Abstract

Metallic nanoparticles have fascinated scientists for over a century and are now heavily utilized in biomedical sciences and engineering. Due to its noncontact and holding nature, optical trapping is suitable to be combined with various applications to manipulate metallic nanoparticles. However, stable trapping of resonant metallic nanoparticles remains challenging due to the strong axial scattering force and severe optical heating effect. In this work, we propose novel optical tweezers constructed around a 4Pi focusing system that is capable of manipulating metallic nanoparticles even under the resonant condition. By properly modulating the spatial distribution of the illumination and adjusting the focusing condition, specific numbers of spherical spots with controllable locations can be generated in the focal region, providing multiple probes to interrogate the sample properties. Besides, stable three-dimensional optical trapping can be formed since the axial scattering force is canceled by the counter-propagating light. The greatly enhanced optical force arising from the extremely high focusing efficiency of the 4Pi focusing system enables to avoid the overheating effect by reducing the input power without destroying the mechanical stability. Moreover, complex motion trajectory of the metallic nanoparticles can be realized via introducing specific phase modulation to the illumination sequentially. The technique demonstrated in this work may open up new avenues for optical manipulation and their applications in various scientific fields.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Manipulation metallic nanoparticle at resonant wavelength using engineered azimuthally polarized optical field

Guanghao Rui, Xiaoyan Wang, Bing Gu, Qiwen Zhan, and Yiping Cui
Opt. Express 24(7) 7212-7223 (2016)

Manipulation of metallic nanoparticle with evanescent vortex Bessel beam

Guanghao Rui, Xiaoyan Wang, and Yiping Cui
Opt. Express 23(20) 25707-25716 (2015)

Trapping metallic particles under resonant wavelength with 4π tight focusing of radially polarized beam

Wenjing Cui, Feng Song, Feifei Song, Dandan Ju, and Shujing Liu
Opt. Express 24(18) 20062-20068 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  3. M. A. El-Sayed, “Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals,” Acc. Chem. Res. 37(5), 326–333 (2004).
    [Crossref] [PubMed]
  4. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
    [Crossref] [PubMed]
  5. P. M. Bendix, S. N. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
    [Crossref] [PubMed]
  6. G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
    [Crossref]
  7. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [Crossref] [PubMed]
  8. A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
    [Crossref] [PubMed]
  9. P. M. Hansen, V. K. L. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
    [Crossref] [PubMed]
  10. R. Saija, P. Denti, F. Borghese, O. M. Maragò, and M. A. Iatì, “Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres,” Opt. Express 17(12), 10231–10241 (2009).
    [Crossref] [PubMed]
  11. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16(7), 4991–4999 (2008).
    [Crossref] [PubMed]
  12. J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
    [Crossref]
  13. J. J. Sáenz, “Optical forces: laser tractor beams,” Nat. Photonics 5(9), 514–515 (2011).
    [Crossref]
  14. G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
    [Crossref]
  15. S. Hell and E. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9(12), 2159–2166 (1992).
    [Crossref]
  16. M. C. Lang, T. Staudt, J. Engelhardt, and S. Hell, “4Pi microscopy with negligible sidelobes,” New J. Phys. 10(4), 043041 (2008).
    [Crossref]
  17. W. Chen and Q. Zhan, “Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy,” Opt. Lett. 34(16), 2444–2446 (2009).
    [Crossref] [PubMed]
  18. M. Dyba, J. Keller, and S. W. Hell, “Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment,” New J. Phys. 7, 134 (2005).
    [Crossref]
  19. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  20. S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
    [Crossref] [PubMed]
  21. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [Crossref] [PubMed]
  22. L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
    [Crossref] [PubMed]
  23. I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun. 284(10–11), 2430–2436 (2011).
    [Crossref]
  24. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
    [Crossref] [PubMed]
  25. D. S. Bradshaw and D. L. Andrews, “Interactions between spherical nanoparticles optically trapped in Laguerre-Gaussian modes,” Opt. Lett. 30(22), 3039–3041 (2005).
    [Crossref] [PubMed]
  26. M. Šiler, P. Jákl, O. Brzobohatý, and P. Zemánek, “Optical forces induced behavior of a particle in a non-diffracting vortex beam,” Opt. Express 20(22), 24304–24319 (2012).
    [Crossref] [PubMed]
  27. K. Volke-Sepúlveda, S. Chávez-Cerda, V. Garcés-Chávez, and K. Dholakia, “Three–dimensional optical forces and transfer of orbital angular momentum from multiringed light beams to spherical microparticles,” J. Opt. Soc. Am. B 21(10), 1749–1757 (2004).
    [Crossref]
  28. G. Rui, X. Wang, B. Gu, Q. Zhan, and Y. Cui, “Manipulation metallic nanoparticle at resonant wavelength using engineered azimuthally polarized optical field,” Opt. Express 24(7), 7212–7223 (2016).
    [Crossref] [PubMed]
  29. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
    [Crossref] [PubMed]

