Abstract

A terahertz vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated using an active focusing reflectarray metasurface based on quantum-cascade gain material. The focusing effect enables a hemispherical cavity with flat optics, which exhibits higher geometric stability than a plano-plano cavity and a directive and circular near-diffraction limited Gaussian beam with M2 beam parameter as low as 1.3 and brightness of 1.86 × 106 Wsr−1m−2. This work initiates the potential of leveraging inhomogeneous metasurface and reflectarray designs to achieve high-power and high-brightness terahertz quantum-cascade VECSELs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Metasurface quantum-cascade laser with electrically switchable polarization

Luyao Xu, Daguan Chen, Christopher A. Curwen, Mohammad Memarian, John L. Reno, Tatsuo Itoh, and Benjamin S. Williams
Optica 4(4) 468-475 (2017)

Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers

Amir Arbabi, Ryan M. Briggs, Yu Horie, Mahmood Bagheri, and Andrei Faraon
Opt. Express 23(26) 33310-33317 (2015)

High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays

Shuyan Zhang, Myoung-Hwan Kim, Francesco Aieta, Alan She, Tobias Mansuripur, Ilan Gabay, Mohammadreza Khorasaninejad, David Rousso, Xiaojun Wang, Mariano Troccoli, Nanfang Yu, and Federico Capasso
Opt. Express 24(16) 18024-18034 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Huang and J. A. Encinar, Reflectarray Antennas (Wiley-IEEE, 2007).
  2. Y. Rahmat-Samii, “Reflector antennas,” in Antenna Engineering Handbook, J. L. Volakis, ed. (McGraw-Hill Companies, 2007).
  3. D. Berry, R. Malech, and W. Kennedy, “The reflectarray antenna,” IEEE Trans. Antenn. Propag. 11(6), 645–651 (1963).
    [Crossref]
  4. D. M. Pozar and T. A. Metzler, “Analysis of a reflectarray antenna using microstrip patches of variable size,” Electron. Lett. 29(8), 657–658 (1993).
    [Crossref]
  5. T. Niu, W. Withayachumnankul, B. S. Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21(3), 2875–2889 (2013).
    [Crossref] [PubMed]
  6. J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett. 33(8), 779–781 (2008).
    [Crossref] [PubMed]
  7. J. C. Ginn, B. A. Lail, and G. D. Boreman, “Phase Characterization of Reflectarray Elements at Infrared,” IEEE Trans. Antenn. Propag. 55(11), 2989–2993 (2007).
    [Crossref]
  8. N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
    [Crossref]
  9. P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
    [Crossref] [PubMed]
  10. A. A. Tavallaee, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Active terahertz quantum-cascade composite right/left handed metamaterial,” Appl. Phys. Lett. 102(2), 021103 (2013).
    [Crossref]
  11. N. Meinzer, M. Ruther, S. Linden, C. M. Soukoulis, G. Khitrova, J. Hendrickson, J. D. Olitzky, H. M. Gibbs, and M. Wegener, “Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain,” Opt. Express 18(23), 24140–24151 (2010).
    [Crossref] [PubMed]
  12. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17(10), 8548–8551 (2009).
    [Crossref] [PubMed]
  13. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
    [Crossref] [PubMed]
  14. L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
    [Crossref]
  15. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
    [Crossref] [PubMed]
  16. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at l ~ 100 mm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124 (2003).
    [Crossref]
  17. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  18. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM Beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
    [Crossref]
  19. A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys. 37(9), R75–R85 (2004).
    [Crossref]
  20. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
    [Crossref]
  21. T.-Y. Kao, J. L. Reno, and Q. Hu, “Phase-locked laser arrays through global antenna mutual coupling,” Nat. Photonics 10(8), 541–546 (2016).
    [Crossref]
  22. G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
    [Crossref] [PubMed]
  23. C. Wu, S. Khanal, J. L. Reno, and S. Kumar, “Terahertz plasmonic laser radiating in an ultra-narrow beam,” Optica 3(7), 734–740 (2016).
    [Crossref]
  24. R. Densing, A. Erstling, M. Gogolbwski, H.-P. Gemund, G. Lundershausen, and A. Gatesman, “Effective far infrared laser operation with mesh couplers,” Infrared Phys. 33(3), 219–226 (1992).
    [Crossref]
  25. S. T. Shanahan and N. R. Heckenberg, “Transmission line model of substrate effects on capacitive mesh couplers,” Appl. Opt. 20(23), 4019–4023 (1981).
    [Crossref] [PubMed]
  26. A. A. Tavallaee, B. S. Williams, P. W. C. Hon, T. Itoh, and Q.-S. Chen, “Terahertz quantum-cascade laser with active leaky-wave antenna,” Appl. Phys. Lett. 99(14), 141115 (2011).
    [Crossref]
  27. P. W. C. Hon, A. A. Tavallaee, Q.-S. Chen, B. S. Williams, and T. Itoh, “Radiation Model for Terahertz Transmission-Line Metamaterial Quantum-Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 2(3), 323–332 (2012).
    [Crossref]
  28. L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
    [Crossref]
  29. A. G. Fox and T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40(2), 453–488 (1961).
    [Crossref]
  30. A. E. Siegman, M. W. Sasnett, and T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27(4), 1098–1104 (1991).
    [Crossref]
  31. H. Richter, N. Rothbart, and H.-w. Hübers, “Characterizing the beam properties of terahertz quantum-cascade lasers,” J. Infrared Millim. THz Waves 35, 686–698 (2014).
  32. ” International Organization for Standardization, document no. ISO 11146, Lasers and laser-related equipment – Test methods for laser beam parameters – Beam width, divergence, angle and beam propagation factor ” (1999).
  33. T. Y. Kao, Q. Hu, J. L. Reno, L. Wang, J. Zhang, and Z. Wang, “Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers,” Opt. Lett. 37(11), 2070–2072 (2012).
    [Crossref] [PubMed]

