Abstract

We suggest a new scheme to create chirped microbend long period gratings. Employing this scheme, the bandwidth of mode conversion between LP01 to LP11 is increased 4.8-fold with a conversion efficiency of 20 dB. This scheme includes a first time demonstration of a non-linearly chirped long period grating. The scheme is investigated both numerically using coupled mode equations as well as experimentally.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband mode converters based on length-apodized long-period waveguide gratings

Wen Wang, Jieyun Wu, Kaixin Chen, Wei Jin, and Kin Seng Chiang
Opt. Express 25(13) 14341-14350 (2017)

Bandwidth control of long-period grating-based mode converters in few-mode fibers

Siddharth Ramachandran, Zhiyong Wang, and Man Yan
Opt. Lett. 27(9) 698-700 (2002)

References

  • View by:
  • |
  • |
  • |

  1. C. D. Poole, J. M. Wiesenfeld, D. J. Digiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
    [Crossref]
  2. S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett. 27, 698–700 (2002).
    [Crossref]
  3. S. H. M. Larsen, M. E. V. Pedersen, L. Grüner-Nielsen, M. Yan, E. Monberg, P. Wisk, and K. Rottwitt, “Polarization-maintaining higher-order mode fiber module with anomalous dispersion at 1 μm,” Opt. Lett. 37, 4170–4172 (2012).
    [Crossref] [PubMed]
  4. L. Zhu, A. Verhoef, K. Jespersen, V. Kalashnikov, L. Grüner-Nielsen, D. Lorenc, A. Baltuška, and A. Fernández, “Generation of high fidelity 62-fs, 7-nj pulses at 1035 nm from a net normal-dispersion yb-fiber laser with anomalous dispersion higher-order-mode fiber,” Opt. Express 21, 16255–16262 (2013).
    [Crossref] [PubMed]
  5. A. Verhoef, L. Zhu, S. M. Israelsen, L. Grüner-Nielsen, A. Unterhuber, W. Kautek, K. Rottwitt, A. Baltuška, and A. Fernández, “Sub-100 fs pulses from an all-polarization maintaining yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber,” Opt. Express 23, 26139–26145 (2015).
    [Crossref] [PubMed]
  6. S. Ramachandran, “Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices,” J. Lightwave Technol. 23, 3426–3443 (2005).
    [Crossref]
  7. V. Grubsky and J. Feinberg, “Long-period fiber gratings with variable coupling for real-time sensing applications,” Opt. Lett. 25, 203–205 (2000).
    [Crossref]
  8. C. Poole, H. Presby, and J. Meester, “Two-mode fibre spatial-mode converter using periodic core deformation,” Electron. Lett. 30, 1437–1438 (1994).
    [Crossref]
  9. P. Steinvurzel, K. Tantiwanichapan, M. Goto, and S. Ramachandran, “Fiber-based bessel beams with controllable diffraction-resistant distance,” Opt. Lett. 36, 4671–4673 (2011).
    [Crossref] [PubMed]
  10. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24, 646–648 (1999).
    [Crossref]
  11. D. B. Stegall and T. Erdogan, “Dispersion control with use of long-period fiber gratings,” J. Opt. Soc. Am. A 17, 304–312 (2000).
    [Crossref]
  12. T. He, L. Rishoj, J. Demas, and S. Ramachandran, “Dispersion compensation using chirped long period gratings,” CLEO: Science and Innovations pp. STu3P–7 (2016).
    [Crossref]
  13. D. Östling and H. E. Engan, “Broadband spatial mode conversion by chirped fiber bending,” Opt. Lett. 21, 192–194 (1996).
    [Crossref] [PubMed]
  14. S. Ramachandran, J. Wagener, R. Espindola, and T. A. Strasser, “Effects of chirp in long period gratings,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides p. BE1 (1999).
    [Crossref]
  15. L. Grüner-Nielsen and J. W. Nicholson, “Stable mode converter for conversion between LP01 and LP11 using a thermally induced long period grating,” Proceedings of IEEE Summer Topical Meeting pp. 214–215 (2012).
  16. R. C. Youngquist, J. L. Brooks, and H. J. Shaw, “Two-mode fiber modal coupler,” Opt. Lett. 9, 177–179 (1984).
    [Crossref] [PubMed]
  17. R. Kashyap, Fiber Bragg Gratings (Academic press, 1999).
  18. X. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203, 277–281 (2002).
    [Crossref]
  19. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
    [Crossref]

2015 (1)

2013 (1)

