Abstract

We demonstrate a method to compensate multi-channel mismatches that intrinsically exist in a photonic analog-to-digital converter (ADC) system. This system, nominated time-wavelength interleaved photonic ADC (TWI-PADC), is time-interleaved via wavelength demultiplexing/multiplexing before photonic sampling, wavelength demultiplexing channelization, and electronic quantization. Mismatches among multiple channels are estimated in frequency domain and hardware adjustment are used to approach the device-limited accuracy. A multi-channel mismatch compensation algorithm, inspired from the time-interleaved electronic ADC, is developed to effectively improve the performance of TWI-PADC. In the experiment, we configure out a 4-channel TWI-PADC system with 40 GS/s sampling rate based on a 10-GHz actively mode-locked fiber laser. After multi-channel mismatch compensation, the effective number of bit (ENOB) of the 40-GS/s TWI-PADC system is enhanced from ~6 bits to >8.5 bits when the RF frequency is within 0.1-3.1 GHz and from ~6 bits to >7.5 bits within 3.1-12.1 GHz. The enhanced performance of the TWI-PADC system approaches the limitation determined by the timing jitter and noise.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband high-resolution microwave frequency measurement based on low-speed photonic analog-to-digital converters

Yangxue Ma, Dong Liang, Di Peng, Zhiyao Zhang, Yali Zhang, Shangjian Zhang, and Yong Liu
Opt. Express 25(3) 2355-2368 (2017)

Optical sampling analog-to-digital converter based on two asynchronous mode-locked fiber lasers

Hongling Meng, Jianxiao Leng, Cheng Qian, and Jianye Zhao
J. Opt. Soc. Am. B 34(4) 824-830 (2017)

Photonic analog-to-digital converters

George C. Valley
Opt. Express 15(5) 1955-1982 (2007)