2016 (2)

T.-Y. Kao, J. L. Reno, and Q. Hu, “Phase-locked laser arrays through global antenna mutual coupling,” Nat. Photonics 10(8), 541–546 (2016).
[Crossref]

C. Wu, S. Khanal, J. L. Reno, and S. Kumar, “Terahertz plasmonic laser radiating in an ultra-narrow beam,” Optica 3(7), 734–740 (2016).
[Crossref]

2015 (3)

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
[Crossref]

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

2014 (2)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

H. Richter, N. Rothbart, and H.-w. Hübers, “Characterizing the beam properties of terahertz quantum-cascade lasers,” J. Infrared Millim. THz Waves 35, 686–698 (2014).

2013 (3)

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

A. A. Tavallaee, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Active terahertz quantum-cascade composite right/left handed metamaterial,” Appl. Phys. Lett. 102(2), 021103 (2013).
[Crossref]

T. Niu, W. Withayachumnankul, B. S. Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21(3), 2875–2889 (2013).
[Crossref] [PubMed]

2012 (3)

T. Y. Kao, Q. Hu, J. L. Reno, L. Wang, J. Zhang, and Z. Wang, “Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers,” Opt. Lett. 37(11), 2070–2072 (2012).
[Crossref] [PubMed]

P. W. C. Hon, A. A. Tavallaee, Q.-S. Chen, B. S. Williams, and T. Itoh, “Radiation Model for Terahertz Transmission-Line Metamaterial Quantum-Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 2(3), 323–332 (2012).
[Crossref]

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

2011 (1)

A. A. Tavallaee, B. S. Williams, P. W. C. Hon, T. Itoh, and Q.-S. Chen, “Terahertz quantum-cascade laser with active leaky-wave antenna,” Appl. Phys. Lett. 99(14), 141115 (2011).
[Crossref]

2010 (2)

N. Meinzer, M. Ruther, S. Linden, C. M. Soukoulis, G. Khitrova, J. Hendrickson, J. D. Olitzky, H. M. Gibbs, and M. Wegener, “Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain,” Opt. Express 18(23), 24140–24151 (2010).
[Crossref] [PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

2009 (2)

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[Crossref]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17(10), 8548–8551 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

J. C. Ginn, B. A. Lail, and G. D. Boreman, “Phase Characterization of Reflectarray Elements at Infrared,” IEEE Trans. Antenn. Propag. 55(11), 2989–2993 (2007).
[Crossref]

