Abstract

The aim of this article is to determine the best dielectric between SiO2, Si3N4 and TiO2 for quantum cascade laser (QCL) passivation layers depending on the operation wavelength. It relies on both Mueller ellipsometry measurement to accurately determine the optical constants (the refractive index n and the extinction coefficient k) of the three dielectrics, and optical simulations to determine the mode overlap with the dielectric and furthermore the modal losses in the passivation layer. The impact of dielectric thermal conductivities are taken into account and shown to be not critical on the laser performances.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Infrared interference coating by use of Si3N4 and SiO2 films with ion-assisted deposition

Cheng-Chung Lee and Shih-Liang Ku
Appl. Opt. 49(3) 437-441 (2010)

Optical nature of interface layers: a comparative study of the Si–SiO2 interface

G. E. Jellison and F. A. Modine
J. Opt. Soc. Am. 72(9) 1253-1257 (1982)

Comparative study of ALD SiO2 thin films for optical applications

Kristin Pfeiffer, Svetlana Shestaeva, Astrid Bingel, Peter Munzert, Lilit Ghazaryan, Cristian van Helvoirt, Wilhelmus M. M. Kessels, Umut T. Sanli, Corinne Grévent, Gisela Schütz, Matti Putkonen, Iain Buchanan, Lars Jensen, Detlev Ristau, Andreas Tünnermann, and Adriana Szeghalmi
Opt. Mater. Express 6(2) 660-670 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “Frequency ageing and noise evolution in a distributed feedback quantum cascade laser measured over a two-month period,” IEEE J. Sel. Top. Quantum Electron. 21, 68–73 (2015).
    [Crossref]
  2. F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-e. Zah, “Reliability of 4.6 μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
    [Crossref]
  3. L. Joly, T. Decarpenterie, N. Dumelie, X. Thomas, I. Mappe-Fogaing, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, and V. Zéninari, “Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm,” Appl. Phys. B 103, 717–723 (2011).
    [Crossref]
  4. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
    [Crossref]
  5. Y. Bai, S. Slivken, S. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
    [Crossref]
  6. A. N. Baranov and R. Teissier, “Quantum cascade lasers in the InAs/AlSb material system,” IEEE J. Sel. Top. Quantum Electron. 21, 85–96 (2015).
    [Crossref]
  7. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics. 6, 432–439 (2012).
    [Crossref]
  8. O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett 96, 141110 (2010).
    [Crossref]
  9. M. Bahriz, G. Lollia, A. Baranov, and R. Teissier, “High temperature operation of far infrared InAs/AlSb quantum cascade lasers with dielectric waveguide,” Opt. Express 23, 1523–1528 (2015).
    [Crossref] [PubMed]
  10. S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. Liu, “Terahertz quantum cascade lasers operating up to 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
    [Crossref] [PubMed]
  11. L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309–311 (2014).
    [Crossref]
  12. M. Bahriz, G. Lollia, P. Laffaille, A. Baranov, and R. Teissier, “InAs/AlSb quantum cascade lasers operating near 20 μm,” Electron. Lett. 49, 1238–1240 (2013).
    [Crossref]
  13. C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long-wavelength (λ ≈ 8–11.5 μm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366–1368 (1998).
    [Crossref]
  14. D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. Julien, A. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ= 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105, 111118 (2014).
    [Crossref]
  15. R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
    [Crossref]
  16. J. Faist, Quantum Cascade Lasers (Oxford University, 2013).
    [Crossref]
  17. R. A. Chipman, Handbook of Optics (McGraw-Hill Inc., 1995).
  18. E. Garcia-Caurel, A. Lizana, G. Ndong, B. Al-Bugami, C. Bernon, E. Al-Qahtani, F. Rengnez, and A. De Martino, “Mid-infrared Mueller ellipsometer with pseudo-achromatic optical elements,” Appl. Opt. 54, 2776–2785 (2015).
    [Crossref] [PubMed]
  19. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999).
    [Crossref]
  20. R. Azzam and N. Bashara, Ellipsometry and Polarized Light (North Holland, 1987).
  21. E. Garcia-Caurel, A. De Martino, J.-P. Gaston, and L. Yan, “Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization,” Appl. Spectrosc. 67, 1–21 (2013).
    [Crossref] [PubMed]
  22. H. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew, 2005).
    [Crossref]
  23. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51, 6789–6798 (2012).
    [Crossref] [PubMed]
  24. I. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010).
    [Crossref]
  25. X. Chen, C. Zhang, and S. Liu, “Depolarization effects from nanoimprinted grating structures as measured by Mueller matrix polarimetry,” Appl. Phys. Lett. 103, 151605 (2013).
    [Crossref]
  26. F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26, 33–46 (2004).
    [Crossref]
  27. A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition,” J. Vac. Sci. Technol. A 15, 377–389 (1997).
    [Crossref]
  28. A. Murashkevich, A. Lavitskaya, T. Barannikova, and I. Zharskii, “Infrared absorption spectra and structure of TiO2-SiO2 composites,” J. Appl. Spectrosc. 75, 730–734 (2008).
    [Crossref]
  29. U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep. 48, 53–229 (2003).
    [Crossref]
  30. T. M. Tritt, Thermal Conductivity: Theory, Properties, and Applications (Springer Science & Business Media, 2005).
  31. Y. Touloukian, R. Powell, C. Ho, and P. Klemens, “Thermal conductivity: Nonmetallic solids, vol. 2,” (1970).
    [Crossref]
  32. D. G. Cahill and T. H. Allen, “Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings,” Appl. Phys. Lett. 65, 309–311 (1994).
    [Crossref]
  33. A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100, 043109 (2006).
    [Crossref]

