Abstract

We present the realization of a highly efficient photon pair source based on spontaneous parametric downconversion (SPDC) in a periodically poled lithium niobate (PPLN) ridge waveguide. The source is suitable for long distance quantum communication applications as the photon pairs are located at the centers of the telecommunication O- and C- band at 1312 nm and 1557 nm. The high efficiency is confirmed by a conversion efficiency of 4 × 10−6 – which is to our knowledge among the highest conversion efficiencies reported so far – and a heralding efficiency of 64.1 ± 2.1%. The heralded single-photon properties are confirmed by the measurement of the photon statistics with a Click/No-Click method as well as the heralded g(2)-function. A minimum value for g(2)(0) of 0.001 ± 0.0003 indicating clear antibunching has been observed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherence and entanglement preservation of frequency-converted heralded single photons

Andreas Lenhard, José Brito, Matthias Bock, Christoph Becher, and Jürgen Eschner
Opt. Express 25(10) 11187-11199 (2017)

Proposal for low-noise heralded single photons from cascaded downconversion

Patrick F. Poitras, Evan Meyer-Scott, and Deny R. Hamel
Opt. Express 26(10) 12930-12938 (2018)

Nonclassical correlations between a C-band telecom photon and a stored spin-wave

Pau Farrera, Nicolas Maring, Boris Albrecht, Georg Heinze, and Hugues de Riedmatten
Optica 3(9) 1019-1024 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Kimble, “The quantum internet,” Nature 4531023–1030 (2014).
    [Crossref]
  2. A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion–photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
    [Crossref] [PubMed]
  3. C. Kurz, P. Eich, M. Schug, P. Müller, and J. Eschner, “Programmable atom-photon quantum interface,” Phys. Rev. A 93, 062348 (2016).
    [Crossref]
  4. D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nat. Phys. 11, 37–42 (2015).
    [Crossref]
  5. S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
    [Crossref] [PubMed]
  6. A. Delteil, Z. Sun, W. B. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2016).
    [Crossref]
  7. N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
    [Crossref]
  8. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2012).
    [Crossref]
  9. F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
    [Crossref]
  10. K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-Level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
    [Crossref] [PubMed]
  11. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
    [Crossref] [PubMed]
  12. S. Krapick, H. Herrmann, V. Quiring, B. Brecht, H. Suche, and Ch. Silberhorn, “An efficient integrated two-color source for heralded single photons,” New J. Phys. 15, 033010 (2013).
    [Crossref]
  13. F. Kaiser, A. Issautier, L. A. Ngah, O. Danila, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys. 14, 085015 (2012).
    [Crossref]
  14. A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12, 103005 (2010).
    [Crossref]
  15. J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17(8), 6727 (2009).
    [Crossref] [PubMed]
  16. D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in Lithium Niobate waveguide devices,” Phys. Rev. Lett 108, 053601 (2012).
    [Crossref] [PubMed]
  17. M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and Nicolas Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
    [Crossref]
  18. H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of pulsed polarization-entangled photon pairs in a 1.55-µ m band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit,” Opt. Lett. 30(3), 293 (2005).
    [Crossref] [PubMed]
  19. Y.-K. Jiang and A. Tomita, “Highly efficient polarization-entangled photon source using periodically poled lithium niobate waveguides,” Opt. Commun. 267(15), 278–281 (2006).
    [Crossref]
  20. E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based Opo source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
    [Crossref]
  21. E. Meyer-Scott, D. McCloskey, K. Golos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the Presence of a Photonic Qubit by Splitting It in Two,” Phys. Rev. Lett. 116, 070501 (2016).
    [Crossref] [PubMed]
  22. D.-S. Ding, W. Zhang, S. Shi, Z.-Y. Zhou, Y. Li, B.-S. Shi, and G.-C. Guo, “Hybrid-cascaded generation of tripartite telecom photons using an atomic ensemble and a nonlinear waveguide,” Optica 2(7), 642–645 (2015).
    [Crossref]
  23. A. Jechow, A. Heuer, and R. Menzel, “High brightness, tunable biphoton source at 976 nm for quantum spectroscopy,” Opt. Express 16(17), 13439–13449 (2008).
    [Crossref] [PubMed]
  24. C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53(8), 081910 (2014).
    [Crossref]
  25. D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1117 (1980).
    [Crossref]
  26. S. V. Polyakov and A. L. Migdall, “High accuracy verification of a correlated-photon-based method for determining photon-counting detection efficiency,” Opt. Express 15(4), 1390–1407 (2007).
    [Crossref] [PubMed]
  27. J. G. Rarity, K. D. Ridley, and P. R. Tapster, “Absolute measurement of quantum efficiency using parametric down conversion,” Appl. Opt. 26(21), 4616–4618 (1987).
    [Crossref] [PubMed]
  28. A. N. Penin and A. V. Sergienko, “Absolute standardless calibration of photodetectors based on quantum two-photon fields,” Appl. Opt. 30(25), 3582–3588 (1991).
    [Crossref] [PubMed]
  29. J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express 19(21), 13975 (2013).
  30. J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54(2–3), 373–396 (2007).
    [Crossref]
  31. S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible–to–telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
    [Crossref]
  32. F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
    [Crossref]
  33. A. R. Rossi, S. Olivares, and M. G. A. Paris, “Photon statistics without counting photons,” Phys. Rev. A 70, 055801 (2004).
    [Crossref]
  34. G. Zambra, A. Andreoni, M. Bondani, M. Gramegna, M. Genovese, G. Brida, A. Rossi, and M. G. A. Paris, “Experimental reconstruction of photon statistics without photon counting,” Phys. Rev. Lett. 95, 063602 (2005).
    [Crossref] [PubMed]
  35. B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. II,” Phys. Rev. 160, 1097 (1967).
    [Crossref]
  36. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
    [Crossref]
  37. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
    [Crossref]
  38. A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146 (2005).
  39. H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
    [Crossref]
  40. K. Laiho, K. N. Cassemiro, and Ch. Silberhorn, “Producing high fidelity single photons with optimal brightness via waveguided parametric down-conversion,” Opt. Express 17(25), 22823–22837 (2009).
    [Crossref]
  41. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
    [Crossref] [PubMed]
  42. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21(12), 13975 (2013).
    [Crossref] [PubMed]
  43. C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys. 46, 055501 (2013).
    [Crossref]

