Abstract

Nonmechanical beam steering is a rapidly growing branch of adaptive optics with applications such as light detection and ranging, imaging, optical communications, and atomic physics. Here, we present an innovative technique for one- and two-dimensional beam steering using multiple tunable liquid lenses. We use an approach in which one lens controls the spot divergence, and one to two decentered lenses act as prisms and steer the beam. Continuous 1D beam steering was demonstrated, achieving steering angles of ±39° using two tunable liquid lenses. The beam scanning angle was further enhanced to ±75° using a fisheye lens. By adding a third tunable liquid lens, we achieved 2D beam steering of ±75°. In this approach, the divergence of the scanning beam is controlled at all steering angles.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

30 November 2016: Corrections were made to the body text and funding section.


OSA Recommended Articles
Lidar system with nonmechanical electrowetting-based wide-angle beam steering

Mo Zohrabi, Wei Yang Lim, Robert H. Cormack, Omkar D. Supekar, Victor M. Bright, and Juliet T. Gopinath
Opt. Express 27(4) 4404-4415 (2019)

Ultrafast speed, large angle, and high resolution optical beam steering using widely tunable lasers

Gonghai Liu, Qiaoyin Lu, and Weihua Guo
OSA Continuum 2(5) 1746-1753 (2019)

Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings

Jihwan Kim, Chulwoo Oh, Steve Serati, and Michael J. Escuti
Appl. Opt. 50(17) 2636-2639 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Hakki H. Refai, James J. Sluss, and Monte P. Tull, “Digital micromirror device for optical scanning applications,” Opt. Eng. 46, 085401 (2007).
    [Crossref]
  2. C. G. Bachman, Laser Radar Systems and Techniques (Artech House, 1979).
  3. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
    [Crossref]
  4. P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proceedings of the IEEE 86, 1687–1704 (1998).
    [Crossref]
  5. E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
    [Crossref] [PubMed]
  6. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [Crossref]
  7. P. M. Delaney, M. R. Harris, and R. G. King, “Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging,” Appl. Opt. 33, 573–577 (1994).
    [Crossref] [PubMed]
  8. T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10, 024010 (2005).
    [Crossref] [PubMed]
  9. J. D. Lechleiter, D.-T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83, 2292–2299 (2002).
    [Crossref] [PubMed]
  10. A. Wehr and U. Lohr, “Airborne laser scanning – an introduction and overview,” ISPRS J. Photogramm. Remote Sens. 54, 68–82 (1999).
    [Crossref]
  11. A. Petrovskaya and S. Thrun, “Model based vehicle detection and tracking for autonomous urban driving,” Autonomous Robots 26, 123–139 (2009).
    [Crossref]
  12. B. D. Duncan, J. B. Philip, and S. Vassili, “Wide-angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42, 1038–1047 (2003).
    [Crossref]
  13. B. S. Kim, S. Gibson, and Tsu-Chin Tsao, “Adaptive control of a tilt mirror for laser beam steering,” American Control Conference, Proceedings of the 2004.  4, 3417–3421 (2004).
  14. K. Koh, T. Kobayashi, and C. Lee, “A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film S-shaped actuator,” Opt. Express 19, 13812–13824 (2011).
    [Crossref] [PubMed]
  15. M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning” US Patent 20120236379 A1 (2012).
  16. U. Hofmann, J. Janes, and H. -J. Quenzer, “High-Q MEMS Resonators for Laser Beam Scanning Displays,” Micromachines 3, 509 (2012).
    [Crossref]
  17. P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Communications Magazine 40, 88–95 (2002).
    [Crossref]
  18. M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE Optical Design and Engineering IV,  816781670 (2012).
    [Crossref]
  19. S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, Non-Mechanical Beam-Steerer with 80 Degree Field of Regard,” Proc. SPIE 6971, 69710G (2008).
    [Crossref]
  20. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21, 689–691 (1996).
    [Crossref] [PubMed]
  21. Jihwan Kim, Chulwoo Oh, Michael J. Escuti, Lance Hosting, and Steve Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, Advanced Wavefront Control: Methods, Devices, and Applications VI, 709302 (2008).