2015 (4)

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “Frequency ageing and noise evolution in a distributed feedback quantum cascade laser measured over a two-month period,” IEEE J. Sel. Top. Quantum Electron. 21, 68–73 (2015).
[Crossref]

A. N. Baranov and R. Teissier, “Quantum cascade lasers in the InAs/AlSb material system,” IEEE J. Sel. Top. Quantum Electron. 21, 85–96 (2015).
[Crossref]

M. Bahriz, G. Lollia, A. Baranov, and R. Teissier, “High temperature operation of far infrared InAs/AlSb quantum cascade lasers with dielectric waveguide,” Opt. Express 23, 1523–1528 (2015).
[Crossref] [PubMed]

E. Garcia-Caurel, A. Lizana, G. Ndong, B. Al-Bugami, C. Bernon, E. Al-Qahtani, F. Rengnez, and A. De Martino, “Mid-infrared Mueller ellipsometer with pseudo-achromatic optical elements,” Appl. Opt. 54, 2776–2785 (2015).
[Crossref] [PubMed]

2014 (2)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. Julien, A. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ= 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105, 111118 (2014).
[Crossref]

2013 (3)

X. Chen, C. Zhang, and S. Liu, “Depolarization effects from nanoimprinted grating structures as measured by Mueller matrix polarimetry,” Appl. Phys. Lett. 103, 151605 (2013).
[Crossref]

M. Bahriz, G. Lollia, P. Laffaille, A. Baranov, and R. Teissier, “InAs/AlSb quantum cascade lasers operating near 20 μm,” Electron. Lett. 49, 1238–1240 (2013).
[Crossref]

E. Garcia-Caurel, A. De Martino, J.-P. Gaston, and L. Yan, “Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization,” Appl. Spectrosc. 67, 1–21 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

L. Joly, T. Decarpenterie, N. Dumelie, X. Thomas, I. Mappe-Fogaing, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, and V. Zéninari, “Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm,” Appl. Phys. B 103, 717–723 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

2010 (3)

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-e. Zah, “Reliability of 4.6 μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett 96, 141110 (2010).
[Crossref]

I. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010).
[Crossref]

2009 (1)

Y. Bai, S. Slivken, S. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[Crossref]

2008 (1)

A. Murashkevich, A. Lavitskaya, T. Barannikova, and I. Zharskii, “Infrared absorption spectra and structure of TiO2-SiO2 composites,” J. Appl. Spectrosc. 75, 730–734 (2008).
[Crossref]