References

  • View by:
  • |
  • |
  • |

  1. H. F. Taylor, “An optical analog-to-digital converter-design and analysis,” IEEE J. Quantum Electron. 15(4), 210–216 (1979).
    [Crossref]
  2. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref] [PubMed]
  3. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G. R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012).
    [Crossref] [PubMed]
  4. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  5. W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
    [Crossref] [PubMed]
  6. K. G. Merkel and A. L. Wilson, “A survey of high performance analog-to-digital converters for defense space applications,” in IEEE Aerospace Conference (2003), pp. 2415–2427.
    [Crossref]
  7. J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag. 33(5), 39–45 (1995).
    [Crossref]
  8. G. E. Villanueva, M. Ferri, and P. Pérez-Millán, “Active and passive mode locked fiber lasers for high-speed high-resolution photonic analog-to-digital conversion,” IEEE J. Quantum Electron. 48(11), 1443–1452 (2012).
    [Crossref]
  9. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
    [Crossref]
  10. F. Su, G. Wu, and J. Chen, “Photonic analog-to-digital conversion with equivalent analog prefiltering by shaping sampling pulses,” Opt. Lett. 41(12), 2779–2782 (2016).
    [Crossref] [PubMed]
  11. A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(11), 1081–1082 (1998).
    [Crossref]
  12. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
    [Crossref]
  13. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
    [Crossref]
  14. G. Sefler, J. Chou, J. Conway, and G. Valley, “Distortion correction in a high-resolution time-stretch ADC scalable to continuous time,” J. Lightwave Technol. 28(10), 1468–1476 (2010).
    [Crossref]
  15. S. Gupta and B. Jalali, “Time-warp correction and calibration in photonic time-stretch analog-to-digital converter,” Opt. Lett. 33(22), 2674–2676 (2008).
    [Crossref] [PubMed]
  16. A. Yariv and R. G. M. P. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34(21), 2012–2013 (1998).
    [Crossref]
  17. R. C. Williamson, P. W. Juodawlkis, J. L. Wasserman, G. E. Betts, and J. C. Twichell, “Effects of crosstalk in demultiplexers for photonic analog-to-digital converters,” J. Lightwave Technol. 19(2), 230–236 (2001).
    [Crossref]
  18. W. Ng, L. Luh, D. L. Persechini, D. Le, Y. M. So, M. Mokhtari, and J. E. Jensen, “Ultrahigh-speed photonic analog-to-digital conversion technologies,” in Proceedings of Defense and Security ISOP (2004), pp. 171–177.
  19. G. Wu, S. Li, X. Li, and J. Chen, “18 wavelengths 83.9Gs/s optical sampling clock for photonic A/D converters,” Opt. Express 18(20), 21162–21168 (2010).
    [Crossref] [PubMed]
  20. F. X. Kärtner, J. Kim, J. Chen, and A. Khilo, “Photonic Analog-to-Digital Conversion with Femtosecond Lasers,” Frequenz (Bern) 62(7–8), 171–174 (2008).
  21. M. P. Fok, K. L. Lee, and C. Shu, “4× 2.5 GHz repetitive photonic sampler for high-speed analog-to-digital signal conversion,” IEEE Photonics Technol. Lett. 16(3), 876–878 (2004).
    [Crossref]
  22. J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008).
    [Crossref] [PubMed]
  23. A. H. Nejadmalayeri, M. E. Grein, A. Khilo, J. Wang, M. Y. Sander, M. Peng, C. M. Sorace, E. P. Ippen, and F. X. Kaertner, “A 16-fs aperture-jitter photonic ADC: 7.0 ENOB at 40 GHz,” in CLEO 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThI6.
  24. D. J. Esman, A. O. J. Wiberg, N. Alic, and S. Radic, “Highly linear broadband photonic-assisted Q-Band ADC,” J. Lightwave Technol. 33(11), 2256–2262 (2015).
    [Crossref]
  25. G. Yang, W. Zou, X. Li, and J. Chen, “Theoretical and experimental analysis of channel mismatch in time-wavelength interleaved optical clock based on mode-locked laser,” Opt. Express 23(3), 2174–2186 (2015).
    [Crossref] [PubMed]
  26. C. Vogel, “The impact of combined channel mismatch effects in time-interleaved ADCs,” IEEE Trans. Instrum. Meas. 54(1), 415–427 (2005).
    [Crossref]
  27. N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, and K. Kobayashi, “Explicit analysis of channel mismatch effects in time-interleaved ADC systems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(3), 261–271 (2001).
  28. IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters, IEEE Standard 1241, 2000. http://ieeexplore.ieee.org/xpl/ articleDetails.jsp?arnumber = 929859&contentType = Standards .
  29. B. Brannon, “Sampled systems and the effects of clock phase noise and jitter.” Analog Devices App. Note, AN-756, (2004).
  30. G. C. Valley, J. P. Hurrell, and G. A. Sefler, “Photonic analog-to-digital converters: fundamental and practical limits,” Proc. SPIE 5618, 96–106 (2004).
    [Crossref]
  31. J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
    [Crossref]
  32. O. Golani, L. Mauri, F. Pasinato, C. Cattaneo, G. Consonnni, S. Balsamo, and D. M. Marom, “A photonic analog-to-digital converter using phase modulation and self-coherent detection with spatial oversampling,” Opt. Express 22(10), 12273–12282 (2014).
    [Crossref] [PubMed]
  33. T. R. Clark, J. U. Kang, and R. D. Esman, “Performance of a time- and wavelength-interleaved photonic sampler for analog-digital conversion,” IEEE Photonics Technol. Lett. 11(9), 1168–1170 (1999).
    [Crossref]
  34. W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter mode locking of Er-fibre laser at 10GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron. Lett. 37(2), 113–114 (2001).
    [Crossref]
  35. Q. Wu, H. Zhang, Y. Peng, X. Fu, and M. Yao, “40GS/s Optical analog-to-digital conversion system and its improvement,” Opt. Express 17(11), 9252–9257 (2009).
    [Crossref] [PubMed]

2016 (2)

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

F. Su, G. Wu, and J. Chen, “Photonic analog-to-digital conversion with equivalent analog prefiltering by shaping sampling pulses,” Opt. Lett. 41(12), 2779–2782 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (2)

O. Golani, L. Mauri, F. Pasinato, C. Cattaneo, G. Consonnni, S. Balsamo, and D. M. Marom, “A photonic analog-to-digital converter using phase modulation and self-coherent detection with spatial oversampling,” Opt. Express 22(10), 12273–12282 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

2013 (1)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

2012 (2)

2010 (2)

2009 (1)

2008 (3)

2007 (2)

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref] [PubMed]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

2005 (1)

C. Vogel, “The impact of combined channel mismatch effects in time-interleaved ADCs,” IEEE Trans. Instrum. Meas. 54(1), 415–427 (2005).
[Crossref]