2004 (1)

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys. 37(9), R75–R85 (2004).
[Crossref]

2003 (1)

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at l ~ 100 mm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124 (2003).
[Crossref]

2002 (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

1997 (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM Beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

1993 (1)

D. M. Pozar and T. A. Metzler, “Analysis of a reflectarray antenna using microstrip patches of variable size,” Electron. Lett. 29(8), 657–658 (1993).
[Crossref]

1992 (1)

R. Densing, A. Erstling, M. Gogolbwski, H.-P. Gemund, G. Lundershausen, and A. Gatesman, “Effective far infrared laser operation with mesh couplers,” Infrared Phys. 33(3), 219–226 (1992).
[Crossref]

1991 (1)

A. E. Siegman, M. W. Sasnett, and T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27(4), 1098–1104 (1991).
[Crossref]

1981 (1)

1963 (1)

D. Berry, R. Malech, and W. Kennedy, “The reflectarray antenna,” IEEE Trans. Antenn. Propag. 11(6), 645–651 (1963).
[Crossref]

1961 (1)

A. G. Fox and T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40(2), 453–488 (1961).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

Alda, J.

Amanti, M. I.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[Crossref]

Aoust, G.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

Beck, M.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[Crossref]

Beere, H. E.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Belarouci, A.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Berry, D.

D. Berry, R. Malech, and W. Kennedy, “The reflectarray antenna,” IEEE Trans. Antenn. Propag. 11(6), 645–651 (1963).
[Crossref]

Bhaskaran, M.

Blanchard, R.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

Boreman, G.

Boreman, G. D.

J. C. Ginn, B. A. Lail, and G. D. Boreman, “Phase Characterization of Reflectarray Elements at Infrared,” IEEE Trans. Antenn. Propag. 55(11), 2989–2993 (2007).
[Crossref]

Callebaut, H.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at l ~ 100 mm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124 (2003).
[Crossref]

Capasso, F.

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

Chen, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Chen, Q.-S.

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
[Crossref]

A. A. Tavallaee, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Active terahertz quantum-cascade composite right/left handed metamaterial,” Appl. Phys. Lett. 102(2), 021103 (2013).
[Crossref]

P. W. C. Hon, A. A. Tavallaee, Q.-S. Chen, B. S. Williams, and T. Itoh, “Radiation Model for Terahertz Transmission-Line Metamaterial Quantum-Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 2(3), 323–332 (2012).
[Crossref]

A. A. Tavallaee, B. S. Williams, P. W. C. Hon, T. Itoh, and Q.-S. Chen, “Terahertz quantum-cascade laser with active leaky-wave antenna,” Appl. Phys. Lett. 99(14), 141115 (2011).
[Crossref]

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Colombelli, R.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Curwen, C. A.

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
[Crossref]

Davies, A. G.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Dean, P.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Densing, R.

R. Densing, A. Erstling, M. Gogolbwski, H.-P. Gemund, G. Lundershausen, and A. Gatesman, “Effective far infrared laser operation with mesh couplers,” Infrared Phys. 33(3), 219–226 (1992).
[Crossref]

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Erstling, A.

R. Densing, A. Erstling, M. Gogolbwski, H.-P. Gemund, G. Lundershausen, and A. Gatesman, “Effective far infrared laser operation with mesh couplers,” Infrared Phys. 33(3), 219–226 (1992).
[Crossref]

Faist, J.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[Crossref]

Fedotov, V. A.

Fischer, M.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[Crossref]

Foreman, H. D.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys. 37(9), R75–R85 (2004).
[Crossref]

Fox, A. G.

A. G. Fox and T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40(2), 453–488 (1961).
[Crossref]

Freeman, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Fumeaux, C.

Gaburro, Z.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

Garnache, A.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys. 37(9), R75–R85 (2004).
[Crossref]

Gatesman, A.

R. Densing, A. Erstling, M. Gogolbwski, H.-P. Gemund, G. Lundershausen, and A. Gatesman, “Effective far infrared laser operation with mesh couplers,” Infrared Phys. 33(3), 219–226 (1992).
[Crossref]

Gemund, H.-P.