2006 (1)

A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100, 043109 (2006).
[Crossref]

2004 (1)

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26, 33–46 (2004).
[Crossref]

2003 (1)

U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep. 48, 53–229 (2003).
[Crossref]

2001 (1)

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[Crossref]

1999 (1)

1998 (1)

1997 (1)

A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition,” J. Vac. Sci. Technol. A 15, 377–389 (1997).
[Crossref]

1994 (1)

D. G. Cahill and T. H. Allen, “Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings,” Appl. Phys. Lett. 65, 309–311 (1994).
[Crossref]

Al-Bugami, B.

Aleksandrova, A.

Allen, T. H.

D. G. Cahill and T. H. Allen, “Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings,” Appl. Phys. Lett. 65, 309–311 (1994).
[Crossref]

Al-Qahtani, E.

Ay, F.

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26, 33–46 (2004).
[Crossref]

Aydinli, A.

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26, 33–46 (2004).
[Crossref]

Azzam, R.

R. Azzam and N. Bashara, Ellipsometry and Polarized Light (North Holland, 1987).

Bacchetta, M.

A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition,” J. Vac. Sci. Technol. A 15, 377–389 (1997).
[Crossref]

Bahriz, M.

M. Bahriz, G. Lollia, A. Baranov, and R. Teissier, “High temperature operation of far infrared InAs/AlSb quantum cascade lasers with dielectric waveguide,” Opt. Express 23, 1523–1528 (2015).
[Crossref] [PubMed]

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. Julien, A. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ= 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105, 111118 (2014).
[Crossref]

M. Bahriz, G. Lollia, P. Laffaille, A. Baranov, and R. Teissier, “InAs/AlSb quantum cascade lasers operating near 20 μm,” Electron. Lett. 49, 1238–1240 (2013).
[Crossref]

Bai, Y.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Y. Bai, S. Slivken, S. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[Crossref]

Ban, D.

Bandyopadhyay, N.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Barannikova, T.

A. Murashkevich, A. Lavitskaya, T. Barannikova, and I. Zharskii, “Infrared absorption spectra and structure of TiO2-SiO2 composites,” J. Appl. Spectrosc. 75, 730–734 (2008).
[Crossref]

Baranov, A.

M. Bahriz, G. Lollia, A. Baranov, and R. Teissier, “High temperature operation of far infrared InAs/AlSb quantum cascade lasers with dielectric waveguide,” Opt. Express 23, 1523–1528 (2015).
[Crossref] [PubMed]

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. Julien, A. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ= 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105, 111118 (2014).
[Crossref]

M. Bahriz, G. Lollia, P. Laffaille, A. Baranov, and R. Teissier, “InAs/AlSb quantum cascade lasers operating near 20 μm,” Electron. Lett. 49, 1238–1240 (2013).
[Crossref]

O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett 96, 141110 (2010).
[Crossref]

Baranov, A. N.

A. N. Baranov and R. Teissier, “Quantum cascade lasers in the InAs/AlSb material system,” IEEE J. Sel. Top. Quantum Electron. 21, 85–96 (2015).
[Crossref]

Bashara, N.

R. Azzam and N. Bashara, Ellipsometry and Polarized Light (North Holland, 1987).

Bernon, C.

Bismuto, A.

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “Frequency ageing and noise evolution in a distributed feedback quantum cascade laser measured over a two-month period,” IEEE J. Sel. Top. Quantum Electron. 21, 68–73 (2015).
[Crossref]

Blaser, S.

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “Frequency ageing and noise evolution in a distributed feedback quantum cascade laser measured over a two-month period,” IEEE J. Sel. Top. Quantum Electron. 21, 68–73 (2015).
[Crossref]

Borghesi, A.

A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition,” J. Vac. Sci. Technol. A 15, 377–389 (1997).
[Crossref]

Bousseksou, A.

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. Julien, A. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ= 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105, 111118 (2014).
[Crossref]

Cahill, D. G.