2016 (4)

C. Kurz, P. Eich, M. Schug, P. Müller, and J. Eschner, “Programmable atom-photon quantum interface,” Phys. Rev. A 93, 062348 (2016).
[Crossref]

A. Delteil, Z. Sun, W. B. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2016).
[Crossref]

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

E. Meyer-Scott, D. McCloskey, K. Golos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the Presence of a Photonic Qubit by Splitting It in Two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

2015 (2)

D.-S. Ding, W. Zhang, S. Shi, Z.-Y. Zhou, Y. Li, B.-S. Shi, and G.-C. Guo, “Hybrid-cascaded generation of tripartite telecom photons using an atomic ensemble and a nonlinear waveguide,” Optica 2(7), 642–645 (2015).
[Crossref]

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nat. Phys. 11, 37–42 (2015).
[Crossref]

2014 (3)

H. J. Kimble, “The quantum internet,” Nature 4531023–1030 (2014).
[Crossref]

F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
[Crossref]

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53(8), 081910 (2014).
[Crossref]

2013 (4)

J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express 19(21), 13975 (2013).

S. Krapick, H. Herrmann, V. Quiring, B. Brecht, H. Suche, and Ch. Silberhorn, “An efficient integrated two-color source for heralded single photons,” New J. Phys. 15, 033010 (2013).
[Crossref]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21(12), 13975 (2013).
[Crossref] [PubMed]

C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys. 46, 055501 (2013).
[Crossref]

2012 (6)

F. Kaiser, A. Issautier, L. A. Ngah, O. Danila, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys. 14, 085015 (2012).
[Crossref]

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in Lithium Niobate waveguide devices,” Phys. Rev. Lett 108, 053601 (2012).
[Crossref] [PubMed]

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2012).
[Crossref]

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion–photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible–to–telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

2011 (1)

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-Level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref] [PubMed]

2010 (1)

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12, 103005 (2010).
[Crossref]

2009 (3)

2008 (3)

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and Nicolas Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

A. Jechow, A. Heuer, and R. Menzel, “High brightness, tunable biphoton source at 976 nm for quantum spectroscopy,” Opt. Express 16(17), 13439–13449 (2008).
[Crossref] [PubMed]

2007 (2)

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54(2–3), 373–396 (2007).
[Crossref]

