3. A. L. Sharma, K. Kumar, and A. Deep, “Nanostructured polyaniline films on silicon for sensitive sensing of ammonia,” Sens. Actuators A Phys. 198, 107–112 (2013).
    [Crossref]
  4. S. K. Sinha, “Growth and ammonia sensing properties of Zn1−xSnxO nanofibers,” Sen. Actuators B 219, 192–198 (2015).
    [Crossref]
  5. E. Jazan and H. Mirzaei, “Direct analysis of human breath ammonia using corona discharge ion mobility spectrometry,” J. Pharm. Biomed. Anal. 88, 315–320 (2014).
    [Crossref] [PubMed]
  6. A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
    [Crossref]
  7. S. K. Mishra, D. Kumari, and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline,” Sen. Actuators B 171–172, 976–983 (2012).
    [Crossref]
  8. S. A. Ibrahim, N. A. Rahman, M. H. Abu Bakar, S. H. Girei, M. H. Yaacob, H. Ahmad, and M. A. Mahdi, “Room temperature ammonia sensing using tapered multimode fiber coated with polyaniline nanofibers,” Opt. Express 23(3), 2837–2845 (2015).
    [Crossref] [PubMed]
  9. S. Korposh, R. Selyanchyn, W. Yasukochi, S. Lee, S. W. James, and R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
    [Crossref]
  10. M. Pisco, M. Consales, S. Campopiano, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano, “A novel optochemical sensor based on SnO2 sensitive thin film for ppm ammonia detection in liquid environment,” J. Lightwave Technol. 24(12), 5000–5007 (2006).
    [Crossref]
  11. W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sen. Actuators B 110(2), 252–259 (2005).
    [Crossref]
  12. B. Culshaw, “Optical fiber sensor technologies: opportunities and perhaps-pitfalls,” J. Lightwave Technol. 22(1), 39–50 (2004).
    [Crossref]
  13. S. Tao, L. Xu, and J. C. Fanguy, “Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sen. Actuators B 115(1), 158–163 (2006).
    [Crossref]
  14. H. D. Duong and J. I. Rhee, “A ratiometric fluorescence sensor for the detection of ammonia in water,” Sen. Actuators B 190, 768–774 (2014).
    [Crossref]
  15. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “A comprehensive analysis verified by experiment of a refractometer based on an SMF28–small-core singlemode fiber (SCSMF)–SMF28 fiber structure,” J. Opt. 13(12), 125401 (2011).
    [Crossref]
  16. Q. Wu, Y. Semenova, J. Mathew, P. Wang, and G. Farrell, “Humidity sensor based on a single-mode hetero-core fiber structure,” Opt. Lett. 36(10), 1752–1754 (2011).
    [Crossref] [PubMed]
  17. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
    [Crossref] [PubMed]
  18. D. Liu, A. K. Mallik, J. Yuan, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure,” Opt. Lett. 40(17), 4166–4169 (2015).
    [Crossref] [PubMed]
  19. J. E. Mapes and R. P. Eischens, “The infrared spectra of ammonia chemisorbed on cracking catalysts,” J. Phys. Chem. 58(12), 1059–1062 (1954).
    [Crossref]
  20. G. A. Blomfield and L. H. Little, “Chemisorption of ammonia on silica,” Can. J. Chem. 51(11), 1771–1781 (1973).
    [Crossref]
  21. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [Crossref] [PubMed]

2015 (4)

2014 (2)

H. D. Duong and J. I. Rhee, “A ratiometric fluorescence sensor for the detection of ammonia in water,” Sen. Actuators B 190, 768–774 (2014).
[Crossref]

E. Jazan and H. Mirzaei, “Direct analysis of human breath ammonia using corona discharge ion mobility spectrometry,” J. Pharm. Biomed. Anal. 88, 315–320 (2014).
[Crossref] [PubMed]

2013 (1)

A. L. Sharma, K. Kumar, and A. Deep, “Nanostructured polyaniline films on silicon for sensitive sensing of ammonia,” Sens. Actuators A Phys. 198, 107–112 (2013).
[Crossref]

2012 (2)