D. G. Cahill and T. H. Allen, “Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings,” Appl. Phys. Lett. 65, 309–311 (1994).
[Crossref]

Caneau, C. G.

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-e. Zah, “Reliability of 4.6 μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Capasso, F.

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[Crossref]

C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long-wavelength (λ ≈ 8–11.5 μm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366–1368 (1998).
[Crossref]

Carras, M.

L. Joly, T. Decarpenterie, N. Dumelie, X. Thomas, I. Mappe-Fogaing, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, and V. Zéninari, “Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm,” Appl. Phys. B 103, 717–723 (2011).
[Crossref]

Cathabard, O.

O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett 96, 141110 (2010).
[Crossref]

Chan, C.

Chaparala, S.

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-e. Zah, “Reliability of 4.6 μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Chashnikova, M.

Chastanet, D.

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. Julien, A. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ= 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105, 111118 (2014).
[Crossref]

Chen, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Chen, X.

X. Chen, C. Zhang, and S. Liu, “Depolarization effects from nanoimprinted grating structures as measured by Mueller matrix polarimetry,” Appl. Phys. Lett. 103, 151605 (2013).
[Crossref]

Chipman, R. A.

R. A. Chipman, Handbook of Optics (McGraw-Hill Inc., 1995).

Cho, A. Y.

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[Crossref]

C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long-wavelength (λ ≈ 8–11.5 μm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366–1368 (1998).
[Crossref]

Colombelli, R.

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. Julien, A. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ= 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105, 111118 (2014).
[Crossref]

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[Crossref]

Compain, E.

Corni, F.

A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition,” J. Vac. Sci. Technol. A 15, 377–389 (1997).
[Crossref]

Darvish, S.

Y. Bai, S. Slivken, S. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[Crossref]

Davies, A. G.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

De Martino, A.

Dean, P.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Decarpenterie, T.

L. Joly, T. Decarpenterie, N. Dumelie, X. Thomas, I. Mappe-Fogaing, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, and V. Zéninari, “Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm,” Appl. Phys. B 103, 717–723 (2011).
[Crossref]

Deichmann, O. D.

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-e. Zah, “Reliability of 4.6 μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Devenson, J.

O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett 96, 141110 (2010).
[Crossref]

Diebold, U.

U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep. 48, 53–229 (2003).
[Crossref]

Drevillon, B.

Dumelie, N.

L. Joly, T. Decarpenterie, N. Dumelie, X. Thomas, I. Mappe-Fogaing, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, and V. Zéninari, “Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm,” Appl. Phys. B 103, 717–723 (2011).
[Crossref]

Dupont, E.

Durry, G.

L. Joly, T. Decarpenterie, N. Dumelie, X. Thomas, I. Mappe-Fogaing, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, and V. Zéninari, “Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm,” Appl. Phys. B 103, 717–723 (2011).
[Crossref]

Faist, J.

Fathololoumi, S.

Fedosenko, O.

Flores, Y.

Foldyna, M.

I. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010).
[Crossref]

Freeman, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Garcia-Caurel, E.

Gaston, J.-P.

Gmachl, C.

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[Crossref]

C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long-wavelength (λ ≈ 8–11.5 μm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366–1368 (1998).
[Crossref]

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics. 6, 432–439 (2012).
[Crossref]

Gokden, B.

Y. Bai, S. Slivken, S. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[Crossref]

Gruska, B.

Haddadi, A.

Y. Bai, S. Slivken, S. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[Crossref]

Ho, C.

Y. Touloukian, R. Powell, C. Ho, and P. Klemens, “Thermal conductivity: Nonmetallic solids, vol. 2,” (1970).
[Crossref]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics. 6, 432–439 (2012).
[Crossref]

Hu, Q.

Hughes, L. C.

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-e. Zah, “Reliability of 4.6 μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Hutchinson, A. L.

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[Crossref]

C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long-wavelength (λ ≈ 8–11.5 μm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366–1368 (1998).
[Crossref]

Irene, E. A.

H. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew, 2005).
[Crossref]

Jirauschek, C.

Joly, L.