2016 (1)

2014 (1)

G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
[Crossref]

2013 (1)

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

2012 (2)

2011 (4)

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref] [PubMed]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

J. J. Sáenz, “Optical forces: laser tractor beams,” Nat. Photonics 5(9), 514–515 (2011).
[Crossref]

I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun. 284(10–11), 2430–2436 (2011).
[Crossref]

2010 (1)

P. M. Bendix, S. N. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
[Crossref] [PubMed]

2009 (4)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

R. Saija, P. Denti, F. Borghese, O. M. Maragò, and M. A. Iatì, “Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres,” Opt. Express 17(12), 10231–10241 (2009).
[Crossref] [PubMed]

W. Chen and Q. Zhan, “Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy,” Opt. Lett. 34(16), 2444–2446 (2009).
[Crossref] [PubMed]

2008 (3)

M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16(7), 4991–4999 (2008).
[Crossref] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

M. C. Lang, T. Staudt, J. Engelhardt, and S. Hell, “4Pi microscopy with negligible sidelobes,” New J. Phys. 10(4), 043041 (2008).
[Crossref]

2006 (1)

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

2005 (3)

M. Dyba, J. Keller, and S. W. Hell, “Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment,” New J. Phys. 7, 134 (2005).
[Crossref]

P. M. Hansen, V. K. L. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

D. S. Bradshaw and D. L. Andrews, “Interactions between spherical nanoparticles optically trapped in Laguerre-Gaussian modes,” Opt. Lett. 30(22), 3039–3041 (2005).
[Crossref] [PubMed]

2004 (3)

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

2001 (1)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[Crossref] [PubMed]

1994 (1)

1992 (1)

1986 (1)

Albaladejo, S.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Amato-Grill, J.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Andrews, D. L.

Ashkin, A.

Baffou, G.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Bendix, P. M.

P. M. Bendix, S. N. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
[Crossref] [PubMed]

Bhatia, V. K. L.

P. M. Hansen, V. K. L. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Bjorkholm, J. E.

Block, S. M.

Borghese, F.

Bradshaw, D. S.

Brzobohatý, O.

Chan, C. T.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

Chávez-Cerda, S.

Chen, J.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

Chen, W.

Chu, S.

Cui, Y.

Dahmen, C.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Denti, P.

Dholakia, K.

Dienerowitz, M.

Dyba, M.

M. Dyba, J. Keller, and S. W. Hell, “Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment,” New J. Phys. 7, 134 (2005).
[Crossref]

Dziedzic, J. M.

El-Sayed, M. A.

M. A. El-Sayed, “Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals,” Acc. Chem. Res. 37(5), 326–333 (2004).
[Crossref] [PubMed]

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[Crossref] [PubMed]

Engelhardt, J.

M. C. Lang, T. Staudt, J. Engelhardt, and S. Hell, “4Pi microscopy with negligible sidelobes,” New J. Phys. 10(4), 043041 (2008).
[Crossref]

Feldmann, J.

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref] [PubMed]

Feng, B.

Garcés-Chávez, V.

Grier, D. G.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Gu, B.

Guo, H.