2004 (2)

G. C. Valley, J. P. Hurrell, and G. A. Sefler, “Photonic analog-to-digital converters: fundamental and practical limits,” Proc. SPIE 5618, 96–106 (2004).
[Crossref]

M. P. Fok, K. L. Lee, and C. Shu, “4× 2.5 GHz repetitive photonic sampler for high-speed analog-to-digital signal conversion,” IEEE Photonics Technol. Lett. 16(3), 876–878 (2004).
[Crossref]

2003 (1)

2001 (4)

R. C. Williamson, P. W. Juodawlkis, J. L. Wasserman, G. E. Betts, and J. C. Twichell, “Effects of crosstalk in demultiplexers for photonic analog-to-digital converters,” J. Lightwave Technol. 19(2), 230–236 (2001).
[Crossref]

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, and K. Kobayashi, “Explicit analysis of channel mismatch effects in time-interleaved ADC systems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(3), 261–271 (2001).

W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter mode locking of Er-fibre laser at 10GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron. Lett. 37(2), 113–114 (2001).
[Crossref]

1999 (1)

T. R. Clark, J. U. Kang, and R. D. Esman, “Performance of a time- and wavelength-interleaved photonic sampler for analog-digital conversion,” IEEE Photonics Technol. Lett. 11(9), 1168–1170 (1999).
[Crossref]

1998 (2)

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(11), 1081–1082 (1998).
[Crossref]

A. Yariv and R. G. M. P. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34(21), 2012–2013 (1998).
[Crossref]

1995 (1)

J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag. 33(5), 39–45 (1995).
[Crossref]

1979 (1)

H. F. Taylor, “An optical analog-to-digital converter-design and analysis,” IEEE J. Quantum Electron. 15(4), 210–216 (1979).
[Crossref]

Alic, N.

Balsamo, S.

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Betts, G. E.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

R. C. Williamson, P. W. Juodawlkis, J. L. Wasserman, G. E. Betts, and J. C. Twichell, “Effects of crosstalk in demultiplexers for photonic analog-to-digital converters,” J. Lightwave Technol. 19(2), 230–236 (2001).
[Crossref]

Bhushan, A. S.

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(11), 1081–1082 (1998).
[Crossref]

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Boyraz, O.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Byun, H.

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Cattaneo, C.

Chen, J.

Chou, J.

Clark, T. R.

T. R. Clark, J. U. Kang, and R. D. Esman, “Performance of a time- and wavelength-interleaved photonic sampler for analog-digital conversion,” IEEE Photonics Technol. Lett. 11(9), 1168–1170 (1999).
[Crossref]

Consonnni, G.

Conway, J.

Coppinger, F.

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(11), 1081–1082 (1998).
[Crossref]

Cui, Y.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

Dahlem, M. S.

DiLello, N. A.

Esman, D. J.

Esman, R. D.

T. R. Clark, J. U. Kang, and R. D. Esman, “Performance of a time- and wavelength-interleaved photonic sampler for analog-digital conversion,” IEEE Photonics Technol. Lett. 11(9), 1168–1170 (1999).
[Crossref]

Ferri, M.

G. E. Villanueva, M. Ferri, and P. Pérez-Millán, “Active and passive mode locked fiber lasers for high-speed high-resolution photonic analog-to-digital conversion,” IEEE J. Quantum Electron. 48(11), 1443–1452 (2012).
[Crossref]

Fok, M. P.

M. P. Fok, K. L. Lee, and C. Shu, “4× 2.5 GHz repetitive photonic sampler for high-speed analog-to-digital signal conversion,” IEEE Photonics Technol. Lett. 16(3), 876–878 (2004).
[Crossref]

Fu, X.

Geis, M. W.

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

Golani, O.

Grein, M. E.

Gupta, S.

Han, Y.

Hargreaves, J. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Holzwarth, C. W.

Hoyt, J. L.

Hurrell, J. P.

G. C. Valley, J. P. Hurrell, and G. A. Sefler, “Photonic analog-to-digital converters: fundamental and practical limits,” Proc. SPIE 5618, 96–106 (2004).
[Crossref]

Ippen, E. P.