    [Crossref]
  22. J. Lindle, A. Watnik, and V. Cassella, “Efficient multibeam large-angle nonmechanical laser beam steering from computer-generated holograms rendered on a liquid crystal spatial light modulator,” Appl. Opt. 55, 4336–4341 (2016).
    [Crossref] [PubMed]
  23. N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, and T. Hara, “Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator,” Appl. Opt. 33, 2804–2811 (1994).
    [Crossref] [PubMed]
  24. E. Ronzitti, M. Guillon, V. de Sars, and V. Emiliani, “LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression,” Opt. Express 20, 17843–17855 (2012).
    [Crossref] [PubMed]
  25. G. Lippmann, “Relations entre les phénomènes électriques et capillaires,” Ann. Chim. Phys. 5, 494 (1875).
  26. S. Shian, R. M. Diebold, and D. R. Clarke, “Tunable lenses using transparent dielectric elastomer actuators,” Opt. Express 21, 8669–8676 (2013).
    [Crossref] [PubMed]
  27. M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
    [Crossref]
  28. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14, 6557–6563 (2006).
    [Crossref] [PubMed]
  29. S. Terrab, A. M. Watson, C. Roath, J. T. Gopinath, and V. M. Bright, “Adaptive electrowetting lens-prism element,” Opt. Express 23, 25838–25845 (2015).
    [Crossref] [PubMed]
  30. D. Kopp, L. Lehmann, and H. Zappe, “Optofluidic laser scanner based on a rotating liquid prism,” Appl. Opt. 55, 2136–2142 (2016).
    [Crossref] [PubMed]
  31. C. Liu, L. Li, and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51, 114002 (2012).
    [Crossref]
  32. J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99, 191108 (2011).
    [Crossref]
  33. C. E. Clement and S.-Y. Park, “High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method,” Applied Physics Letters 108, 191601 (2016).
    [Crossref]
  34. B. Berge, “Electrocapillarite et mouillage de films isolants par l’eau,” C. R. Acad. Sci.II 317, 157 (1993).
  35. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” The European Physical Journal E 3, 159–163 (2000).
    [Crossref]
  36. H. Ren and S.-T. Wu, Introduction to Adaptive Lenses, (John Wiley and Sons, Inc.2012).
    [Crossref]
  37. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19, 15525–15531 (2011).
    [Crossref] [PubMed]
  38. R. D. Montoya, K. Underwood, S. Terrab, A. M. Watson, V. M. Bright, and J. T. Gopinath, “Large extinction ratio optical electrowetting shutter,” Opt. Express 24, 9660–9666 (2016).
    [Crossref] [PubMed]
  39. P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” Journal of Microelectromechanical Systems 21, 1156 (2012).
    [Crossref]
  40. C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Optics Express 2018180–18187 (2012).
    [Crossref] [PubMed]
  41. S. Lee and C. Yang, “Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens,” Opt. Express 16, 19995–20007 (2008).
    [Crossref] [PubMed]
  42. K. Mishra, D. van den Ende, and F. Mugele, “Recent Developments in Optofluidic Lens Technology,” Micromachines 7, 102 (2016).
    [Crossref]
  43. J. T. Gopinath, V. M. Bright, C. C. Cogswell, R. D. Niederriter, A. Watson, R. Zahreddine, and R. H. Cormack, “Simulation of electrowetting lens and prism arrays for wavefront compensation,” Appl. Opt. 51, 6618–6623 (2012).
    [Crossref] [PubMed]
  44. Edward A. Watson, “Analysis of beam steering with decentered microlens arrays,” Opt. Eng. 32(11), 2665–2670 (1993).
    [Crossref]
  45. C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer-Verlag, 2005).
    [Crossref]

2016 (5)

2015 (1)

2013 (1)

2012 (7)

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” Journal of Microelectromechanical Systems 21, 1156 (2012).
[Crossref]

C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Optics Express 2018180–18187 (2012).
[Crossref] [PubMed]

E. Ronzitti, M. Guillon, V. de Sars, and V. Emiliani, “LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression,” Opt. Express 20, 17843–17855 (2012).
[Crossref] [PubMed]

J. T. Gopinath, V. M. Bright, C. C. Cogswell, R. D. Niederriter, A. Watson, R. Zahreddine, and R. H. Cormack, “Simulation of electrowetting lens and prism arrays for wavefront compensation,” Appl. Opt. 51, 6618–6623 (2012).
[Crossref] [PubMed]