R. Densing, A. Erstling, M. Gogolbwski, H.-P. Gemund, G. Lundershausen, and A. Gatesman, “Effective far infrared laser operation with mesh couplers,” Infrared Phys. 33(3), 219–226 (1992).
[Crossref]

Genevet, P.

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

Gibbs, H. M.

Ginn, J.

Ginn, J. C.

J. C. Ginn, B. A. Lail, and G. D. Boreman, “Phase Characterization of Reflectarray Elements at Infrared,” IEEE Trans. Antenn. Propag. 55(11), 2989–2993 (2007).
[Crossref]

Gogolbwski, M.

R. Densing, A. Erstling, M. Gogolbwski, H.-P. Gemund, G. Lundershausen, and A. Gatesman, “Effective far infrared laser operation with mesh couplers,” Infrared Phys. 33(3), 219–226 (1992).
[Crossref]

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM Beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Heckenberg, N. R.

Hendrickson, J.

Hon, P. W. C.

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
[Crossref]

A. A. Tavallaee, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Active terahertz quantum-cascade composite right/left handed metamaterial,” Appl. Phys. Lett. 102(2), 021103 (2013).
[Crossref]

P. W. C. Hon, A. A. Tavallaee, Q.-S. Chen, B. S. Williams, and T. Itoh, “Radiation Model for Terahertz Transmission-Line Metamaterial Quantum-Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 2(3), 323–332 (2012).
[Crossref]

A. A. Tavallaee, B. S. Williams, P. W. C. Hon, T. Itoh, and Q.-S. Chen, “Terahertz quantum-cascade laser with active leaky-wave antenna,” Appl. Phys. Lett. 99(14), 141115 (2011).
[Crossref]

Hoogland, S. H.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys. 37(9), R75–R85 (2004).
[Crossref]

Hu, Q.

T.-Y. Kao, J. L. Reno, and Q. Hu, “Phase-locked laser arrays through global antenna mutual coupling,” Nat. Photonics 10(8), 541–546 (2016).
[Crossref]

T. Y. Kao, Q. Hu, J. L. Reno, L. Wang, J. Zhang, and Z. Wang, “Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers,” Opt. Lett. 37(11), 2070–2072 (2012).
[Crossref] [PubMed]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at l ~ 100 mm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124 (2003).
[Crossref]

Hübers, H.-w.

H. Richter, N. Rothbart, and H.-w. Hübers, “Characterizing the beam properties of terahertz quantum-cascade lasers,” J. Infrared Millim. THz Waves 35, 686–698 (2014).

Itoh, T.

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
[Crossref]

A. A. Tavallaee, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Active terahertz quantum-cascade composite right/left handed metamaterial,” Appl. Phys. Lett. 102(2), 021103 (2013).
[Crossref]

P. W. C. Hon, A. A. Tavallaee, Q.-S. Chen, B. S. Williams, and T. Itoh, “Radiation Model for Terahertz Transmission-Line Metamaterial Quantum-Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 2(3), 323–332 (2012).
[Crossref]

A. A. Tavallaee, B. S. Williams, P. W. C. Hon, T. Itoh, and Q.-S. Chen, “Terahertz quantum-cascade laser with active leaky-wave antenna,” Appl. Phys. Lett. 99(14), 141115 (2011).
[Crossref]

Johnston, T. F.

A. E. Siegman, M. W. Sasnett, and T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27(4), 1098–1104 (1991).
[Crossref]

Kao, T. Y.

Kao, T.-Y.

T.-Y. Kao, J. L. Reno, and Q. Hu, “Phase-locked laser arrays through global antenna mutual coupling,” Nat. Photonics 10(8), 541–546 (2016).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

Kennedy, W.

D. Berry, R. Malech, and W. Kennedy, “The reflectarray antenna,” IEEE Trans. Antenn. Propag. 11(6), 645–651 (1963).
[Crossref]

Khanal, S.

Khanna, S. P.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Khitrova, G.

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

Kildishev, A. V.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Kumar, S.