Jalali, B.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

S. Gupta and B. Jalali, “Time-warp correction and calibration in photonic time-stretch analog-to-digital converter,” Opt. Lett. 33(22), 2674–2676 (2008).
[Crossref] [PubMed]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
[Crossref]

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(11), 1081–1082 (1998).
[Crossref]

Jensen, J. E.

W. Ng, L. Luh, D. L. Persechini, D. Le, Y. M. So, M. Mokhtari, and J. E. Jensen, “Ultrahigh-speed photonic analog-to-digital conversion technologies,” in Proceedings of Defense and Security ISOP (2004), pp. 171–177.

Juodawlkis, P. W.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

R. C. Williamson, P. W. Juodawlkis, J. L. Wasserman, G. E. Betts, and J. C. Twichell, “Effects of crosstalk in demultiplexers for photonic analog-to-digital converters,” J. Lightwave Technol. 19(2), 230–236 (2001).
[Crossref]

Kang, J. U.

T. R. Clark, J. U. Kang, and R. D. Esman, “Performance of a time- and wavelength-interleaved photonic sampler for analog-digital conversion,” IEEE Photonics Technol. Lett. 11(9), 1168–1170 (1999).
[Crossref]

Kärtner, F. X.

Khilo, A.

Kim, J.

F. X. Kärtner, J. Kim, J. Chen, and A. Khilo, “Photonic Analog-to-Digital Conversion with Femtosecond Lasers,” Frequenz (Bern) 62(7–8), 171–174 (2008).

J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008).
[Crossref] [PubMed]

Kobayashi, H.

N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, and K. Kobayashi, “Explicit analysis of channel mismatch effects in time-interleaved ADC systems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(3), 261–271 (2001).

Kobayashi, K.

N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, and K. Kobayashi, “Explicit analysis of channel mismatch effects in time-interleaved ADC systems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(3), 261–271 (2001).

Koumans, R. G. M. P.

A. Yariv and R. G. M. P. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34(21), 2012–2013 (1998).
[Crossref]

Kurosawa, N.

N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, and K. Kobayashi, “Explicit analysis of channel mismatch effects in time-interleaved ADC systems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(3), 261–271 (2001).

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Le, D.

W. Ng, L. Luh, D. L. Persechini, D. Le, Y. M. So, M. Mokhtari, and J. E. Jensen, “Ultrahigh-speed photonic analog-to-digital conversion technologies,” in Proceedings of Defense and Security ISOP (2004), pp. 171–177.

Lee, K. L.

M. P. Fok, K. L. Lee, and C. Shu, “4× 2.5 GHz repetitive photonic sampler for high-speed analog-to-digital signal conversion,” IEEE Photonics Technol. Lett. 16(3), 876–878 (2004).
[Crossref]

Li, S.

Li, X.

Long, X.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

Luh, L.

W. Ng, L. Luh, D. L. Persechini, D. Le, Y. M. So, M. Mokhtari, and J. E. Jensen, “Ultrahigh-speed photonic analog-to-digital conversion technologies,” in Proceedings of Defense and Security ISOP (2004), pp. 171–177.

Lyszczarz, T. M.

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Marom, D. M.

Maruyama, K.

N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, and K. Kobayashi, “Explicit analysis of channel mismatch effects in time-interleaved ADC systems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(3), 261–271 (2001).

Mauri, L.

Merkel, K. G.

K. G. Merkel and A. L. Wilson, “A survey of high performance analog-to-digital converters for defense space applications,” in IEEE Aerospace Conference (2003), pp. 2415–2427.
[Crossref]

Mokhtari, M.

W. Ng, L. Luh, D. L. Persechini, D. Le, Y. M. So, M. Mokhtari, and J. E. Jensen, “Ultrahigh-speed photonic analog-to-digital conversion technologies,” in Proceedings of Defense and Security ISOP (2004), pp. 171–177.

Motamedi, A.

Nejadmalayeri, A. H.

Ng, W.

W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter mode locking of Er-fibre laser at 10GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron. Lett. 37(2), 113–114 (2001).
[Crossref]

W. Ng, L. Luh, D. L. Persechini, D. Le, Y. M. So, M. Mokhtari, and J. E. Jensen, “Ultrahigh-speed photonic analog-to-digital conversion technologies,” in Proceedings of Defense and Security ISOP (2004), pp. 171–177.

O’Donnell, F. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Orcutt, J. S.

Park, M. J.

Pasinato, F.

Peng, M. Y.