2012 (1)

2011 (1)

2005 (1)

2002 (2)

S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett. 27, 698–700 (2002).
[Crossref]

X. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203, 277–281 (2002).
[Crossref]

2000 (2)

1999 (1)

1996 (2)

D. Östling and H. E. Engan, “Broadband spatial mode conversion by chirped fiber bending,” Opt. Lett. 21, 192–194 (1996).
[Crossref] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

1994 (2)

C. D. Poole, J. M. Wiesenfeld, D. J. Digiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[Crossref]

C. Poole, H. Presby, and J. Meester, “Two-mode fibre spatial-mode converter using periodic core deformation,” Electron. Lett. 30, 1437–1438 (1994).
[Crossref]

1984 (1)

Baltuška, A.

Bennion, I.

X. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203, 277–281 (2002).
[Crossref]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Brooks, J. L.

Demas, J.

T. He, L. Rishoj, J. Demas, and S. Ramachandran, “Dispersion compensation using chirped long period gratings,” CLEO: Science and Innovations pp. STu3P–7 (2016).
[Crossref]

Digiovanni, D. J.

C. D. Poole, J. M. Wiesenfeld, D. J. Digiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[Crossref]

Engan, H. E.

Erdogan, T.

D. B. Stegall and T. Erdogan, “Dispersion control with use of long-period fiber gratings,” J. Opt. Soc. Am. A 17, 304–312 (2000).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Espindola, R.

S. Ramachandran, J. Wagener, R. Espindola, and T. A. Strasser, “Effects of chirp in long period gratings,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides p. BE1 (1999).
[Crossref]

Feinberg, J.

Fernández, A.

Goto, M.

Grubsky, V.

Grüner-Nielsen, L.

He, T.

T. He, L. Rishoj, J. Demas, and S. Ramachandran, “Dispersion compensation using chirped long period gratings,” CLEO: Science and Innovations pp. STu3P–7 (2016).
[Crossref]

Hirao, K.

Israelsen, S. M.

Jespersen, K.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Kalashnikov, V.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic press, 1999).

Kautek, W.

Kazansky, P. G.

Kondo, Y.

Larsen, S. H. M.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Lorenc, D.

Meester, J.

C. Poole, H. Presby, and J. Meester, “Two-mode fibre spatial-mode converter using periodic core deformation,” Electron. Lett. 30, 1437–1438 (1994).
[Crossref]

Mitsuyu, T.

Monberg, E.

Nicholson, J. W.

L. Grüner-Nielsen and J. W. Nicholson, “Stable mode converter for conversion between LP01 and LP11 using a thermally induced long period grating,” Proceedings of IEEE Summer Topical Meeting pp. 214–215 (2012).

Nouchi, K.

Östling, D.

Pedersen, M. E. V.

Poole, C.

C. Poole, H. Presby, and J. Meester, “Two-mode fibre spatial-mode converter using periodic core deformation,” Electron. Lett. 30, 1437–1438 (1994).
[Crossref]

Poole, C. D.

C. D. Poole, J. M. Wiesenfeld, D. J. Digiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[Crossref]

Presby, H.

C. Poole, H. Presby, and J. Meester, “Two-mode fibre spatial-mode converter using periodic core deformation,” Electron. Lett. 30, 1437–1438 (1994).
[Crossref]

Ramachandran, S.

Rishoj, L.

T. He, L. Rishoj, J. Demas, and S. Ramachandran, “Dispersion compensation using chirped long period gratings,” CLEO: Science and Innovations pp. STu3P–7 (2016).
[Crossref]

Rottwitt, K.

Shaw, H. J.

Shu, X.

X. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203, 277–281 (2002).
[Crossref]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Stegall, D. B.

Steinvurzel, P.

Strasser, T. A.

S. Ramachandran, J. Wagener, R. Espindola, and T. A. Strasser, “Effects of chirp in long period gratings,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides p. BE1 (1999).
[Crossref]

Tantiwanichapan, K.

Unterhuber, A.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

C. D. Poole, J. M. Wiesenfeld, D. J. Digiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[Crossref]

Verhoef, A.

Wagener, J.

S. Ramachandran, J. Wagener, R. Espindola, and T. A. Strasser, “Effects of chirp in long period gratings,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides p. BE1 (1999).
[Crossref]

Wang, Z.

Watanabe, M.

Wiesenfeld, J. M.

C. D. Poole, J. M. Wiesenfeld, D. J. Digiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[Crossref]

Wisk, P.