U. Hofmann, J. Janes, and H. -J. Quenzer, “High-Q MEMS Resonators for Laser Beam Scanning Displays,” Micromachines 3, 509 (2012).
[Crossref]

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE Optical Design and Engineering IV,  816781670 (2012).
[Crossref]

C. Liu, L. Li, and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51, 114002 (2012).
[Crossref]

2011 (4)

J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99, 191108 (2011).
[Crossref]

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

K. Koh, T. Kobayashi, and C. Lee, “A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film S-shaped actuator,” Opt. Express 19, 13812–13824 (2011).
[Crossref] [PubMed]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19, 15525–15531 (2011).
[Crossref] [PubMed]

2009 (1)

A. Petrovskaya and S. Thrun, “Model based vehicle detection and tracking for autonomous urban driving,” Autonomous Robots 26, 123–139 (2009).
[Crossref]

2008 (4)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[Crossref]

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, Non-Mechanical Beam-Steerer with 80 Degree Field of Regard,” Proc. SPIE 6971, 69710G (2008).
[Crossref]

Jihwan Kim, Chulwoo Oh, Michael J. Escuti, Lance Hosting, and Steve Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, Advanced Wavefront Control: Methods, Devices, and Applications VI, 709302 (2008).
[Crossref]

S. Lee and C. Yang, “Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens,” Opt. Express 16, 19995–20007 (2008).
[Crossref] [PubMed]

2007 (1)

Hakki H. Refai, James J. Sluss, and Monte P. Tull, “Digital micromirror device for optical scanning applications,” Opt. Eng. 46, 085401 (2007).
[Crossref]

2006 (1)

2005 (1)

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10, 024010 (2005).
[Crossref] [PubMed]

2004 (2)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

B. S. Kim, S. Gibson, and Tsu-Chin Tsao, “Adaptive control of a tilt mirror for laser beam steering,” American Control Conference, Proceedings of the 2004.  4, 3417–3421 (2004).

2003 (1)

B. D. Duncan, J. B. Philip, and S. Vassili, “Wide-angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42, 1038–1047 (2003).
[Crossref]

2002 (2)

J. D. Lechleiter, D.-T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83, 2292–2299 (2002).
[Crossref] [PubMed]

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Communications Magazine 40, 88–95 (2002).
[Crossref]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” The European Physical Journal E 3, 159–163 (2000).
[Crossref]

1999 (1)

A. Wehr and U. Lohr, “Airborne laser scanning – an introduction and overview,” ISPRS J. Photogramm. Remote Sens. 54, 68–82 (1999).
[Crossref]

1998 (1)

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proceedings of the IEEE 86, 1687–1704 (1998).
[Crossref]

1996 (1)

1994 (2)

1993 (2)

B. Berge, “Electrocapillarite et mouillage de films isolants par l’eau,” C. R. Acad. Sci.II 317, 157 (1993).

Edward A. Watson, “Analysis of beam steering with decentered microlens arrays,” Opt. Eng. 32(11), 2665–2670 (1993).
[Crossref]

1992 (1)

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[Crossref] [PubMed]

1875 (1)

G. Lippmann, “Relations entre les phénomènes électriques et capillaires,” Ann. Chim. Phys. 5, 494 (1875).

Abeysinghe, D. C.

Anderson, M. H.

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, Non-Mechanical Beam-Steerer with 80 Degree Field of Regard,” Proc. SPIE 6971, 69710G (2008).
[Crossref]

Aschwanden, M.

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE Optical Design and Engineering IV,  816781670 (2012).
[Crossref]

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

Bachman, C. G.

C. G. Bachman, Laser Radar Systems and Techniques (Artech House, 1979).

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” The European Physical Journal E 3, 159–163 (2000).
[Crossref]

B. Berge, “Electrocapillarite et mouillage de films isolants par l’eau,” C. R. Acad. Sci.II 317, 157 (1993).

Betzig, E.

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[Crossref] [PubMed]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Blum, M.

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE Optical Design and Engineering IV,  816781670 (2012).
[Crossref]

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

Bright, V. M.

Büeler, M.

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE Optical Design and Engineering IV,  816781670 (2012).
[Crossref]

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

Caflisch, C. G.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning” US Patent 20120236379 A1 (2012).

Cassella, V.

Chen, C.-L.

J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99, 191108 (2011).
[Crossref]

Cheng, J.