S. V. Polyakov and A. L. Migdall, “High accuracy verification of a correlated-photon-based method for determining photon-counting detection efficiency,” Opt. Express 15(4), 1390–1407 (2007).
[Crossref] [PubMed]

2006 (1)

Y.-K. Jiang and A. Tomita, “Highly efficient polarization-entangled photon source using periodically poled lithium niobate waveguides,” Opt. Commun. 267(15), 278–281 (2006).
[Crossref]

2005 (4)

H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of pulsed polarization-entangled photon pairs in a 1.55-µ m band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit,” Opt. Lett. 30(3), 293 (2005).
[Crossref] [PubMed]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[Crossref] [PubMed]

G. Zambra, A. Andreoni, M. Bondani, M. Gramegna, M. Genovese, G. Brida, A. Rossi, and M. G. A. Paris, “Experimental reconstruction of photon statistics without photon counting,” Phys. Rev. Lett. 95, 063602 (2005).
[Crossref] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146 (2005).

2004 (2)

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

A. R. Rossi, S. Olivares, and M. G. A. Paris, “Photon statistics without counting photons,” Phys. Rev. A 70, 055801 (2004).
[Crossref]

2003 (1)

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

2001 (1)

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

1991 (1)

1987 (1)

1980 (1)

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1117 (1980).
[Crossref]

1970 (1)

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[Crossref]

1967 (1)

B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. II,” Phys. Rev. 160, 1097 (1967).
[Crossref]

Afzelius, M.

F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
[Crossref]

Albrecht, R.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible–to–telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Alibart, O.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12, 103005 (2010).
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Almeida, M. P.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Andreoni, A.

G. Zambra, A. Andreoni, M. Bondani, M. Gramegna, M. Genovese, G. Brida, A. Rossi, and M. G. A. Paris, “Experimental reconstruction of photon statistics without photon counting,” Phys. Rev. Lett. 95, 063602 (2005).
[Crossref] [PubMed]

Ansari, V.

Antón, C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Arend, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible–to–telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Asobe, M.

Auffeves, A.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Baldi, P.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Banaszek, K.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146 (2005).

Becher, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible–to–telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Bernien, H.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2012).
[Crossref]

Beveratos, A.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and Nicolas Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Blatt, R.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion–photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Blok, M. S.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2012).
[Crossref]

Bochmann, J.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Bondani, M.

G. Zambra, A. Andreoni, M. Bondani, M. Gramegna, M. Genovese, G. Brida, A. Rossi, and M. G. A. Paris, “Experimental reconstruction of photon statistics without photon counting,” Phys. Rev. Lett. 95, 063602 (2005).
[Crossref] [PubMed]

Bonneau, D.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in Lithium Niobate waveguide devices,” Phys. Rev. Lett 108, 053601 (2012).
[Crossref] [PubMed]

Boyd, G. D.

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[Crossref]

Brandstätter, B.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion–photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Brecht, B.

S. Krapick, H. Herrmann, V. Quiring, B. Brecht, H. Suche, and Ch. Silberhorn, “An efficient integrated two-color source for heralded single photons,” New J. Phys. 15, 033010 (2013).
[Crossref]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21(12), 13975 (2013).
[Crossref] [PubMed]

Brida, G.

G. Zambra, A. Andreoni, M. Bondani, M. Gramegna, M. Genovese, G. Brida, A. Rossi, and M. G. A. Paris, “Experimental reconstruction of photon statistics without photon counting,” Phys. Rev. Lett. 95, 063602 (2005).
[Crossref] [PubMed]

Bridenbaugh, P. M.

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[Crossref]

Bussieres, F.

F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
[Crossref]

Cabello, A.

E. Meyer-Scott, D. McCloskey, K. Golos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the Presence of a Photonic Qubit by Splitting It in Two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

Casabone, B.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion–photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Cassemiro, K. N.

Chanelière, T.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[Crossref] [PubMed]

Chen, J.

Cheung, J. Y.

J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express 19(21), 13975 (2013).

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54(2–3), 373–396 (2007).
[Crossref]

Childress, L.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2012).
[Crossref]

Chunnilall, C. J.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53(8), 081910 (2014).
[Crossref]

J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express 19(21), 13975 (2013).

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54(2–3), 373–396 (2007).
[Crossref]

Clark, S. M.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nat. Phys. 11, 37–42 (2015).
[Crossref]

Clausen, C.