Peng, Y.

Pérez-Millán, P.

G. E. Villanueva, M. Ferri, and P. Pérez-Millán, “Active and passive mode locked fiber lasers for high-speed high-resolution photonic analog-to-digital conversion,” IEEE J. Quantum Electron. 48(11), 1443–1452 (2012).
[Crossref]

Perrott, M.

Perrott, M. H.

Persechini, D.

W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter mode locking of Er-fibre laser at 10GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron. Lett. 37(2), 113–114 (2001).
[Crossref]

Persechini, D. L.

W. Ng, L. Luh, D. L. Persechini, D. Le, Y. M. So, M. Mokhtari, and J. E. Jensen, “Ultrahigh-speed photonic analog-to-digital conversion technologies,” in Proceedings of Defense and Security ISOP (2004), pp. 171–177.

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Popovic, M. A.

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Radic, S.

Ram, R. J.

Ray, K. G.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Reddy, K. V.

W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter mode locking of Er-fibre laser at 10GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron. Lett. 37(2), 113–114 (2001).
[Crossref]

Sander, M. Y.

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Sefler, G.

Sefler, G. A.

G. C. Valley, J. P. Hurrell, and G. A. Sefler, “Photonic analog-to-digital converters: fundamental and practical limits,” Proc. SPIE 5618, 96–106 (2004).
[Crossref]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Shu, C.

M. P. Fok, K. L. Lee, and C. Shu, “4× 2.5 GHz repetitive photonic sampler for high-speed analog-to-digital signal conversion,” IEEE Photonics Technol. Lett. 16(3), 876–878 (2004).
[Crossref]

Smith, H. I.

So, Y. M.

W. Ng, L. Luh, D. L. Persechini, D. Le, Y. M. So, M. Mokhtari, and J. E. Jensen, “Ultrahigh-speed photonic analog-to-digital conversion technologies,” in Proceedings of Defense and Security ISOP (2004), pp. 171–177.

Solli, D.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Sorace-Agaskar, C. M.

Spector, S. J.

Stephens, R.

W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter mode locking of Er-fibre laser at 10GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron. Lett. 37(2), 113–114 (2001).
[Crossref]

Su, F.

Sugawara, H.

N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, and K. Kobayashi, “Explicit analysis of channel mismatch effects in time-interleaved ADC systems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(3), 261–271 (2001).

Sun, J.

Taylor, H. F.

H. F. Taylor, “An optical analog-to-digital converter-design and analysis,” IEEE J. Quantum Electron. 15(4), 210–216 (1979).
[Crossref]

Twichell, J. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

R. C. Williamson, P. W. Juodawlkis, J. L. Wasserman, G. E. Betts, and J. C. Twichell, “Effects of crosstalk in demultiplexers for photonic analog-to-digital converters,” J. Lightwave Technol. 19(2), 230–236 (2001).
[Crossref]

Valley, G.

Valley, G. C.

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref] [PubMed]

G. C. Valley, J. P. Hurrell, and G. A. Sefler, “Photonic analog-to-digital converters: fundamental and practical limits,” Proc. SPIE 5618, 96–106 (2004).
[Crossref]

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Villanueva, G. E.

G. E. Villanueva, M. Ferri, and P. Pérez-Millán, “Active and passive mode locked fiber lasers for high-speed high-resolution photonic analog-to-digital conversion,” IEEE J. Quantum Electron. 48(11), 1443–1452 (2012).
[Crossref]

Vogel, C.

C. Vogel, “The impact of combined channel mismatch effects in time-interleaved ADCs,” IEEE Trans. Instrum. Meas. 54(1), 415–427 (2005).
[Crossref]

Wang, J. P.

Wasserman, J. L.

R. C. Williamson, P. W. Juodawlkis, J. L. Wasserman, G. E. Betts, and J. C. Twichell, “Effects of crosstalk in demultiplexers for photonic analog-to-digital converters,” J. Lightwave Technol. 19(2), 230–236 (2001).
[Crossref]

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Wepman, J. A.

J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag. 33(5), 39–45 (1995).
[Crossref]

Wiberg, A. O. J.

Williamson, R. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

R. C. Williamson, P. W. Juodawlkis, J. L. Wasserman, G. E. Betts, and J. C. Twichell, “Effects of crosstalk in demultiplexers for photonic analog-to-digital converters,” J. Lightwave Technol. 19(2), 230–236 (2001).
[Crossref]

Wilson, A. L.