Hansen, P. M.

P. M. Hansen, V. K. L. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Harrit, N.

P. M. Hansen, V. K. L. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Hell, S.

M. C. Lang, T. Staudt, J. Engelhardt, and S. Hell, “4Pi microscopy with negligible sidelobes,” New J. Phys. 10(4), 043041 (2008).
[Crossref]

S. Hell and E. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9(12), 2159–2166 (1992).
[Crossref]

Hell, S. W.

M. Dyba, J. Keller, and S. W. Hell, “Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment,” New J. Phys. 7, 134 (2005).
[Crossref]

Huang, L.

Iatì, M. A.

Iglesias, I.

I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun. 284(10–11), 2430–2436 (2011).
[Crossref]

Jákl, P.

Keller, J.

M. Dyba, J. Keller, and S. W. Hell, “Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment,” New J. Phys. 7, 134 (2005).
[Crossref]

Kotaidis, V.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Krauss, T. F.

Lang, M. C.

M. C. Lang, T. Staudt, J. Engelhardt, and S. Hell, “4Pi microscopy with negligible sidelobes,” New J. Phys. 10(4), 043041 (2008).
[Crossref]

Laroche, M.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Li, J.

Li, Z. Y.

Lin, Z.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

Ling, L.

Lutich, A. A.

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref] [PubMed]

Maragò, O. M.

Marqués, M. I.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Mazilu, M.

Nedev, S.

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref] [PubMed]

Ng, J.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

Oddershede, L.

P. M. Hansen, V. K. L. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Oddershede, L. B.

P. M. Bendix, S. N. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
[Crossref] [PubMed]

Ohlinger, A.

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref] [PubMed]

Plech, A.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Quidant, R.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Reece, P. J.

Reihani, S. N.

P. M. Bendix, S. N. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
[Crossref] [PubMed]

Roichman, Y.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Rui, G.

Sáenz, J. J.

J. J. Sáenz, “Optical forces: laser tractor beams,” Nat. Photonics 5(9), 514–515 (2011).
[Crossref]

I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun. 284(10–11), 2430–2436 (2011).
[Crossref]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Saija, R.

Šiler, M.

Springer, F.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Staudt, T.

M. C. Lang, T. Staudt, J. Engelhardt, and S. Hell, “4Pi microscopy with negligible sidelobes,” New J. Phys. 10(4), 043041 (2008).
[Crossref]

Stelzer, E.

Sun, B.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Svoboda, K.

Volke-Sepúlveda, K.

von Plessen, G.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Wang, X.

Zemánek, P.

Zhan, Q.

Acc. Chem. Res. (2)

M. A. El-Sayed, “Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals,” Acc. Chem. Res. 37(5), 326–333 (2004).
[Crossref] [PubMed]

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[Crossref] [PubMed]

ACS Nano (1)

P. M. Bendix, S. N. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

J. Chem. Phys. (1)

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Nano Lett. (2)

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref] [PubMed]

P. M. Hansen, V. K. L. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Nanophotonics (1)

G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
[Crossref]

Nat. Photonics (2)

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

J. J. Sáenz, “Optical forces: laser tractor beams,” Nat. Photonics 5(9), 514–515 (2011).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

New J. Phys. (2)

M. Dyba, J. Keller, and S. W. Hell, “Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment,” New J. Phys. 7, 134 (2005).
[Crossref]

M. C. Lang, T. Staudt, J. Engelhardt, and S. Hell, “4Pi microscopy with negligible sidelobes,” New J. Phys. 10(4), 043041 (2008).
[Crossref]

Opt. Commun. (1)