F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
[Crossref]

Crocker, C.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nat. Phys. 11, 37–42 (2015).
[Crossref]

Danila, O.

F. Kaiser, A. Issautier, L. A. Ngah, O. Danila, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys. 14, 085015 (2012).
[Crossref]

de Riedmatten, H.

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

De Santis, L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Debnath, S.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nat. Phys. 11, 37–42 (2015).
[Crossref]

Degiovanni, I. P.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53(8), 081910 (2014).
[Crossref]

Delteil, A.

A. Delteil, Z. Sun, W. B. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2016).
[Crossref]

Demory, J.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Ding, D.-S.

Dirmeier, T.

Dorenbos, S. N.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in Lithium Niobate waveguide devices,” Phys. Rev. Lett 108, 053601 (2012).
[Crossref] [PubMed]

Eich, P.

C. Kurz, P. Eich, M. Schug, P. Müller, and J. Eschner, “Programmable atom-photon quantum interface,” Phys. Rev. A 93, 062348 (2016).
[Crossref]

Erdmann, R.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146 (2005).

Eschner, J.

C. Kurz, P. Eich, M. Schug, P. Müller, and J. Eschner, “Programmable atom-photon quantum interface,” Phys. Rev. A 93, 062348 (2016).
[Crossref]

Faelt, S.

A. Delteil, Z. Sun, W. B. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2016).
[Crossref]

Fan, J.

Fasel, S.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Ferrier, A.

F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
[Crossref]

Figueroa, E.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Fisher, K. A. G.

E. Meyer-Scott, D. McCloskey, K. Golos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the Presence of a Photonic Qubit by Splitting It in Two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

Fox, N. P.

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54(2–3), 373–396 (2007).
[Crossref]

Gao, W. B.

A. Delteil, Z. Sun, W. B. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2016).
[Crossref]

Genovese, M.

G. Zambra, A. Andreoni, M. Bondani, M. Gramegna, M. Genovese, G. Brida, A. Rossi, and M. G. A. Paris, “Experimental reconstruction of photon statistics without photon counting,” Phys. Rev. Lett. 95, 063602 (2005).
[Crossref] [PubMed]

Giesz, V.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Gisin, N.

F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
[Crossref]

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based Opo source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

Gisin, Nicolas

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and Nicolas Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

Glauber, R. J.

B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. II,” Phys. Rev. 160, 1097 (1967).
[Crossref]

Goldner, P.

F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
[Crossref]

Golos, K.

E. Meyer-Scott, D. McCloskey, K. Golos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the Presence of a Photonic Qubit by Splitting It in Two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

Gómez, C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Gramegna, M.

G. Zambra, A. Andreoni, M. Bondani, M. Gramegna, M. Genovese, G. Brida, A. Rossi, and M. G. A. Paris, “Experimental reconstruction of photon statistics without photon counting,” Phys. Rev. Lett. 95, 063602 (2005).
[Crossref] [PubMed]

Grange, T.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Grice, W. P.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146 (2005).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Guo, G.-C.

Hadfield, R. H.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in Lithium Niobate waveguide devices,” Phys. Rev. Lett 108, 053601 (2012).
[Crossref] [PubMed]

Hahn, C.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Halder, M.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and Nicolas Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

Hamel, D. R.

E. Meyer-Scott, D. McCloskey, K. Golos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the Presence of a Photonic Qubit by Splitting It in Two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

Hanson, R.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2012).
[Crossref]

Harder, G.

Hensen, B.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2012).
[Crossref]

Hepp, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible–to–telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Herrmann, H.

F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
[Crossref]

S. Krapick, H. Herrmann, V. Quiring, B. Brecht, H. Suche, and Ch. Silberhorn, “An efficient integrated two-color source for heralded single photons,” New J. Phys. 15, 033010 (2013).
[Crossref]

F. Kaiser, A. Issautier, L. A. Ngah, O. Danila, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys. 14, 085015 (2012).
[Crossref]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12, 103005 (2010).
[Crossref]

Heuer, A.

Hornecker, G.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Hucul, D.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nat. Phys. 11, 37–42 (2015).
[Crossref]

Imamoglu, A.

A. Delteil, Z. Sun, W. B. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2016).
[Crossref]

Inlek, I. V.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nat. Phys. 11, 37–42 (2015).
[Crossref]

Inoue, K.

Issautier, A.