K. G. Merkel and A. L. Wilson, “A survey of high performance analog-to-digital converters for defense space applications,” in IEEE Aerospace Conference (2003), pp. 2415–2427.
[Crossref]

Wu, G.

Wu, Q.

Yang, G.

Yao, M.

Yariv, A.

A. Yariv and R. G. M. P. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34(21), 2012–2013 (1998).
[Crossref]

Yoon, J. U.

Younger, R. D.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Zhang, H.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

Q. Wu, H. Zhang, Y. Peng, X. Fu, and M. Yao, “40GS/s Optical analog-to-digital conversion system and its improvement,” Opt. Express 17(11), 9252–9257 (2009).
[Crossref] [PubMed]

Zhang, S.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

Zhou, G. R.

Zou, W.

Appl. Phys. Lett. (1)

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Electron. Lett. (3)

W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter mode locking of Er-fibre laser at 10GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron. Lett. 37(2), 113–114 (2001).
[Crossref]

A. Yariv and R. G. M. P. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34(21), 2012–2013 (1998).
[Crossref]

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(11), 1081–1082 (1998).
[Crossref]

Frequenz (Bern) (1)

F. X. Kärtner, J. Kim, J. Chen, and A. Khilo, “Photonic Analog-to-Digital Conversion with Femtosecond Lasers,” Frequenz (Bern) 62(7–8), 171–174 (2008).

IEEE Commun. Mag. (1)

J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag. 33(5), 39–45 (1995).
[Crossref]

IEEE J. Quantum Electron. (2)

G. E. Villanueva, M. Ferri, and P. Pérez-Millán, “Active and passive mode locked fiber lasers for high-speed high-resolution photonic analog-to-digital conversion,” IEEE J. Quantum Electron. 48(11), 1443–1452 (2012).
[Crossref]

H. F. Taylor, “An optical analog-to-digital converter-design and analysis,” IEEE J. Quantum Electron. 15(4), 210–216 (1979).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. P. Fok, K. L. Lee, and C. Shu, “4× 2.5 GHz repetitive photonic sampler for high-speed analog-to-digital signal conversion,” IEEE Photonics Technol. Lett. 16(3), 876–878 (2004).
[Crossref]

T. R. Clark, J. U. Kang, and R. D. Esman, “Performance of a time- and wavelength-interleaved photonic sampler for analog-digital conversion,” IEEE Photonics Technol. Lett. 11(9), 1168–1170 (1999).
[Crossref]

IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. (1)

N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, and K. Kobayashi, “Explicit analysis of channel mismatch effects in time-interleaved ADC systems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(3), 261–271 (2001).

IEEE Trans. Instrum. Meas. (1)

C. Vogel, “The impact of combined channel mismatch effects in time-interleaved ADCs,” IEEE Trans. Instrum. Meas. 54(1), 415–427 (2005).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

J. Lightwave Technol. (4)

Nat. Photonics (1)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Express (7)

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref] [PubMed]

A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G. R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012).
[Crossref] [PubMed]

J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008).
[Crossref] [PubMed]

G. Yang, W. Zou, X. Li, and J. Chen, “Theoretical and experimental analysis of channel mismatch in time-wavelength interleaved optical clock based on mode-locked laser,” Opt. Express 23(3), 2174–2186 (2015).
[Crossref] [PubMed]

G. Wu, S. Li, X. Li, and J. Chen, “18 wavelengths 83.9Gs/s optical sampling clock for photonic A/D converters,” Opt. Express 18(20), 21162–21168 (2010).
[Crossref] [PubMed]

O. Golani, L. Mauri, F. Pasinato, C. Cattaneo, G. Consonnni, S. Balsamo, and D. M. Marom, “A photonic analog-to-digital converter using phase modulation and self-coherent detection with spatial oversampling,” Opt. Express 22(10), 12273–12282 (2014).
[Crossref] [PubMed]

Q. Wu, H. Zhang, Y. Peng, X. Fu, and M. Yao, “40GS/s Optical analog-to-digital conversion system and its improvement,” Opt. Express 17(11), 9252–9257 (2009).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (1)

G. C. Valley, J. P. Hurrell, and G. A. Sefler, “Photonic analog-to-digital converters: fundamental and practical limits,” Proc. SPIE 5618, 96–106 (2004).
[Crossref]