L. Joly, T. Decarpenterie, N. Dumelie, X. Thomas, I. Mappe-Fogaing, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, and V. Zéninari, “Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm,” Appl. Phys. B 103, 717–723 (2011).
[Crossref]

Julien, F.

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. Julien, A. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ= 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105, 111118 (2014).
[Crossref]

Kildemo, M.

I. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010).
[Crossref]

Kischkat, J.

Klemens, P.

Y. Touloukian, R. Powell, C. Ho, and P. Klemens, “Thermal conductivity: Nonmetallic solids, vol. 2,” (1970).
[Crossref]

Klinkmüller, M.

Laffaille, P.

M. Bahriz, G. Lollia, P. Laffaille, A. Baranov, and R. Teissier, “InAs/AlSb quantum cascade lasers operating near 20 μm,” Electron. Lett. 49, 1238–1240 (2013).
[Crossref]

Laframboise, S.

Lavitskaya, A.

A. Murashkevich, A. Lavitskaya, T. Barannikova, and I. Zharskii, “Infrared absorption spectra and structure of TiO2-SiO2 composites,” J. Appl. Spectrosc. 75, 730–734 (2008).
[Crossref]

Le Roy, S.

I. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010).
[Crossref]

LeBlanc, H. P.

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-e. Zah, “Reliability of 4.6 μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Li, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Linfield, E. H.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Liu, H.

Liu, S.

X. Chen, C. Zhang, and S. Liu, “Depolarization effects from nanoimprinted grating structures as measured by Mueller matrix polarimetry,” Appl. Phys. Lett. 103, 151605 (2013).
[Crossref]

Lizana, A.

Lollia, G.

M. Bahriz, G. Lollia, A. Baranov, and R. Teissier, “High temperature operation of far infrared InAs/AlSb quantum cascade lasers with dielectric waveguide,” Opt. Express 23, 1523–1528 (2015).
[Crossref] [PubMed]

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. Julien, A. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ= 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105, 111118 (2014).
[Crossref]

M. Bahriz, G. Lollia, P. Laffaille, A. Baranov, and R. Teissier, “InAs/AlSb quantum cascade lasers operating near 20 μm,” Electron. Lett. 49, 1238–1240 (2013).
[Crossref]

Lops, A.

A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100, 043109 (2006).
[Crossref]

Machulik, S.

Mammez, D.

L. Joly, T. Decarpenterie, N. Dumelie, X. Thomas, I. Mappe-Fogaing, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, and V. Zéninari, “Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm,” Appl. Phys. B 103, 717–723 (2011).
[Crossref]

Mappe-Fogaing, I.

L. Joly, T. Decarpenterie, N. Dumelie, X. Thomas, I. Mappe-Fogaing, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, and V. Zéninari, “Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm,” Appl. Phys. B 103, 717–723 (2011).
[Crossref]

Marcadet, X.

L. Joly, T. Decarpenterie, N. Dumelie, X. Thomas, I. Mappe-Fogaing, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, and V. Zéninari, “Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm,” Appl. Phys. B 103, 717–723 (2011).
[Crossref]

Masselink, W. T.

Mátyás, A.

Maulini, R.

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “Frequency ageing and noise evolution in a distributed feedback quantum cascade laser measured over a two-month period,” IEEE J. Sel. Top. Quantum Electron. 21, 68–73 (2015).
[Crossref]

Monastyrskyi, G.

Monelli, A.

A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition,” J. Vac. Sci. Technol. A 15, 377–389 (1997).
[Crossref]

Moreno, J.

O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett 96, 141110 (2010).
[Crossref]

Murashkevich, A.

A. Murashkevich, A. Lavitskaya, T. Barannikova, and I. Zharskii, “Infrared absorption spectra and structure of TiO2-SiO2 composites,” J. Appl. Spectrosc. 75, 730–734 (2008).
[Crossref]

Ndong, G.

Nerbø, I.

I. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010).
[Crossref]

Ottaviani, G.

A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition,” J. Vac. Sci. Technol. A 15, 377–389 (1997).
[Crossref]

Page, C. A.