C. Wu, S. Khanal, J. L. Reno, and S. Kumar, “Terahertz plasmonic laser radiating in an ultra-narrow beam,” Optica 3(7), 734–740 (2016).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at l ~ 100 mm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124 (2003).
[Crossref]

Kuo, P.

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM Beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Lail, B.

Lail, B. A.

J. C. Ginn, B. A. Lail, and G. D. Boreman, “Phase Characterization of Reflectarray Elements at Infrared,” IEEE Trans. Antenn. Propag. 55(11), 2989–2993 (2007).
[Crossref]

Letartre, X.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Li, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Li, T.

A. G. Fox and T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40(2), 453–488 (1961).
[Crossref]

Linden, S.

Linfield, E. H.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Lundershausen, G.

R. Densing, A. Erstling, M. Gogolbwski, H.-P. Gemund, G. Lundershausen, and A. Gatesman, “Effective far infrared laser operation with mesh couplers,” Infrared Phys. 33(3), 219–226 (1992).
[Crossref]

Malech, R.

D. Berry, R. Malech, and W. Kennedy, “The reflectarray antenna,” IEEE Trans. Antenn. Propag. 11(6), 645–651 (1963).
[Crossref]

Meinzer, N.

Menekse, H.

Metzler, T. A.

D. M. Pozar and T. A. Metzler, “Analysis of a reflectarray antenna using microstrip patches of variable size,” Electron. Lett. 29(8), 657–658 (1993).
[Crossref]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM Beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Niu, T.

Olitzky, J. D.

Plum, E.

Pozar, D. M.

D. M. Pozar and T. A. Metzler, “Analysis of a reflectarray antenna using microstrip patches of variable size,” Electron. Lett. 29(8), 657–658 (1993).
[Crossref]

Reno, J. L.

T.-Y. Kao, J. L. Reno, and Q. Hu, “Phase-locked laser arrays through global antenna mutual coupling,” Nat. Photonics 10(8), 541–546 (2016).
[Crossref]

C. Wu, S. Khanal, J. L. Reno, and S. Kumar, “Terahertz plasmonic laser radiating in an ultra-narrow beam,” Optica 3(7), 734–740 (2016).
[Crossref]

T. Y. Kao, Q. Hu, J. L. Reno, L. Wang, J. Zhang, and Z. Wang, “Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers,” Opt. Lett. 37(11), 2070–2072 (2012).
[Crossref] [PubMed]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at l ~ 100 mm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124 (2003).
[Crossref]

Richter, H.

H. Richter, N. Rothbart, and H.-w. Hübers, “Characterizing the beam properties of terahertz quantum-cascade lasers,” J. Infrared Millim. THz Waves 35, 686–698 (2014).

Ritchie, D. A.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Rothbart, N.

H. Richter, N. Rothbart, and H.-w. Hübers, “Characterizing the beam properties of terahertz quantum-cascade lasers,” J. Infrared Millim. THz Waves 35, 686–698 (2014).

Ruther, M.

Sasnett, M. W.

A. E. Siegman, M. W. Sasnett, and T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27(4), 1098–1104 (1991).
[Crossref]

Scalari, G.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[Crossref]

Shalaev, V. M.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Shanahan, S. T.

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Siegman, A. E.

A. E. Siegman, M. W. Sasnett, and T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27(4), 1098–1104 (1991).
[Crossref]

Soukoulis, C. M.

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM Beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Sriram, S.

Tavallaee, A. A.

A. A. Tavallaee, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Active terahertz quantum-cascade composite right/left handed metamaterial,” Appl. Phys. Lett. 102(2), 021103 (2013).
[Crossref]

P. W. C. Hon, A. A. Tavallaee, Q.-S. Chen, B. S. Williams, and T. Itoh, “Radiation Model for Terahertz Transmission-Line Metamaterial Quantum-Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 2(3), 323–332 (2012).
[Crossref]

A. A. Tavallaee, B. S. Williams, P. W. C. Hon, T. Itoh, and Q.-S. Chen, “Terahertz quantum-cascade laser with active leaky-wave antenna,” Appl. Phys. Lett. 99(14), 141115 (2011).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

Tropper, A. C.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys. 37(9), R75–R85 (2004).
[Crossref]

Tsai, D. P.