Sci. Rep. (1)

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

Other (5)

K. G. Merkel and A. L. Wilson, “A survey of high performance analog-to-digital converters for defense space applications,” in IEEE Aerospace Conference (2003), pp. 2415–2427.
[Crossref]

A. H. Nejadmalayeri, M. E. Grein, A. Khilo, J. Wang, M. Y. Sander, M. Peng, C. M. Sorace, E. P. Ippen, and F. X. Kaertner, “A 16-fs aperture-jitter photonic ADC: 7.0 ENOB at 40 GHz,” in CLEO 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThI6.

IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters, IEEE Standard 1241, 2000. http://ieeexplore.ieee.org/xpl/ articleDetails.jsp?arnumber = 929859&contentType = Standards .

B. Brannon, “Sampled systems and the effects of clock phase noise and jitter.” Analog Devices App. Note, AN-756, (2004).

W. Ng, L. Luh, D. L. Persechini, D. Le, Y. M. So, M. Mokhtari, and J. E. Jensen, “Ultrahigh-speed photonic analog-to-digital conversion technologies,” in Proceedings of Defense and Security ISOP (2004), pp. 171–177.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup of the TWI-PADC system. (a) Generation of time-wavelength interleaved sampling source, (b) Schematic of spectral slicing of mode locked laser and time-wavelength mapping of pulse trains, (c) Photonic sampling via a Mach-Zehnder modulator, (d) Schematic of photonic sampling in time domain, (e) Photodetection and electronic digitization, (f) Schematic of electronic digitization. WDM: wavelength-division multiplexer, TDL: tunable delay line, VOA: variable optical attenuator, FRM: Faraday rotator mirror, EOM: electro-optical modulator, PD: photo-detector, ADC: analog-to-digital converter.

Fig. 2
Fig. 2

Schematic of a typical DFT spectrum with channel mismatch effects exiting in a 4-channel TWI-PADC.

Fig. 3
Fig. 3

SSB phase noise spectra of AMLL and electronic oscillator and their integral RMS timing jitters.

Fig. 4
Fig. 4

Spectra of digitized data at the frequency of fIN = 3.1 GHz for different modulation index (M): (a) M = 0.05, (b) M = 0.15, (c) M = 0.25, (d) M = 0.50. (e) SINAD versus modulation index (M). The blue diamond (left vertical axis) represents the experimental results. The green curve (left vertical axis) denotes the fitting curve according to the theoretical model of Eq. (16) and the red dashed curve (right vertical axis) is its derivative. σN = 1.4 × 10−4, σJ = 36 fs, σa = 1.0 × 10−2, and σt = 95 fs.

Fig. 5
Fig. 5

Spectra of digitized data for different multi-channel mismatches: (a) σa = 8.2 × 10−2 and σt = 378 fs, (b) σa = 4.4 × 10−2 and σt = 197 fs, (c) σa = 2.1 × 10−2 and σt = 128 fs, (d) σa = 1.0 × 10−2 and σt = 95 fs. (e) SINAD for different multi-channel mismatches. The blue triangles represent the experimental results which are indicated in the parentheses. The contours denote the theoretical estimation based on Eq. (16).

Fig. 6
Fig. 6

Comparison between spectra of digitized data without (solid curves) and with (dotted curves) mismatch compensation. M = 0.17, (a) fIN = 1.1 GHz, (b) fIN = 3.1 GHz, (c) fIN = 6.1 GHz, (d) fIN = 12.1 GHz.

Fig. 7
Fig. 7

ENOB of the TWI-PADC as a function of the RF input frequency. Diamonds and triangles represent the experimental values without and with channel mismatch compensation, respectively. The theoretical limitation corresponding to the ambiguity (i), timing jitter (ii), noise level (iii), multi-channel timing mismatch (iv), or multi-channel amplitude mismatch (v) is depicted for comparison, respectively. Numerical estimation with or without channel mismatch compensation is plotted by (vi) or (vii), respectively.