S. Korposh, R. Selyanchyn, W. Yasukochi, S. Lee, S. W. James, and R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
[Crossref]

S. K. Mishra, D. Kumari, and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline,” Sen. Actuators B 171–172, 976–983 (2012).
[Crossref]

2011 (3)

2010 (1)

A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
[Crossref]

A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
[Crossref]

A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
[Crossref]

A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
[Crossref]

A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
[Crossref]

A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
[Crossref]

A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
[Crossref]

2006 (2)

M. Pisco, M. Consales, S. Campopiano, R. Viter, V. Smyntyna, M. Giordano, and A. Cusano, “A novel optochemical sensor based on SnO2 sensitive thin film for ppm ammonia detection in liquid environment,” J. Lightwave Technol. 24(12), 5000–5007 (2006).
[Crossref]

S. Tao, L. Xu, and J. C. Fanguy, “Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sen. Actuators B 115(1), 158–163 (2006).
[Crossref]

2005 (1)

W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sen. Actuators B 110(2), 252–259 (2005).
[Crossref]

2004 (2)

1973 (1)

G. A. Blomfield and L. H. Little, “Chemisorption of ammonia on silica,” Can. J. Chem. 51(11), 1771–1781 (1973).
[Crossref]

1954 (1)

J. E. Mapes and R. P. Eischens, “The infrared spectra of ammonia chemisorbed on cracking catalysts,” J. Phys. Chem. 58(12), 1059–1062 (1954).
[Crossref]

Abu Bakar, M. H.

Ahmad, H.

Andreev,

A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
[Crossref]

Atanasov,

A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
[Crossref]

Atanasova,

A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
[Crossref]

Blomfield, G. A.

G. A. Blomfield and L. H. Little, “Chemisorption of ammonia on silica,” Can. J. Chem. 51(11), 1771–1781 (1973).
[Crossref]

Brambilla, G.

Campopiano, S.

Cao, W.

W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sen. Actuators B 110(2), 252–259 (2005).
[Crossref]

Consales, M.

Culshaw, B.

Cusano, A.

Deep, A.

A. L. Sharma, K. Kumar, and A. Deep, “Nanostructured polyaniline films on silicon for sensitive sensing of ammonia,” Sens. Actuators A Phys. 198, 107–112 (2013).
[Crossref]

Dikovska,

A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
[Crossref]

Duan, Y.

W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sen. Actuators B 110(2), 252–259 (2005).
[Crossref]

Duong, H. D.

H. D. Duong and J. I. Rhee, “A ratiometric fluorescence sensor for the detection of ammonia in water,” Sen. Actuators B 190, 768–774 (2014).
[Crossref]

Eischens, R. P.

J. E. Mapes and R. P. Eischens, “The infrared spectra of ammonia chemisorbed on cracking catalysts,” J. Phys. Chem. 58(12), 1059–1062 (1954).
[Crossref]

Fanguy, J. C.

S. Tao, L. Xu, and J. C. Fanguy, “Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sen. Actuators B 115(1), 158–163 (2006).
[Crossref]

Farrell, G.

Finazzi, V.

Giordano, M.

Girei, S. H.

Gupta, B. D.

S. K. Mishra, D. Kumari, and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline,” Sen. Actuators B 171–172, 976–983 (2012).
[Crossref]

Ibrahim, S. A.

James, S. W.

S. Korposh, R. Selyanchyn, W. Yasukochi, S. Lee, S. W. James, and R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
[Crossref]

Jazan, E.

E. Jazan and H. Mirzaei, “Direct analysis of human breath ammonia using corona discharge ion mobility spectrometry,” J. Pharm. Biomed. Anal. 88, 315–320 (2014).
[Crossref] [PubMed]

Karakoleva,

A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
[Crossref]

Korposh, S.

S. Korposh, R. Selyanchyn, W. Yasukochi, S. Lee, S. W. James, and R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
[Crossref]

Kumar, K.

A. L. Sharma, K. Kumar, and A. Deep, “Nanostructured polyaniline films on silicon for sensitive sensing of ammonia,” Sens. Actuators A Phys. 198, 107–112 (2013).
[Crossref]

Kumari, D.