Ung, B. S. Y.

Valavanis, A.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Wang, L.

Wang, Z.

Wegener, M.

Wilcox, K. G.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys. 37(9), R75–R85 (2004).
[Crossref]

Williams, B. S.

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
[Crossref]

A. A. Tavallaee, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Active terahertz quantum-cascade composite right/left handed metamaterial,” Appl. Phys. Lett. 102(2), 021103 (2013).
[Crossref]

P. W. C. Hon, A. A. Tavallaee, Q.-S. Chen, B. S. Williams, and T. Itoh, “Radiation Model for Terahertz Transmission-Line Metamaterial Quantum-Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 2(3), 323–332 (2012).
[Crossref]

A. A. Tavallaee, B. S. Williams, P. W. C. Hon, T. Itoh, and Q.-S. Chen, “Terahertz quantum-cascade laser with active leaky-wave antenna,” Appl. Phys. Lett. 99(14), 141115 (2011).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at l ~ 100 mm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124 (2003).
[Crossref]

Withayachumnankul, W.

Wu, C.

Xiao, S.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Xu, G.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Xu, L.

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
[Crossref]

Yu, N.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

Yuan, H.-K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Zhang, J.

Zheludev, N. I.

Zhu, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. A. Tavallaee, B. S. Williams, P. W. C. Hon, T. Itoh, and Q.-S. Chen, “Terahertz quantum-cascade laser with active leaky-wave antenna,” Appl. Phys. Lett. 99(14), 141115 (2011).
[Crossref]

A. A. Tavallaee, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Active terahertz quantum-cascade composite right/left handed metamaterial,” Appl. Phys. Lett. 102(2), 021103 (2013).
[Crossref]

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at l ~ 100 mm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124 (2003).
[Crossref]

Bell Syst. Tech. J. (1)

A. G. Fox and T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40(2), 453–488 (1961).
[Crossref]

Electron. Lett. (2)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

D. M. Pozar and T. A. Metzler, “Analysis of a reflectarray antenna using microstrip patches of variable size,” Electron. Lett. 29(8), 657–658 (1993).
[Crossref]

IEEE J. Quantum Electron. (1)

A. E. Siegman, M. W. Sasnett, and T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27(4), 1098–1104 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM Beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

J. C. Ginn, B. A. Lail, and G. D. Boreman, “Phase Characterization of Reflectarray Elements at Infrared,” IEEE Trans. Antenn. Propag. 55(11), 2989–2993 (2007).
[Crossref]

D. Berry, R. Malech, and W. Kennedy, “The reflectarray antenna,” IEEE Trans. Antenn. Propag. 11(6), 645–651 (1963).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

P. W. C. Hon, A. A. Tavallaee, Q.-S. Chen, B. S. Williams, and T. Itoh, “Radiation Model for Terahertz Transmission-Line Metamaterial Quantum-Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 2(3), 323–332 (2012).
[Crossref]

Infrared Phys. (1)

R. Densing, A. Erstling, M. Gogolbwski, H.-P. Gemund, G. Lundershausen, and A. Gatesman, “Effective far infrared laser operation with mesh couplers,” Infrared Phys. 33(3), 219–226 (1992).
[Crossref]

J. Infrared Millim. THz Waves (1)

H. Richter, N. Rothbart, and H.-w. Hübers, “Characterizing the beam properties of terahertz quantum-cascade lasers,” J. Infrared Millim. THz Waves 35, 686–698 (2014).

J. Phys. D Appl. Phys. (1)

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys. 37(9), R75–R85 (2004).
[Crossref]

Nat. Commun. (1)

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[Crossref]

T.-Y. Kao, J. L. Reno, and Q. Hu, “Phase-locked laser arrays through global antenna mutual coupling,” Nat. Photonics 10(8), 541–546 (2016).
[Crossref]

Nature (1)

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

Rep. Prog. Phys. (1)

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

Other (3)

J. Huang and J. A. Encinar, Reflectarray Antennas (Wiley-IEEE, 2007).

Y. Rahmat-Samii, “Reflector antennas,” in Antenna Engineering Handbook, J. L. Volakis, ed. (McGraw-Hill Companies, 2007).