J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99, 191108 (2011).
[Crossref]

Clarke, D. R.

Clement, C. E.

C. E. Clement and S.-Y. Park, “High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method,” Applied Physics Letters 108, 191601 (2016).
[Crossref]

Cogswell, C. C.

Cormack, R. H.

da Silva, M. G.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning” US Patent 20120236379 A1 (2012).

Davis, S. R.

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, Non-Mechanical Beam-Steerer with 80 Degree Field of Regard,” Proc. SPIE 6971, 69710G (2008).
[Crossref]

De Dobbelaere, P.

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Communications Magazine 40, 88–95 (2002).
[Crossref]

de Sars, V.

Delaney, P. M.

DeRoo, D. W.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning” US Patent 20120236379 A1 (2012).

Diebold, R. M.

Dorschner, T. A.

Douglass, M. R.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proceedings of the IEEE 86, 1687–1704 (1998).
[Crossref]

Duncan, B. D.

B. D. Duncan, J. B. Philip, and S. Vassili, “Wide-angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42, 1038–1047 (2003).
[Crossref]

Emiliani, V.

Escuti, Michael J.

Jihwan Kim, Chulwoo Oh, Michael J. Escuti, Lance Hosting, and Steve Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, Advanced Wavefront Control: Methods, Devices, and Applications VI, 709302 (2008).
[Crossref]

Falta, K.

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Communications Magazine 40, 88–95 (2002).
[Crossref]

Farca, G.

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, Non-Mechanical Beam-Steerer with 80 Degree Field of Regard,” Proc. SPIE 6971, 69710G (2008).
[Crossref]

Feuerstein, R.

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” Journal of Microelectromechanical Systems 21, 1156 (2012).
[Crossref]

Friedman, L. J.

Fukuyama, H.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10, 024010 (2005).
[Crossref] [PubMed]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[Crossref]

Gibson, S.

B. S. Kim, S. Gibson, and Tsu-Chin Tsao, “Adaptive control of a tilt mirror for laser beam steering,” American Control Conference, Proceedings of the 2004.  4, 3417–3421 (2004).

Gloeckner, S.

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Communications Magazine 40, 88–95 (2002).
[Crossref]

Gopinath, J. T.

Grätzel, C.

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE Optical Design and Engineering IV,  816781670 (2012).
[Crossref]

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

Guillon, M.

Hara, T.

Harris, M. R.

Haus, J. W.

Heikenfeld, J.

Hobbs, D. S.

Hofmann, U.

U. Hofmann, J. Janes, and H. -J. Quenzer, “High-Q MEMS Resonators for Laser Beam Scanning Displays,” Micromachines 3, 509 (2012).
[Crossref]

Hornbeck, L. J.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proceedings of the IEEE 86, 1687–1704 (1998).
[Crossref]

Hosting, Lance

Jihwan Kim, Chulwoo Oh, Michael J. Escuti, Lance Hosting, and Steve Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, Advanced Wavefront Control: Methods, Devices, and Applications VI, 709302 (2008).
[Crossref]

Ishihara, Y.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10, 024010 (2005).
[Crossref] [PubMed]

Janes, J.

U. Hofmann, J. Janes, and H. -J. Quenzer, “High-Q MEMS Resonators for Laser Beam Scanning Displays,” Micromachines 3, 509 (2012).
[Crossref]

Kim, B. S.

B. S. Kim, S. Gibson, and Tsu-Chin Tsao, “Adaptive control of a tilt mirror for laser beam steering,” American Control Conference, Proceedings of the 2004.  4, 3417–3421 (2004).

Kim, Jihwan

Jihwan Kim, Chulwoo Oh, Michael J. Escuti, Lance Hosting, and Steve Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, Advanced Wavefront Control: Methods, Devices, and Applications VI, 709302 (2008).
[Crossref]

King, R. G.

Kobayashi, T.

Kobayashi, Y.

Koh, K.

Kopp, D.

Lechleiter, J. D.

J. D. Lechleiter, D.-T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83, 2292–2299 (2002).
[Crossref] [PubMed]

Lee, C.

Lee, S.

Lehmann, L.

Li, L.

C. Liu, L. Li, and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51, 114002 (2012).
[Crossref]

Lin, D.-T.

J. D. Lechleiter, D.-T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83, 2292–2299 (2002).
[Crossref] [PubMed]

Lindle, J.