F. Kaiser, A. Issautier, L. A. Ngah, O. Danila, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys. 14, 085015 (2012).
[Crossref]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12, 103005 (2010).
[Crossref]

Jechow, A.

Jenkins, S. D.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[Crossref] [PubMed]

Jennewein, T.

E. Meyer-Scott, D. McCloskey, K. Golos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the Presence of a Photonic Qubit by Splitting It in Two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

Jetter, M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible–to–telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Jiang, P.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in Lithium Niobate waveguide devices,” Phys. Rev. Lett 108, 053601 (2012).
[Crossref] [PubMed]

Jiang, Y.-K.

Y.-K. Jiang and A. Tomita, “Highly efficient polarization-entangled photon source using periodically poled lithium niobate waveguides,” Opt. Commun. 267(15), 278–281 (2006).
[Crossref]

Jorel, C.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and Nicolas Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

Kaiser, F.

F. Kaiser, A. Issautier, L. A. Ngah, O. Danila, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys. 14, 085015 (2012).
[Crossref]

Kennedy, T. A. B.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[Crossref] [PubMed]

Keßler, C. A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible–to–telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Kettler, J.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible–to–telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 4531023–1030 (2014).
[Crossref]

Klyshko, D. N.

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1117 (1980).
[Crossref]

Koolstra, G.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2012).
[Crossref]

Korzh, B.

F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
[Crossref]

Krapick, S.

S. Krapick, H. Herrmann, V. Quiring, B. Brecht, H. Suche, and Ch. Silberhorn, “An efficient integrated two-color source for heralded single photons,” New J. Phys. 15, 033010 (2013).
[Crossref]

Kück, S.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53(8), 081910 (2014).
[Crossref]

Kurz, C.

C. Kurz, P. Eich, M. Schug, P. Müller, and J. Eschner, “Programmable atom-photon quantum interface,” Phys. Rev. A 93, 062348 (2016).
[Crossref]

Kuzmich, A.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[Crossref] [PubMed]

Laiho, K.

Lan, S.-Y.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[Crossref] [PubMed]

Lanco, L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Langford, N. K.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-Level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref] [PubMed]

Lanzillotti-Kimura, N. D.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Lee, K. C.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-Level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref] [PubMed]

Lemaítre, A.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Lenhard, A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible–to–telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Li, Y.

Ling, A.

Lobino, M.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in Lithium Niobate waveguide devices,” Phys. Rev. Lett 108, 053601 (2012).
[Crossref] [PubMed]

Loredo, J. C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Lundeen, J. S.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Marcikic, I.

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

Markham, M.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2012).
[Crossref]

Marquardt, C.

Marsili, F.

F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
[Crossref]

Martin, A.

F. Kaiser, A. Issautier, L. A. Ngah, O. Danila, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys. 14, 085015 (2012).
[Crossref]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12, 103005 (2010).
[Crossref]

Matsukevich, D. N.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[Crossref] [PubMed]

McCloskey, D.

E. Meyer-Scott, D. McCloskey, K. Golos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the Presence of a Photonic Qubit by Splitting It in Two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

Menzel, R.

Meyer-Scott, E.

E. Meyer-Scott, D. McCloskey, K. Golos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the Presence of a Photonic Qubit by Splitting It in Two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

Michelberger, P.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-Level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref] [PubMed]

Michler, P.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible–to–telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Migdall, A.

Migdall, A. L.

Mollow, B. R.

B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. II,” Phys. Rev. 160, 1097 (1967).
[Crossref]

Monroe, C.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nat. Phys. 11, 37–42 (2015).
[Crossref]

Monz, T.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion–photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Mosley, P. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Mountford, J. R.

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54(2–3), 373–396 (2007).
[Crossref]

Mücke, M.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Müller, I.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53(8), 081910 (2014).
[Crossref]

Müller, P.

C. Kurz, P. Eich, M. Schug, P. Müller, and J. Eschner, “Programmable atom-photon quantum interface,” Phys. Rev. A 93, 062348 (2016).
[Crossref]

Nam, S. W.

F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
[Crossref]

Nash, F. R.

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[Crossref]

Natarajan, C. M.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in Lithium Niobate waveguide devices,” Phys. Rev. Lett 108, 053601 (2012).
[Crossref] [PubMed]

Neuzner, A.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Ngah, L. A.