” International Organization for Standardization, document no. ISO 11146, Lasers and laser-related equipment – Test methods for laser beam parameters – Beam width, divergence, angle and beam propagation factor ” (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) SEM image of a 2 × 2 mm2 active focusing metasurface with wire bonds. Only the part of ridges within the red dashed circle (1 mm diameter) are electrically biased; the area outside has a SiO2 insulation layer between the top metal contact and the QC material. (b) Schematic for a THz QC-VECSEL based on an active focusing metasurface acting as an amplifying concave mirror. (c) Zoom-in SEM image of a part of the focusing metasurface showing the ridge width variation along and across the ridges.
Fig. 2
Fig. 2 (a) Simulated reflectance (top) and reflection phase shift (bottom) versus ridge width for a metal-metal waveguide array with period of 70 μm, with 30 cm−1 bulk gain assumed in the QC gain medium. Inset is the electric field amplitude profile of the excited TM01 mode in the reflection simulation. (b) Designed ridge width distribution for a focusing metasurface of R = 10 mm at 3.4 THz (top), and simulated phase front of reflected wave with a plane wave incident on it, in comparison with the target parabolic phase front (bottom).
Fig. 3
Fig. 3 (a) Experimental configuration of a focusing metasurface QC-VECSEL. The tilt angle δx/y indicates the degree of OC tilting around y/x axis from the perfectly aligned position, as the green arrows show. (b) Pulsed P-I-V curves at 77 K for different δy (with δx = 0) for a R = 10 mm focusing metasurface (M3.4). (c) The measured threshold current density change ratio with respect to Jth at perfect alignment with δx and δy for QC-VECSELs based upon three different metasurfaces: R = 10 mm and 20 mm with 1 mm diameter circular bias area, and a uniform metasurface with 1.5 mm diameter circular bias area. The solid lines in the top part are the calculated threshold bulk gain gth change with the tilt angle δy.
Fig. 4
Fig. 4 (a) Pulsed P-I-V curves for the R = 10 mm focusing metasurface QC-VECSEL designed for 3.4 THz, paired with OC1 and OC2 respectively at 77 K. (b) Pulsed and cw P-I-V curves for the QC-VECSEL composed of the R = 10 mm focusing metasurface and OC2 at 6 K. (c) Lasing spectra measured using a Nicolet FTIR using 0.25 cm−1 resolution for QC-VECSELs based on four focusing metasurfaces M3.2, M3.3, M3.4, and M3.5 paired with either OC1 or OC2 at 77 K.
Fig. 5
Fig. 5 (a) The measured beam pattern from a focusing metasurface QC-VECSEL with R = 10 mm. (b) The measured beam pattern from a focusing metasurface QC-VECSEL with R = 20 mm. The angular resolution in measurement is 0.5°. Black dashed lines are Gaussian curve fits to the 1D beam cuts through the beam center. 1D beams cuts are also plotted dB scale. Beams are measured at 77 K.
Fig. 6
Fig. 6 M2 factor measurement results for the output beam directly from a focusing metasurface QC-VECSEL with R = 20 mm. The beam radius is measured along the optical axis (z axis) in both x and y direction after being focused by a TPX lens of 50-mm focal length which is placed 17 cm away from the VECSEL, and is represented by red and blue circles in (a) and (b), with the curve fitting results plotted in black dashed line. The inset shows the knife-edge measurement raw data at beam waist position with curve fitting shown in black dashed curve.
Fig. 7
Fig. 7 (a) Pulsed P-I-V characteristics for the M3.3 R = 20 mm focusing metasurface VECSEL with OC1 at 77 K, and 1 mm bias area diameter. (b) Pulsed P-I-V characteristics for the uniform M3.3 metasurface VECSEL with OC1 at 77 K. Insets in each show the lasing spectrum.
Fig. 8
Fig. 8 P-I-V curves for R = 20 mm focusing metasurface VECSEL with different cavity lengths.
Fig. 9
Fig. 9 (a) Reflectivity magnitude and phase distributions for the four calculation cases. (b) Calculated far-field beam patterns, cavity mode intensity profiles on metasurface and OC for the four cases.

Metrics