Lippmann, G.

G. Lippmann, “Relations entre les phénomènes électriques et capillaires,” Ann. Chim. Phys. 5, 494 (1875).

Liu, C.

C. Liu, L. Li, and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51, 114002 (2012).
[Crossref]

Lohr, U.

A. Wehr and U. Lohr, “Airborne laser scanning – an introduction and overview,” ISPRS J. Photogramm. Remote Sens. 54, 68–82 (1999).
[Crossref]

Martin, A. W.

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, Non-Mechanical Beam-Steerer with 80 Degree Field of Regard,” Proc. SPIE 6971, 69710G (2008).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[Crossref]

Meier, R. E.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proceedings of the IEEE 86, 1687–1704 (1998).
[Crossref]

Mishra, K.

K. Mishra, D. van den Ende, and F. Mugele, “Recent Developments in Optofluidic Lens Technology,” Micromachines 7, 102 (2016).
[Crossref]

Montoya, R. D.

Mugele, F.

K. Mishra, D. van den Ende, and F. Mugele, “Recent Developments in Optofluidic Lens Technology,” Micromachines 7, 102 (2016).
[Crossref]

C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Optics Express 2018180–18187 (2012).
[Crossref] [PubMed]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19, 15525–15531 (2011).
[Crossref] [PubMed]

Mukohzaka, N.

Müller, P.

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” Journal of Microelectromechanical Systems 21, 1156 (2012).
[Crossref]

Murade, C. U.

C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Optics Express 2018180–18187 (2012).
[Crossref] [PubMed]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19, 15525–15531 (2011).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Niederriter, R. D.

Oh, Chulwoo

Jihwan Kim, Chulwoo Oh, Michael J. Escuti, Lance Hosting, and Steve Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, Advanced Wavefront Control: Methods, Devices, and Applications VI, 709302 (2008).
[Crossref]

Oh, J. M.

Ota, T.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10, 024010 (2005).
[Crossref] [PubMed]

Park, S.-Y.

C. E. Clement and S.-Y. Park, “High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method,” Applied Physics Letters 108, 191601 (2016).
[Crossref]

Patra, S.

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Communications Magazine 40, 88–95 (2002).
[Crossref]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” The European Physical Journal E 3, 159–163 (2000).
[Crossref]

Petrovskaya, A.

A. Petrovskaya and S. Thrun, “Model based vehicle detection and tracking for autonomous urban driving,” Autonomous Robots 26, 123–139 (2009).
[Crossref]

Philip, J. B.

B. D. Duncan, J. B. Philip, and S. Vassili, “Wide-angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42, 1038–1047 (2003).
[Crossref]

Potenza, R. M.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning” US Patent 20120236379 A1 (2012).

Quenzer, H. -J.

U. Hofmann, J. Janes, and H. -J. Quenzer, “High-Q MEMS Resonators for Laser Beam Scanning Displays,” Micromachines 3, 509 (2012).
[Crossref]

Refai, Hakki H.

Hakki H. Refai, James J. Sluss, and Monte P. Tull, “Digital micromirror device for optical scanning applications,” Opt. Eng. 46, 085401 (2007).
[Crossref]

Ren, H.

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses, (John Wiley and Sons, Inc.2012).
[Crossref]

Resler, D. P.

Roath, C.

Rommel, S. D.

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, Non-Mechanical Beam-Steerer with 80 Degree Field of Regard,” Proc. SPIE 6971, 69710G (2008).
[Crossref]

Ronzitti, E.

Rybaltowski, A.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning” US Patent 20120236379 A1 (2012).

Serati, Steve

Jihwan Kim, Chulwoo Oh, Michael J. Escuti, Lance Hosting, and Steve Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, Advanced Wavefront Control: Methods, Devices, and Applications VI, 709302 (2008).
[Crossref]

Sharp, R. C.

Shian, S.

Sieneart, I.

J. D. Lechleiter, D.-T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83, 2292–2299 (2002).
[Crossref] [PubMed]

Sluss, James J.

Hakki H. Refai, James J. Sluss, and Monte P. Tull, “Digital micromirror device for optical scanning applications,” Opt. Eng. 46, 085401 (2007).
[Crossref]

Smith, N. R.