F. Kaiser, A. Issautier, L. A. Ngah, O. Danila, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys. 14, 085015 (2012).
[Crossref]

Nishida, Y.

Nölleke, C.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Northup, T. E.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion–photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Nunn, J.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-Level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref] [PubMed]

O’Brien, J. L.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in Lithium Niobate waveguide devices,” Phys. Rev. Lett 108, 053601 (2012).
[Crossref] [PubMed]

Olivares, S.

A. R. Rossi, S. Olivares, and M. G. A. Paris, “Photon statistics without counting photons,” Phys. Rev. A 70, 055801 (2004).
[Crossref]

Osorio, C. I.

C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys. 46, 055501 (2013).
[Crossref]

Ostrowsky, D. B.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12, 103005 (2010).
[Crossref]

Paris, M. G. A.

G. Zambra, A. Andreoni, M. Bondani, M. Gramegna, M. Genovese, G. Brida, A. Rossi, and M. G. A. Paris, “Experimental reconstruction of photon statistics without photon counting,” Phys. Rev. Lett. 95, 063602 (2005).
[Crossref] [PubMed]

A. R. Rossi, S. Olivares, and M. G. A. Paris, “Photon statistics without counting photons,” Phys. Rev. A 70, 055801 (2004).
[Crossref]

Pearlman, A. J.

Penin, A. N.

Pfaff, W.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2012).
[Crossref]

Polyakov, S. V.

Pomarico, E.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based Opo source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

Porrovecchio, G.

J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express 19(21), 13975 (2013).

Portalupi, S. L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Quiring, V.

S. Krapick, H. Herrmann, V. Quiring, B. Brecht, H. Suche, and Ch. Silberhorn, “An efficient integrated two-color source for heralded single photons,” New J. Phys. 15, 033010 (2013).
[Crossref]

Rarity, J. G.

Raymer, M. G.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146 (2005).

Reim, K. F.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-Level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref] [PubMed]

Reiserer, A.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Rempe, G.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Resch, K. J.

E. Meyer-Scott, D. McCloskey, K. Golos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the Presence of a Photonic Qubit by Splitting It in Two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

Ridley, K. D.

Ritter, S.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Robledo, L.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2012).
[Crossref]

Rossi, A.

G. Zambra, A. Andreoni, M. Bondani, M. Gramegna, M. Genovese, G. Brida, A. Rossi, and M. G. A. Paris, “Experimental reconstruction of photon statistics without photon counting,” Phys. Rev. Lett. 95, 063602 (2005).
[Crossref] [PubMed]

Rossi, A. R.

A. R. Rossi, S. Olivares, and M. G. A. Paris, “Photon statistics without counting photons,” Phys. Rev. A 70, 055801 (2004).
[Crossref]

Sagnes, I.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Salvail, J. Z.

E. Meyer-Scott, D. McCloskey, K. Golos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the Presence of a Photonic Qubit by Splitting It in Two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

Sangouard, N.

C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys. 46, 055501 (2013).
[Crossref]

Sanguinetti, B.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based Opo source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

Sargent, M.

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[Crossref]

Schindler, P.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion–photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Schmidt, P. O.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion–photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Schreiber, G.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based Opo source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

Schug, M.

C. Kurz, P. Eich, M. Schug, P. Müller, and J. Eschner, “Programmable atom-photon quantum interface,” Phys. Rev. A 93, 062348 (2016).
[Crossref]

Schulz, W.-M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible–to–telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Senellart, P.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Sergienko, A. V.

Shi, B.-S.

Shi, S.

Silberhorn, C.

F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
[Crossref]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21(12), 13975 (2013).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146 (2005).

Silberhorn, Ch.

S. Krapick, H. Herrmann, V. Quiring, B. Brecht, H. Suche, and Ch. Silberhorn, “An efficient integrated two-color source for heralded single photons,” New J. Phys. 15, 033010 (2013).
[Crossref]

K. Laiho, K. N. Cassemiro, and Ch. Silberhorn, “Producing high fidelity single photons with optimal brightness via waveguided parametric down-conversion,” Opt. Express 17(25), 22823–22837 (2009).
[Crossref]

Sinclair, A. G.

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53(8), 081910 (2014).
[Crossref]

Smid, M.

J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express 19(21), 13975 (2013).

Smith, B. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Sohler, W.