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-e. Zah, “Reliability of 4.6 μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Parvitte, B.

L. Joly, T. Decarpenterie, N. Dumelie, X. Thomas, I. Mappe-Fogaing, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, and V. Zéninari, “Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm,” Appl. Phys. B 103, 717–723 (2011).
[Crossref]

Peters, S.

Pivac, B.

A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition,” J. Vac. Sci. Technol. A 15, 377–389 (1997).
[Crossref]

Poirier, S.

Powell, R.

Y. Touloukian, R. Powell, C. Ho, and P. Klemens, “Thermal conductivity: Nonmetallic solids, vol. 2,” (1970).
[Crossref]

Razeghi, M.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Y. Bai, S. Slivken, S. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[Crossref]

Rengnez, F.

Rochat, M.

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “Frequency ageing and noise evolution in a distributed feedback quantum cascade laser measured over a two-month period,” IEEE J. Sel. Top. Quantum Electron. 21, 68–73 (2015).
[Crossref]

Sassella, A.

A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition,” J. Vac. Sci. Technol. A 15, 377–389 (1997).
[Crossref]

Scamarcio, G.

A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100, 043109 (2006).
[Crossref]

Schilt, S.

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “Frequency ageing and noise evolution in a distributed feedback quantum cascade laser measured over a two-month period,” IEEE J. Sel. Top. Quantum Electron. 21, 68–73 (2015).
[Crossref]

Semtsiv, M.

Sergent, A. M.

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[Crossref]

Sirtori, C.

Sivco, D. L.

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[Crossref]

C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long-wavelength (λ ≈ 8–11.5 μm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366–1368 (1998).
[Crossref]

Slivken, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Y. Bai, S. Slivken, S. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[Crossref]

Søndergård, E.

I. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010).
[Crossref]

Spagnolo, V.

A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100, 043109 (2006).
[Crossref]

Sudmeyer, T.

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “Frequency ageing and noise evolution in a distributed feedback quantum cascade laser measured over a two-month period,” IEEE J. Sel. Top. Quantum Electron. 21, 68–73 (2015).
[Crossref]

Tardy, C.

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “Frequency ageing and noise evolution in a distributed feedback quantum cascade laser measured over a two-month period,” IEEE J. Sel. Top. Quantum Electron. 21, 68–73 (2015).
[Crossref]

Teissier, R.

A. N. Baranov and R. Teissier, “Quantum cascade lasers in the InAs/AlSb material system,” IEEE J. Sel. Top. Quantum Electron. 21, 85–96 (2015).
[Crossref]

M. Bahriz, G. Lollia, A. Baranov, and R. Teissier, “High temperature operation of far infrared InAs/AlSb quantum cascade lasers with dielectric waveguide,” Opt. Express 23, 1523–1528 (2015).
[Crossref] [PubMed]

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. Julien, A. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ= 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105, 111118 (2014).
[Crossref]

M. Bahriz, G. Lollia, P. Laffaille, A. Baranov, and R. Teissier, “InAs/AlSb quantum cascade lasers operating near 20 μm,” Electron. Lett. 49, 1238–1240 (2013).
[Crossref]

O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett 96, 141110 (2010).
[Crossref]

Terazzi, R.

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “Frequency ageing and noise evolution in a distributed feedback quantum cascade laser measured over a two-month period,” IEEE J. Sel. Top. Quantum Electron. 21, 68–73 (2015).
[Crossref]

Thomas, X.

L. Joly, T. Decarpenterie, N. Dumelie, X. Thomas, I. Mappe-Fogaing, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, and V. Zéninari, “Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm,” Appl. Phys. B 103, 717–723 (2011).
[Crossref]

Tombez, L.

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “Frequency ageing and noise evolution in a distributed feedback quantum cascade laser measured over a two-month period,” IEEE J. Sel. Top. Quantum Electron. 21, 68–73 (2015).
[Crossref]

Tompkins, H.

H. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew, 2005).
[Crossref]

Tonini, R.