Yan, M.

Youngquist, R. C.

Zhang, L.

X. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203, 277–281 (2002).
[Crossref]

Zhu, L.

Electron. Lett. (1)

C. Poole, H. Presby, and J. Meester, “Two-mode fibre spatial-mode converter using periodic core deformation,” Electron. Lett. 30, 1437–1438 (1994).
[Crossref]

J. Lightwave Technol. (3)

S. Ramachandran, “Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices,” J. Lightwave Technol. 23, 3426–3443 (2005).
[Crossref]

C. D. Poole, J. M. Wiesenfeld, D. J. Digiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

X. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203, 277–281 (2002).
[Crossref]

Opt. Express (2)

Opt. Lett. (7)

Other (4)

S. Ramachandran, J. Wagener, R. Espindola, and T. A. Strasser, “Effects of chirp in long period gratings,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides p. BE1 (1999).
[Crossref]

L. Grüner-Nielsen and J. W. Nicholson, “Stable mode converter for conversion between LP01 and LP11 using a thermally induced long period grating,” Proceedings of IEEE Summer Topical Meeting pp. 214–215 (2012).

T. He, L. Rishoj, J. Demas, and S. Ramachandran, “Dispersion compensation using chirped long period gratings,” CLEO: Science and Innovations pp. STu3P–7 (2016).
[Crossref]

R. Kashyap, Fiber Bragg Gratings (Academic press, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Principle of the chirped microbend LPG. The fiber under test (FUT) is perturbed by a microbend LPG. The chirp in the LPG is made by a curved groove in the rubberpad used to press the fiber onto microbend LPG.
Fig. 2
Fig. 2 Phase matching curves for the conversion of LP01 to LP11 in a TrueWave® fiber operated in a fewmoded regime. (a) Full measurement of phase matching curves for higher order conversions corresponding to Λ = 2LB, Λ = 3LB, Λ = 4LB, and Λ = 5LB. The red lines in the plot correspond to 4th order polynomial fit in (b) scaled to the order of conversion. (b) Selected data for the pitch corresponding to Λ = 2LB. The data is fitted to 4th order polynomial.
Fig. 3
Fig. 3 Numerically generated transmission data for the conversion of LP01 to LP11 in a TrueWave fiber operated in a fewmoded regime. The applied mode converter is an unchirped LPG with a pitch of 525 μm which corresponds to conversion at 800 nm.
Fig. 4
Fig. 4 Numerically generated transmission data for the conversion of LP01 to LP11 in a TrueWave fiber operated in a fewmoded regime. The applied mode converter is a nonlinearly chirped LPG where the chirp is optimized for conversion around 800 nm.
Fig. 5
Fig. 5 Numerically determined transmission plot of the chirped and the unchiped LPG. For the chirped LPG, a coupling coefficient of 0.08115 mm−1 is applied and for the unchirped LPG, a coupling coefficient of 0.0258 mm−1.
Fig. 6
Fig. 6 Experimental transmission data for the conversion of LP01 to LP11 in a TrueWave fiber operated in a fewmoded regime. The coupling coefficient is given by the translation of the rubber pad given by the translation of the stage controlling the position of the rubber band. The applied mode converter is an unchirped LPG with a pitch of 525 μm which corresponds to conversion at 800 nm.
Fig. 7
Fig. 7 Experimental transmission data for the conversion from LP01 to LP11 in a TrueWave fiber operated in a fewmoded regime. The coupling coefficient is given by the translation of the rubber pad given in the translation of the stage controlling the position of the rubber band. The applied mode converter is a nonlinearly chirped LPG where the chirp is optimized for conversion around 800 nm.
Fig. 8
Fig. 8 Measured transmission plot of the chirped and the unchiped LPG in the TW fiber. For the chirped LPG, a translation of −0.41 mm is used and for the unchirped LPG, a translation of −1 mm is used.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d a 01 d z = i κ a 11 exp ( i 0 z Δ β ( λ , x ) dx ) d a 11 d z = i κ * a 01 exp ( i 0 z Δ β ( λ , x ) dx ) ,
Δ β ( λ , z ) = 2 π [ 1 / L B ( λ ) 1 / Λ ( z ) ] ,
0 z Δ β ( λ , x ) dx = 0 z 2 π ( 1 L B ( λ ) 1 Λ ( x ) ) dx = 0 z 2 π ( 1 L B ( λ ) 1 a x 2 + b x + c ) dx
L = 0 z | r ( u ) | d u = Λ ( z )

Metrics