Takamatsu, T.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10, 024010 (2005).
[Crossref] [PubMed]

Tanaka, H.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10, 024010 (2005).
[Crossref] [PubMed]

Terrab, S.

Thrun, S.

A. Petrovskaya and S. Thrun, “Model based vehicle detection and tracking for autonomous urban driving,” Autonomous Robots 26, 123–139 (2009).
[Crossref]

Toyoda, H.

Tracy, M. J.

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning” US Patent 20120236379 A1 (2012).

Trautman, J. K.

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[Crossref] [PubMed]

Tsao, Tsu-Chin

B. S. Kim, S. Gibson, and Tsu-Chin Tsao, “Adaptive control of a tilt mirror for laser beam steering,” American Control Conference, Proceedings of the 2004.  4, 3417–3421 (2004).

Tull, Monte P.

Hakki H. Refai, James J. Sluss, and Monte P. Tull, “Digital micromirror device for optical scanning applications,” Opt. Eng. 46, 085401 (2007).
[Crossref]

Underwood, K.

van den Ende, D.

K. Mishra, D. van den Ende, and F. Mugele, “Recent Developments in Optofluidic Lens Technology,” Micromachines 7, 102 (2016).
[Crossref]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19, 15525–15531 (2011).
[Crossref] [PubMed]

van der Ende, D.

C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Optics Express 2018180–18187 (2012).
[Crossref] [PubMed]

Van Kessel, P. F.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proceedings of the IEEE 86, 1687–1704 (1998).
[Crossref]

Vassili, S.

B. D. Duncan, J. B. Philip, and S. Vassili, “Wide-angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42, 1038–1047 (2003).
[Crossref]

Wang, Q.-H.

C. Liu, L. Li, and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51, 114002 (2012).
[Crossref]

Watnik, A.

Watson, A.

Watson, A. M.

Watson, Edward A.

Edward A. Watson, “Analysis of beam steering with decentered microlens arrays,” Opt. Eng. 32(11), 2665–2670 (1993).
[Crossref]

Wehr, A.

A. Wehr and U. Lohr, “Airborne laser scanning – an introduction and overview,” ISPRS J. Photogramm. Remote Sens. 54, 68–82 (1999).
[Crossref]

Weitkamp, C.

C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer-Verlag, 2005).
[Crossref]

Wu, S.-T.

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses, (John Wiley and Sons, Inc.2012).
[Crossref]

Yang, C.

Yoshida, N.

Zahreddine, R.

Zappe, H.

D. Kopp, L. Lehmann, and H. Zappe, “Optofluidic laser scanner based on a rotating liquid prism,” Appl. Opt. 55, 2136–2142 (2016).
[Crossref] [PubMed]

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” Journal of Microelectromechanical Systems 21, 1156 (2012).
[Crossref]

American Control Conference, Proceedings of the 2004 (1)

B. S. Kim, S. Gibson, and Tsu-Chin Tsao, “Adaptive control of a tilt mirror for laser beam steering,” American Control Conference, Proceedings of the 2004.  4, 3417–3421 (2004).

Ann. Chim. Phys. (1)

G. Lippmann, “Relations entre les phénomènes électriques et capillaires,” Ann. Chim. Phys. 5, 494 (1875).

Appl. Opt. (5)

Appl. Phys. Lett. (1)

J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99, 191108 (2011).
[Crossref]

Applied Physics Letters (1)

C. E. Clement and S.-Y. Park, “High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method,” Applied Physics Letters 108, 191601 (2016).
[Crossref]

Autonomous Robots (1)

A. Petrovskaya and S. Thrun, “Model based vehicle detection and tracking for autonomous urban driving,” Autonomous Robots 26, 123–139 (2009).
[Crossref]

Biophys. J. (1)

J. D. Lechleiter, D.-T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83, 2292–2299 (2002).
[Crossref] [PubMed]

C. R. Acad. Sci.II (1)

B. Berge, “Electrocapillarite et mouillage de films isolants par l’eau,” C. R. Acad. Sci.II 317, 157 (1993).

IEEE Communications Magazine (1)

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Communications Magazine 40, 88–95 (2002).
[Crossref]

ISPRS J. Photogramm. Remote Sens. (1)

A. Wehr and U. Lohr, “Airborne laser scanning – an introduction and overview,” ISPRS J. Photogramm. Remote Sens. 54, 68–82 (1999).
[Crossref]