A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition,” J. Vac. Sci. Technol. A 15, 377–389 (1997).
[Crossref]

Touloukian, Y.

Y. Touloukian, R. Powell, C. Ho, and P. Klemens, “Thermal conductivity: Nonmetallic solids, vol. 2,” (1970).
[Crossref]

Tredicucci, A.

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[Crossref]

Tritt, T. M.

T. M. Tritt, Thermal Conductivity: Theory, Properties, and Applications (Springer Science & Business Media, 2005).

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Valavanis, A.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Vallon, R.

L. Joly, T. Decarpenterie, N. Dumelie, X. Thomas, I. Mappe-Fogaing, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, and V. Zéninari, “Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm,” Appl. Phys. B 103, 717–723 (2011).
[Crossref]

Wanke, M. C.

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[Crossref]

Wasilewski, Z.

Xie, F.

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-e. Zah, “Reliability of 4.6 μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Yan, L.

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics. 6, 432–439 (2012).
[Crossref]

Zah, C.-e.

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-e. Zah, “Reliability of 4.6 μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Zanotti, L.

A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition,” J. Vac. Sci. Technol. A 15, 377–389 (1997).
[Crossref]

Zéninari, V.

L. Joly, T. Decarpenterie, N. Dumelie, X. Thomas, I. Mappe-Fogaing, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, and V. Zéninari, “Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm,” Appl. Phys. B 103, 717–723 (2011).
[Crossref]

Zhang, C.

X. Chen, C. Zhang, and S. Liu, “Depolarization effects from nanoimprinted grating structures as measured by Mueller matrix polarimetry,” Appl. Phys. Lett. 103, 151605 (2013).
[Crossref]

Zharskii, I.

A. Murashkevich, A. Lavitskaya, T. Barannikova, and I. Zharskii, “Infrared absorption spectra and structure of TiO2-SiO2 composites,” J. Appl. Spectrosc. 75, 730–734 (2008).
[Crossref]

Zhu, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

L. Joly, T. Decarpenterie, N. Dumelie, X. Thomas, I. Mappe-Fogaing, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, and V. Zéninari, “Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm,” Appl. Phys. B 103, 717–723 (2011).
[Crossref]

Appl. Phys. Lett (1)

O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett 96, 141110 (2010).
[Crossref]

Appl. Phys. Lett. (6)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Y. Bai, S. Slivken, S. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[Crossref]

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. Julien, A. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ= 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105, 111118 (2014).
[Crossref]

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[Crossref]

X. Chen, C. Zhang, and S. Liu, “Depolarization effects from nanoimprinted grating structures as measured by Mueller matrix polarimetry,” Appl. Phys. Lett. 103, 151605 (2013).
[Crossref]

D. G. Cahill and T. H. Allen, “Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings,” Appl. Phys. Lett. 65, 309–311 (1994).
[Crossref]

Appl. Spectrosc. (1)

Electron. Lett. (2)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

M. Bahriz, G. Lollia, P. Laffaille, A. Baranov, and R. Teissier, “InAs/AlSb quantum cascade lasers operating near 20 μm,” Electron. Lett. 49, 1238–1240 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. N. Baranov and R. Teissier, “Quantum cascade lasers in the InAs/AlSb material system,” IEEE J. Sel. Top. Quantum Electron. 21, 85–96 (2015).
[Crossref]

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “Frequency ageing and noise evolution in a distributed feedback quantum cascade laser measured over a two-month period,” IEEE J. Sel. Top. Quantum Electron. 21, 68–73 (2015).
[Crossref]

J. Appl. Phys. (2)

I. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010).
[Crossref]

A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100, 043109 (2006).
[Crossref]

J. Appl. Spectrosc. (1)

A. Murashkevich, A. Lavitskaya, T. Barannikova, and I. Zharskii, “Infrared absorption spectra and structure of TiO2-SiO2 composites,” J. Appl. Spectrosc. 75, 730–734 (2008).
[Crossref]

J. Vac. Sci. Technol. A (1)

A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition,” J. Vac. Sci. Technol. A 15, 377–389 (1997).
[Crossref]