F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
[Crossref]

F. Kaiser, A. Issautier, L. A. Ngah, O. Danila, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys. 14, 085015 (2012).
[Crossref]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12, 103005 (2010).
[Crossref]

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based Opo source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

Somaschi, N.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Stute, A.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion–photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Suche, H.

S. Krapick, H. Herrmann, V. Quiring, B. Brecht, H. Suche, and Ch. Silberhorn, “An efficient integrated two-color source for heralded single photons,” New J. Phys. 15, 033010 (2013).
[Crossref]

Sun, Z.

A. Delteil, Z. Sun, W. B. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2016).
[Crossref]

Tadanaga, O.

Takesue, H.

Taminiau, T. H.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2012).
[Crossref]

Tanner, M. G.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in Lithium Niobate waveguide devices,” Phys. Rev. Lett 108, 053601 (2012).
[Crossref] [PubMed]

Tanzilli, S.

F. Kaiser, A. Issautier, L. A. Ngah, O. Danila, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys. 14, 085015 (2012).
[Crossref]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12, 103005 (2010).
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Tapster, P. R.

Theocharous, E.

J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express 19(21), 13975 (2013).

Thew, R.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based Opo source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

Thew, R. T.

C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys. 46, 055501 (2013).
[Crossref]

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and Nicolas Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

Thomas, A.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based Opo source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

Thomas, P. J.

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54(2–3), 373–396 (2007).
[Crossref]

Thompson, M. G.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in Lithium Niobate waveguide devices,” Phys. Rev. Lett 108, 053601 (2012).
[Crossref] [PubMed]

Tiranov, A.

F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
[Crossref]

Tittel, W.

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

Togan, E.

A. Delteil, Z. Sun, W. B. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2016).
[Crossref]

Tomita, A.

Y.-K. Jiang and A. Tomita, “Highly efficient polarization-entangled photon source using periodically poled lithium niobate waveguides,” Opt. Commun. 267(15), 278–281 (2006).
[Crossref]

Twitchen, D. J.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2012).
[Crossref]

U’Ren, A. B.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146 (2005).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Uphoff, M.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Verma, V. B.

F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
[Crossref]

Vittorini, G.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nat. Phys. 11, 37–42 (2015).
[Crossref]

Walmsley, I. A.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-Level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146 (2005).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Wang, J.

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54(2–3), 373–396 (2007).
[Crossref]

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

White, A. G.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

Woolliams, E. R.

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54(2–3), 373–396 (2007).
[Crossref]

Zambra, G.

G. Zambra, A. Andreoni, M. Bondani, M. Gramegna, M. Genovese, G. Brida, A. Rossi, and M. G. A. Paris, “Experimental reconstruction of photon statistics without photon counting,” Phys. Rev. Lett. 95, 063602 (2005).
[Crossref] [PubMed]

Zaske, S.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible–to–telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

Zbinden, H.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based Opo source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and Nicolas Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

Zhang, W.

Zhou, Z.-Y.

Zwiller, V.

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in Lithium Niobate waveguide devices,” Phys. Rev. Lett 108, 053601 (2012).
[Crossref] [PubMed]

Appl. Opt. (2)

J. Appl. Phys. (1)

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[Crossref]

J. Mod. Opt. (1)

J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang, and P. J. Thomas, “The quantum candela: a re-definition of the standard units for optical radiation,” J. Mod. Opt. 54(2–3), 373–396 (2007).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys. 46, 055501 (2013).
[Crossref]

Laser Phys. (1)

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146 (2005).

Nat. Phot. (2)

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Phot. 12, 340–345 (2016).
[Crossref]

F. Bussieres, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Phot. 8, 775–778 (2014).
[Crossref]

Nat. Phys. (2)

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nat. Phys. 11, 37–42 (2015).
[Crossref]

A. Delteil, Z. Sun, W. B. Gao, E. Togan, S. Faelt, and A. Imamoglu, “Generation of heralded entanglement between distant hole spins,” Nat. Phys. 12, 218–223 (2016).
[Crossref]

Nature (5)

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[Crossref] [PubMed]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 4531023–1030 (2014).
[Crossref]

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion–photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2012).
[Crossref]

New J. Phys. (6)

S. Krapick, H. Herrmann, V. Quiring, B. Brecht, H. Suche, and Ch. Silberhorn, “An efficient integrated two-color source for heralded single photons,” New J. Phys. 15, 033010 (2013).
[Crossref]