S. K. Mishra, D. Kumari, and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline,” Sen. Actuators B 171–172, 976–983 (2012).
[Crossref]

Lee, S.

S. Korposh, R. Selyanchyn, W. Yasukochi, S. Lee, S. W. James, and R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
[Crossref]

Little, L. H.

G. A. Blomfield and L. H. Little, “Chemisorption of ammonia on silica,” Can. J. Chem. 51(11), 1771–1781 (1973).
[Crossref]

Liu, D.

Mahdi, M. A.

Mallik, A. K.

Mapes, J. E.

J. E. Mapes and R. P. Eischens, “The infrared spectra of ammonia chemisorbed on cracking catalysts,” J. Phys. Chem. 58(12), 1059–1062 (1954).
[Crossref]

Mathew, J.

Mirzaei, H.

E. Jazan and H. Mirzaei, “Direct analysis of human breath ammonia using corona discharge ion mobility spectrometry,” J. Pharm. Biomed. Anal. 88, 315–320 (2014).
[Crossref] [PubMed]

Mishra, S. K.

S. K. Mishra, D. Kumari, and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline,” Sen. Actuators B 171–172, 976–983 (2012).
[Crossref]

Misra, A.

S. Mukherjee, T. Sakorikar, A. Mukherjee, and A. Misra, “Water-responsive carbon nanotubes for selective detection of toxic gases,” Appl. Phys. Lett. 106(11), 113108 (2015).
[Crossref]

Mukherjee, A.

S. Mukherjee, T. Sakorikar, A. Mukherjee, and A. Misra, “Water-responsive carbon nanotubes for selective detection of toxic gases,” Appl. Phys. Lett. 106(11), 113108 (2015).
[Crossref]

Mukherjee, S.

S. Mukherjee, T. Sakorikar, A. Mukherjee, and A. Misra, “Water-responsive carbon nanotubes for selective detection of toxic gases,” Appl. Phys. Lett. 106(11), 113108 (2015).
[Crossref]

Nedyalkov,

A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
[Crossref]

Og, A.

A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
[Crossref]

Pisco, M.

Rahman, N. A.

Rhee, J. I.

H. D. Duong and J. I. Rhee, “A ratiometric fluorescence sensor for the detection of ammonia in water,” Sen. Actuators B 190, 768–774 (2014).
[Crossref]

Richardson, D.

Sakorikar, T.

S. Mukherjee, T. Sakorikar, A. Mukherjee, and A. Misra, “Water-responsive carbon nanotubes for selective detection of toxic gases,” Appl. Phys. Lett. 106(11), 113108 (2015).
[Crossref]

Selyanchyn, R.

S. Korposh, R. Selyanchyn, W. Yasukochi, S. Lee, S. W. James, and R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
[Crossref]

Semenova, Y.

Sharma, A. L.

A. L. Sharma, K. Kumar, and A. Deep, “Nanostructured polyaniline films on silicon for sensitive sensing of ammonia,” Sens. Actuators A Phys. 198, 107–112 (2013).
[Crossref]

Sinha, S. K.

S. K. Sinha, “Growth and ammonia sensing properties of Zn1−xSnxO nanofibers,” Sen. Actuators B 219, 192–198 (2015).
[Crossref]

Smyntyna, V.

Stefanov,

A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
[Crossref]

Tao, S.

S. Tao, L. Xu, and J. C. Fanguy, “Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sen. Actuators B 115(1), 158–163 (2006).
[Crossref]

Tatam, R. P.

S. Korposh, R. Selyanchyn, W. Yasukochi, S. Lee, S. W. James, and R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
[Crossref]

Viter, R.

Wang, P.

Wu, Q.

Xu, L.

S. Tao, L. Xu, and J. C. Fanguy, “Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sen. Actuators B 115(1), 158–163 (2006).
[Crossref]

Yaacob, M. H.

Yasukochi, W.

S. Korposh, R. Selyanchyn, W. Yasukochi, S. Lee, S. W. James, and R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
[Crossref]

Yu, C.

Yuan, J.