Fig. 8
Fig. 8

ENOB of PADCs as a function of bandwidth (a) and sampling rate (b). The blue circles indicate the relevant works published in the literatures (marked in brackets). The diamonds and triangles indicate our system performance before channel mismatch compensation and after compensation, respectively. The dashed lines represent the theoretical limitations determined by the timing jitter of 1 ps, 100 fs, and 10 fs, respectively.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

p n ( t )= A n k=0 δ[ t4k T S ( n1 ) T S Δ t n ] , n=1,2,3,4,
T M ( t )= 1 2 + 1 2 cos π V π [ v IN ( t )+ V B ],
v S,n ( t )= G n R PD,n T M ( t ) p n ( t ), n=1,2,3,4,
v Q [ k ]= n=1 4 a n T M [ 4k T S +( n1 ) T S +Δ t n ],
v Q [ k ]= n=1 4 { a n 2 + a n m=0 ( 1 ) m J 2m+1 ( M ) cos[ ( 2m1 ) ω IN ( k+( n1 )+ Δ t n / T S ) ] } ,
V Q [ ω ]=π( l=0 3 m=1 β l + ( 1 ) m+1 J 2m1 ( M )δ[ ω( 2m1 ) ω IN 2πk 4 ] + l=0 3 m=1 β l ( 1 ) m+1 J 2m1 ( M )δ[ ω+( 2m1 ) ω IN 2πk 4 ] ) ,
β l + = 1 4 n=1 4 a n e j Ω IN Δ t n e j 2πl( n1 ) 4 , β l = 1 4 n=1 4 a n e j Ω IN Δ t n e j 2πl( n1 ) 4 ,l=0,1,2,3.
( v ˜ Q + [ k ] v ˜ Q [ k ] )= H -1 ( v Q + [ k ] v Q [ k ] ),H=[ ( a 1 + a 2 e j2π f IN δt ) /2 e jπk ( a 1 a 2 e j2π f IN δt ) /2 e jπk ( a 1 a 2 e j2π f IN δt ) /2 ( a 1 + a 2 e j2π f IN δt ) /2 ],
ENOB= SINA D PADC 1.76 6.02 ,
SINA D PADC =10log P signal P noise + P distortion ,
SINA D PADC =20log ( 10 SD R Modulation 20 ) 2 + ( 10 SD R Mismatch 20 ) 2 + ( 10 SN R Noise 20 ) 2 + ( 10 SN R Jitter 20 ) 2 ,
SD R Modulation =20log| J 3 ( M ) / J 1 ( M ) |=20logγ( M ),
SD R Mismatch =20log k=1 3 ( β k + 2 + β k - 2 ) β 0 + 2 + β 0 - 2 =20log σ a 2 +4 π 2 f IN 2 σ t 2 ,
SN R Noise =20log| σ N /J 1 ( M ) |=20log ρ N ( M ),
SN R Jitter =20log2π f IN σ J ,
SINA D PADC =20log 4 π 2 f IN 2 ( σ t 2 + σ J 2 )+ σ a 2 + ρ N 2 ( M )+ γ 2 ( M ) .
a n =| l=0 N1 β l + e j 2πl( n1 ) N |,Δ t n = 1 Ω IN arg( l=0 N1 β l + e j 2πl( n1 ) N ).
V Q + [ ω ]= H 0 [ ω ] V ˜ Q + [ ω ]+ H 1 [ ( ω ω S 2 ) ] V ˜ Q [ ω ω S 2 ], V Q [ ω ]= H 0 [ ω ] V ˜ Q [ ω ]+ H 1 [ ω+ ω S 2 ] V ˜ Q + [ ω+ ω S 2 ],
H 0 [ ω ]= 1 2 ( a 1 + a 2 e j ωδ / T S ), H 1 [ ω ]= 1 2 ( a 1 a 2 e j ωδ / T S ),
v Q + [ k ]= h 0 [ k ] v ˜ Q + [ k ]+ e jπk h 1 [ k ] v ˜ Q [ k ], v Q [ k ]= h 0 [ k ] v ˜ Q [ k ]+ e jπk h 1 [ k ] v ˜ Q + [ k ],
( v Q + [ k ] v Q [ k ] )=[ ( a 1 + a 2 e j Ω IN δ ) /2 e jπk ( a 1 a 2 e j Ω IN δ ) /2 e jπk ( a 1 a 2 e j Ω IN δ ) /2 ( a 1 + a 2 e j Ω IN δ ) /2 ]( v ˜ Q + [ k ] v ˜ Q [ k ] )=H( v ˜ Q + [ k ] v ˜ Q [ k ] ).

Metrics