F. Kaiser, A. Issautier, L. A. Ngah, O. Danila, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys. 14, 085015 (2012).
[Crossref]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12, 103005 (2010).
[Crossref]

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and Nicolas Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based Opo source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[Crossref]

Opt. Commun. (1)

Y.-K. Jiang and A. Tomita, “Highly efficient polarization-entangled photon source using periodically poled lithium niobate waveguides,” Opt. Commun. 267(15), 278–281 (2006).
[Crossref]

Opt. Eng. (1)

C. J. Chunnilall, I. P. Degiovanni, S. Kück, I. Müller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53(8), 081910 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Optica (1)

Phys. Rev. (1)

B. R. Mollow and R. J. Glauber, “Quantum theory of parametric amplification. II,” Phys. Rev. 160, 1097 (1967).
[Crossref]

Phys. Rev. A (4)

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

A. R. Rossi, S. Olivares, and M. G. A. Paris, “Photon statistics without counting photons,” Phys. Rev. A 70, 055801 (2004).
[Crossref]

C. Kurz, P. Eich, M. Schug, P. Müller, and J. Eschner, “Programmable atom-photon quantum interface,” Phys. Rev. A 93, 062348 (2016).
[Crossref]

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

Phys. Rev. Lett (1)

D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, and J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in Lithium Niobate waveguide devices,” Phys. Rev. Lett 108, 053601 (2012).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-Level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref] [PubMed]

G. Zambra, A. Andreoni, M. Bondani, M. Gramegna, M. Genovese, G. Brida, A. Rossi, and M. G. A. Paris, “Experimental reconstruction of photon statistics without photon counting,” Phys. Rev. Lett. 95, 063602 (2005).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible–to–telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref]

E. Meyer-Scott, D. McCloskey, K. Golos, J. Z. Salvail, K. A. G. Fisher, D. R. Hamel, A. Cabello, K. J. Resch, and T. Jennewein, “Certifying the Presence of a Photonic Qubit by Splitting It in Two,” Phys. Rev. Lett. 116, 070501 (2016).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Sov. J. Quantum Electron. (1)

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1117 (1980).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The experimental setup for the measurement of (a) the temporal correlation, (b) the first order coherence function, (c) the purity. A detailed explanation can be found in the text. Abbreviations: HWP: half–wave plate, PBS: polarizing beam splitter, DM: dichroic mirror, WDM: wavelength demultiplexer, FBG: Fiber–Bragg–Grating, SSPD: Superconducting nanowire single–photon detector.
Fig. 2
Fig. 2 (a) The signal (red dots) and accidental (black dots) pair rate as function of the pump power. The solid lines are linear fits to the data. The slope of the accidental rate is twice as the signal rate’s slope caused by a quadratic dependency on the pump power. Inset: The temporal correlation peak at a pump power of 300 nW. The red lines determine the interval, which has been taken into account for the coincidence rate. (b) The Signal–to–Background ratio (SBR) for different pump powers. The negative slope indicates the hyperbolic dependency on the pump power.
Fig. 3
Fig. 3 (a) The first order coherence functions of the unfiltered signal (black dots) and idler (red dots) photons. The solid lines are the theoretical curves calculated by the Fourier transform of the spectra (see Inset). (b) The first order coherence function of the filtered signal photons.
Fig. 4
Fig. 4 The photon statistics measured with the Click–/No–Click method at a pump power of 7 µW. The black bars depict the case where the statistics of the idler photons without respect of the signal photons was measured while the red bars were measured with heralding of the signal photons. The inset shows the same data in a logarithmic scale.
Fig. 5
Fig. 5 (a) Heralded g(2)(0) as function of the pump power. The data points were extracted from the g(2)(0)–functions (see Inset: g(2)–function at 20 nW pump power, g(2)(0) = 0.001). The blue and red line are the theoretical curves with and without consideration of the detector noise, respectively. (b) The SBR as function of the pump power.
Fig. 6
Fig. 6 Purity measurement (a) Hong–Ou–Mandel interference dip at 130 µW pump power. The raw visibility is 45%. (b) The corrected visibility in dependance on the average pump power.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g ( 2 ) ( 0 ) = 2 P ( 2 ) P ( 1 ) 2 = 0.1 ± 0.012
g ( 2 ) ( 0 ) = 1 ( S B R 1 + S B R ) 2
S B R = a I p b I p 2 + c I p + d

Metrics