Nat. Photonics. (1)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics. 6, 432–439 (2012).
[Crossref]

Opt. Eng. (1)

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-e. Zah, “Reliability of 4.6 μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26, 33–46 (2004).
[Crossref]

Surf. Sci. Rep. (1)

U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep. 48, 53–229 (2003).
[Crossref]

Other (6)

T. M. Tritt, Thermal Conductivity: Theory, Properties, and Applications (Springer Science & Business Media, 2005).

Y. Touloukian, R. Powell, C. Ho, and P. Klemens, “Thermal conductivity: Nonmetallic solids, vol. 2,” (1970).
[Crossref]

H. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew, 2005).
[Crossref]

R. Azzam and N. Bashara, Ellipsometry and Polarized Light (North Holland, 1987).

J. Faist, Quantum Cascade Lasers (Oxford University, 2013).
[Crossref]

R. A. Chipman, Handbook of Optics (McGraw-Hill Inc., 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Typical structure of a PR device. The laser ridge consists of an active region (red) sandwiched in between two cladding layers (green) providing vertical confinement. It is covered with a passivation layer (blue) etched on top of the ridge for the metal contact (yellow) to insure current injection. The other metal contact is deposited on the bottom of the substrate (grey).

Fig. 2
Fig. 2

Sketch of the IR Mueller ellipsometer showing the entry and the exit arm as well as the position of the sample. The optical elements used to build the PSG and the PSA are also shown: a linear polarizer (LP) and a double Fresnel rhomb (FP). The mirrors used to focus and to collimate the light beam along the optical path are also indicated (flat mirrors, fM, and off-axis parabolic mirrors, pM) as well as some circular diaphragms (D).

Fig. 3
Fig. 3

Measured (solid lines) and fitted (dashed and dotted lines) Is, Ic, Icp for the InP wafer (blue) and SiO2 (black), Si3N4 (red) and TiO2 (green) thin films.

Fig. 4
Fig. 4

Refractive index (top figure) and absorption coefficients (bottom figure) of SiO2, Si3N4 and TiO2.

Fig. 5
Fig. 5

Overlap with the passivation film for SiO2 (black), Si3N4 (red), TiO2 (green). The thermal resistance Rt h is plotted in the inset. The thermal resistance of Si3N4 and TiO2 are overlapping due to their close thermal conductivities. For the sake of comparison, we also represent the thermal resistance of buried devices of equivalent width.

Fig. 6
Fig. 6

Evolution of the FOM vs λ for SiO2 (black), Si3N4 (red) and TiO2 (green). Dashed lines stands for CW mode (d= 1), dashed lines for PW mode (d=3%). Below the graph we show the best dielectric according to the wavelength in CW and PW mode. For each CW and PW, we represent on the first row the case if TiO2 is available and on the second row, the case it is not available.

Tables (1)

Tables Icon

Table 1 Model parameters for InP substrate, SiO2, Si3N4 and TiO2

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

j t h = j 0 exp ( T Z A T 0 )
j t h = e α ˜ p + α ˜ m g c + n 2 t h e r m τ e f f
j t h λ Γ Z A ( a ˜ m + x α x Γ x ) exp ( T p e l + R t h U I d T 0 )
F O M = α d i e l Γ d i e l exp ( R t h U I d T 0 )
M = [ 1 I c p 0 0 I c p 1 0 0 0 0 I c p I s 0 0 I s I c ]
{ I c p = cos ( 2 Ψ ) I c = sin ( 2 Ψ ) cos ( Δ ) I s = sin ( 2 Ψ ) sin ( Δ )
ρ = r p r s = tan ( Ψ ) exp ( i Δ )
χ 2 = 1 N M 1 [ k ( I s k T I s k E ) 2 σ I s 2 + ( I c k T I c k E ) 2 σ I c 2 + ( I c p k T I c p k E ) 2 σ I c p 2 ]
ϵ P S * = ϵ + ω p 2 ω 2 + i Γ D ω + k = 1 L f k ω k 2 ( ω 2 ω k 2 ) + i γ k ω

Metrics