Appl. Phys. Lett. (1)

S. Mukherjee, T. Sakorikar, A. Mukherjee, and A. Misra, “Water-responsive carbon nanotubes for selective detection of toxic gases,” Appl. Phys. Lett. 106(11), 113108 (2015).
[Crossref]

Can. J. Chem. (1)

G. A. Blomfield and L. H. Little, “Chemisorption of ammonia on silica,” Can. J. Chem. 51(11), 1771–1781 (1973).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “A comprehensive analysis verified by experiment of a refractometer based on an SMF28–small-core singlemode fiber (SCSMF)–SMF28 fiber structure,” J. Opt. 13(12), 125401 (2011).
[Crossref]

J. Pharm. Biomed. Anal. (1)

E. Jazan and H. Mirzaei, “Direct analysis of human breath ammonia using corona discharge ion mobility spectrometry,” J. Pharm. Biomed. Anal. 88, 315–320 (2014).
[Crossref] [PubMed]

J. Phys. Chem. (1)

J. E. Mapes and R. P. Eischens, “The infrared spectra of ammonia chemisorbed on cracking catalysts,” J. Phys. Chem. 58(12), 1059–1062 (1954).
[Crossref]

Mater. Chem. Phys. (1)

S. Korposh, R. Selyanchyn, W. Yasukochi, S. Lee, S. W. James, and R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Sen. Actuators B (6)

S. Tao, L. Xu, and J. C. Fanguy, “Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sen. Actuators B 115(1), 158–163 (2006).
[Crossref]

H. D. Duong and J. I. Rhee, “A ratiometric fluorescence sensor for the detection of ammonia in water,” Sen. Actuators B 190, 768–774 (2014).
[Crossref]

W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sen. Actuators B 110(2), 252–259 (2005).
[Crossref]

A. Og and Dikovska, G. B Atanasova, N. N Nedyalkov, P. K Stefanov, P. A Atanasov, E. I Karakoleva, and A. T Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sen. Actuators B 146(1), 331–336 (2010).
[Crossref]

S. K. Mishra, D. Kumari, and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline,” Sen. Actuators B 171–172, 976–983 (2012).
[Crossref]

S. K. Sinha, “Growth and ammonia sensing properties of Zn1−xSnxO nanofibers,” Sen. Actuators B 219, 192–198 (2015).
[Crossref]

Sens. Actuators A Phys. (1)

A. L. Sharma, K. Kumar, and A. Deep, “Nanostructured polyaniline films on silicon for sensitive sensing of ammonia,” Sens. Actuators A Phys. 198, 107–112 (2013).
[Crossref]

Other (1)

P. Warneck, Chemistry of the Natural Atmosphere (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of: (a) Tapered SCSMF structure and (b) Experimental setup for ammonia sensing in water.
Fig. 2
Fig. 2 Measured spectral dip shift vs. ammonia concentration in water for S-23 with different coatings.
Fig. 3
Fig. 3 (a) Measured spectral response of S-13.5 at different ammonia concentrations in water; (b) Measured spectral wavelength shift vs. ammonia concentration in water (varies from 2.6 ppm to 65 ppm) for S-13.5 with 8-pass coating; measured data fitted with nonlinear function parameters of which are listed in the inset table.
Fig. 4
Fig. 4 Sensor’s response and recovery at different ammonia concentrations.
Fig. 5
Fig. 5 Silica coating morphology at the taper waist. The inset SEM images show (a) cross section at the taper waist; (b) taper transition section.
Fig. 6
Fig. 6 Sensor’s response illustrating reversibility and repeatability of measurements for S-13.5 at low and high ammonia concentrations: (a) 2.6 ppm; (b) 65 ppm.
Fig. 7
Fig. 7 Sensor’s sensitivity to a range of ions and molecules including methanol, ethanol, CaCl2, NaCl, Al2(SO4)3, NaH2PO4 and ammonia in water.

Tables (1)

Tables Icon

Table 1 Wavelength shift of the spectral dip for the S-13.5 sensor for a series of repeat tests at 2.6 ppm and 65 ppm ammonia concentrations in water.

Metrics