J. Biomed. Opt. (1)

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10, 024010 (2005).
[Crossref] [PubMed]

Journal of Microelectromechanical Systems (1)

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” Journal of Microelectromechanical Systems 21, 1156 (2012).
[Crossref]

Micromachines (2)

K. Mishra, D. van den Ende, and F. Mugele, “Recent Developments in Optofluidic Lens Technology,” Micromachines 7, 102 (2016).
[Crossref]

U. Hofmann, J. Janes, and H. -J. Quenzer, “High-Q MEMS Resonators for Laser Beam Scanning Displays,” Micromachines 3, 509 (2012).
[Crossref]

Nat. Photon. (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[Crossref]

Opt. Eng. (4)

Hakki H. Refai, James J. Sluss, and Monte P. Tull, “Digital micromirror device for optical scanning applications,” Opt. Eng. 46, 085401 (2007).
[Crossref]

B. D. Duncan, J. B. Philip, and S. Vassili, “Wide-angle achromatic prism beam steering for infrared countermeasure applications,” Opt. Eng. 42, 1038–1047 (2003).
[Crossref]

C. Liu, L. Li, and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51, 114002 (2012).
[Crossref]

Edward A. Watson, “Analysis of beam steering with decentered microlens arrays,” Opt. Eng. 32(11), 2665–2670 (1993).
[Crossref]

Opt. Express (8)

S. Lee and C. Yang, “Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens,” Opt. Express 16, 19995–20007 (2008).
[Crossref] [PubMed]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19, 15525–15531 (2011).
[Crossref] [PubMed]

R. D. Montoya, K. Underwood, S. Terrab, A. M. Watson, V. M. Bright, and J. T. Gopinath, “Large extinction ratio optical electrowetting shutter,” Opt. Express 24, 9660–9666 (2016).
[Crossref] [PubMed]

E. Ronzitti, M. Guillon, V. de Sars, and V. Emiliani, “LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression,” Opt. Express 20, 17843–17855 (2012).
[Crossref] [PubMed]

S. Shian, R. M. Diebold, and D. R. Clarke, “Tunable lenses using transparent dielectric elastomer actuators,” Opt. Express 21, 8669–8676 (2013).
[Crossref] [PubMed]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14, 6557–6563 (2006).
[Crossref] [PubMed]

S. Terrab, A. M. Watson, C. Roath, J. T. Gopinath, and V. M. Bright, “Adaptive electrowetting lens-prism element,” Opt. Express 23, 25838–25845 (2015).
[Crossref] [PubMed]

K. Koh, T. Kobayashi, and C. Lee, “A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film S-shaped actuator,” Opt. Express 19, 13812–13824 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Optics Express (1)

C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Optics Express 2018180–18187 (2012).
[Crossref] [PubMed]

Proc. SPIE (3)

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, Non-Mechanical Beam-Steerer with 80 Degree Field of Regard,” Proc. SPIE 6971, 69710G (2008).
[Crossref]

Jihwan Kim, Chulwoo Oh, Michael J. Escuti, Lance Hosting, and Steve Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, Advanced Wavefront Control: Methods, Devices, and Applications VI, 709302 (2008).
[Crossref]

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W (2011).
[Crossref]

Proc. SPIE Optical Design and Engineering IV (1)

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE Optical Design and Engineering IV,  816781670 (2012).
[Crossref]

Proceedings of the IEEE (1)

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proceedings of the IEEE 86, 1687–1704 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Science (1)

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[Crossref] [PubMed]

The European Physical Journal E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” The European Physical Journal E 3, 159–163 (2000).
[Crossref]

Other (4)

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses, (John Wiley and Sons, Inc.2012).
[Crossref]

C. G. Bachman, Laser Radar Systems and Techniques (Artech House, 1979).

M. G. da Silva, D. W. DeRoo, M. J. Tracy, A. Rybaltowski, C. G. Caflisch, and R. M. Potenza, “Ladar using mems scanning” US Patent 20120236379 A1 (2012).