I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun. 284(10–11), 2430–2436 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The diagram of the optical tweezers using 4Pi focusing system.
Fig. 2
Fig. 2 (a) Intensity distribution in the vicinity of focal point for tightly focused radially polarized non-vortex beam. (b) Phase distribution of Ez in the vicinity of focal point along z-axis. Optical forces exerted on 50 nm (radius) resonant gold nanoparticle along (c) radial and (d) longitudinal axes.
Fig. 3
Fig. 3 (a) Intensity distribution in the vicinity of focal point for radially polarized non-vortex beam focused by 4Pi focusing system. (b) Line-scans of corresponding axial and transversal intensity distributions. Optical forces exerted on 50 nm (radius) resonant gold nanoparticle along (c) radial and (d) longitudinal axes.
Fig. 4
Fig. 4 (a) Intensity distribution in the vicinity of focal point for radially polarized vortex beam with m = 2 focused by 4Pi focusing system. Optical forces exerted on 50 nm (radius) resonant gold nanoparticle along (b) radial, (c) longitudinal and (d) azimuthal axes. Inset: The projection of optical force in x-y plane. The arrow and circle indicate the direction of the optical force and the contour of the intensity distribution, respectively.
Fig. 5
Fig. 5 Intensity distribution in the (a) x-y plane and (b) z-x plane of a spherical spot centered at P = (5λ, 10λ, 2λ). (c) Distributions of potential depth along x and z axes. (d) Motion trajectory of a particle following a spiral path in the x-y plane. The direction of the pulling force is indicated by the arrows.
Fig. 6
Fig. 6 (a) Intensity distribution in the vicinity of focal point for radially polarized non-vortex beam focused by 4Pi focusing system with (θmin = 39.5°, θmax = 71.8°). (b) Line-scan of corresponding axial intensity distribution. (c) Optical forces exerted on 50 nm (radius) resonant gold nanoparticle along longitudinal axis. (d) Distribution of potential depth along z axis.
Fig. 7
Fig. 7 Intensity distribution in the vicinity of focal point for radially polarized non-vortex beam focused by 4Pi focusing system with (a) (θmin = 44.9°, θmax = 64.2°) and (b) (θmin = 49.5°, θmax = 58.2°).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E ( r , ϕ ) = E 0 e i m ϕ e ^ r ,
E ( r , ϕ , z ) = i m A θ min θ max P ( θ ) sin θ e i k z cos θ e i m ϕ { cos θ [ J m + 1 ( k r sin θ ) J m 1 ( k r sin θ ) ] e r i cos θ [ J m + 1 ( k r sin θ ) + J m 1 ( k r sin θ ) ] e ϕ 2 i sin θ J m ( k r sin θ ) e z } d θ ,
E f ( r , ϕ , z ) = E L ( r , ϕ , z ) + E R ( r , ϕ , z ) ,
α = α 0 1 i α 0 k 3 / ( 6 π ) ,
F g r a d = 1 4 ε 0 Re ( α ) | E | 2 ,
F s c a t = n σ c S ε 0 σ 2 k 0 Im [ ( E ) E ] ,
F r = 1 4 ε 0 Re ( α ) r | E | 2 + n σ 2 c Re ( E ϕ H z * E z H ϕ * ) ε 0 σ 2 k 0 Im ( E r E r * r + E ϕ r E r * ϕ + E z E r * z ) ,
F ϕ = 1 4 ε 0 Re ( α ) ϕ | E | 2 + n σ 2 c Re ( E z H r * E r H z * ) ε 0 σ 2 k 0 Im ( E r E ϕ * r + E ϕ r E ϕ * ϕ + E z E ϕ * z ) ,
F z = 1 4 ε 0 Re ( α ) z | E | 2 + n σ 2 c Re ( E r H ϕ * E ϕ H r * ) ε 0 σ 2 k 0 Im ( E r E z * r + E ϕ r E z * ϕ + E z E z * z ) .
k = k [ sin θ cos φ e x sin θ sin φ e y cos θ e z ] ,
η ( θ , φ ) = e i k P = e i k ( x 0 sin θ cos φ + y 0 sin θ sin φ + z 0 cos θ ) .
E = i A π 0 θ max 0 2 π P ( θ ) η ( θ , φ ) sin θ e i m φ [ cos θ cos φ e x cos θ sin φ e y sin θ e z ] e i k [ z cos θ + r sin θ cos ( φ ϕ ) ] d φ d θ .

Metrics