C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer-Verlag, 2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Steering a beam with a variable focal length lens. (a) A 2 mm collimated beam is focused to an image plane using a centered lens with radius of curvature 8.0 mm. (b) A lens is decentered by 3.0 mm from the optical axis, resulting in steering and defocusing of the beam using 8 mm radius of curvature. The steering angle is 8.7°. (c) The curvature of a variable focal length lens is adjusted to 8.8 mm to minimize the spot size, which results in a shift of the steering angle from 8.7° to 7.5°.
Fig. 2
Fig. 2 Schematic examples of adding a second tunable liquid lens used on-axis to compensate for the focal change, resulting in scanning a focused spot over a surface. (a) By adjusting the curvature of the first lens, the spot size is minimized while keeping the steering angle fixed at 4.5°. The radii of the lenses are 37 mm and 18.0 mm, respectively. (b) The curvature of the 2nd lens is changed from 18 mm to 38 mm resulting in steering the beam to 1.2°, while changing the curvature of the 1st lens will minimize the spot size on the image plane.
Fig. 3
Fig. 3 (a) Schematic of 1D scan using two tunable liquid lenses in conjunction with a relay lens and diffuser simulated in Zemax. The colors represent three different radii of curvature on the second tunable liquid lens. The relay lens images the minimum spot size created by the two tunable lenses onto the diffuser as illustrated in zoomed in view (b). The diffuser behaves as a point source with a diffusion cone angle of 15°. The distances used in the experiment are labeled in the figure.
Fig. 4
Fig. 4 The schematic of the full 1D scan setup using two tunable liquid lenses. A relay lens is used to position a focused beam on the diffuser. The diffuser acts as a point source with a diffusion cone angle of 15°. The resulting high NA beam is magnified through two lenses. We have used plano-convex and double-convex lenses with a focal length of 50 mm. This configuration results in a beam scanning angle of ±39° with respect to the optical axis of the lenses.
Fig. 5
Fig. 5 Modeled wavefront aberrations after the two liquid lens scanner (before the relay lens). (a) Wavefront aberrations for −2.5° with RMS wavefront error of 0.0002 waves. (b) Wavefront aberrations for 0° with RMS wavefront error of 0.0011 waves. (c) Wavefront aberrations for 2.5° with RMS wavefront error of 0.0007 waves. The wavefront error is much smaller than 0.1 waves for all steering angles, and the error is primarily due to spherical aberrations and astigmatism.
Fig. 6
Fig. 6 The schematic of the full 2D scan setup. Adding a third tunable lens perpendicular to the other lenses allows 2D scanning the beam. This configuration results in 2D beam scanning angle of ±39°(78°) in all directions.
Fig. 7
Fig. 7 The schematic of the 2D hemisphere scan using a wide-angle fisheye lens. The fisheye lens replaced the two lenses after the diffuser as shown in Fig. 6. The 2D hemisphere scan is modeled in Zemax using a sample fisheye lens adopted from Zebase library (F_004). This configuration results in 2D beam scanning angle of ±90° (180°) in all directions
Fig. 8
Fig. 8 An example of 1D beam scanning at different steering angles of (a) −39°, (b) 0°, and (c) 39°. The distance between the last objective lens and the imaging setup was kept fixed at 40 mm.
Fig. 9
Fig. 9 Density plot representing the area of the outgoing beam as a function of diopters of the first tunable lens and steering angle of the second tunable lens. By using two objective lenses after the diffuser, we were able to steer the beam from −39° to 39° while adjusting the scanning beam divergence using the first liquid lens.
Fig. 10
Fig. 10 An example of 2D beam scanning at different steering angles of (a) −75°, (b) 0°, and (c) 75° using a commercial fisheye lens. The distance between the last objective lens and the imaging setup was kept fixed at 40 mm.
Fig. 11
Fig. 11 Density plot representing the area of the outgoing beam as a function of diopters of the first tunable lens and steering angle of the second tunable lens. By using a commercial fisheye lens after the diffuser, we were able to steer the beam from −75° to 75° while adjusting the scanning beam divergence.
Fig. 12
Fig. 12 An example of 2D beam scanning at different steering angles using a commercial fisheye lens. The beam was scanned horizontally and vertically between −75° to 75°. (a) Images of the minimum spot size after adjusting the focal length of the first tunable lens. The images shown here are not represented as actual size for display purposes, but are all on the same scale. (b) Images of the spot on the camera after changing the focal length of the first lens by 8 mm. Note that the spot size is here visibly larger than in (a).

Tables (1)

Tables Icon

Table 1 Summary of beam steering techniques. 1D: one dimensional scan; 2D: two dimensional scan.

Metrics