Abstract

We probe the acoustic vibrations of silver nanoprisms and gold nano-octahedrons in aqueous solution with four-wave mixing. The nonlinear optical response shows two acoustic vibrational modes: an in-plane mode of nanoprisms with vertexial expansion and contraction; an extensional mode of nano-octahedrons with longitudinal expansion and transverse contraction. The particles were also analyzed with electron microscopy and the acoustic resonance frequencies were then calculated by the finite element analysis, showing good agreement with experimental observations. The experimental mode frequencies also fit with theoretical approximations, which show an inverse dependence of the mode frequency on the edge length, for both nanoprisms and nano-octahedrons. This technique is promising for in situ monitoring of colloidal growth.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterizing gold nanorods in aqueous solution by acoustic vibrations probed with four-wave mixing

Jian Wu, Dao Xiang, and Reuven Gordon
Opt. Express 24(12) 12458-12465 (2016)

Four-wave mixing signal enhancement and optical bistability of a hybrid metal nanoparticle-quantum dot molecule in a nanomechanical resonator

Jian-Bo Li, Shan Liang, Si Xiao, Meng-Dong He, Nam-Chol Kim, Li-Qun Chen, Gui-Hong Wu, Yu-Xiang Peng, Xiao-Yu Luo, and Ze-Ping Guo
Opt. Express 24(3) 2360-2369 (2016)

Superresolution four-wave mixing microscopy

Hyunmin Kim, Garnett W. Bryant, and Stephan J. Stranick
Opt. Express 20(6) 6042-6051 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Nelayah, L. Gu, W. Sigle, C. T. Koch, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. A. van Aken, “Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging,” Opt. Lett. 34(7), 1003–1005 (2009).
    [Crossref] [PubMed]
  2. Q. Min, Y. Pang, D. J. Collins, N. A. Kuklev, K. Gottselig, D. W. Steuerman, and R. Gordon, “Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles,” Opt. Express 19(2), 1648–1655 (2011).
    [Crossref] [PubMed]
  3. A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
    [Crossref] [PubMed]
  4. K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
    [Crossref] [PubMed]
  5. Z. Chen, H. Dai, J. Liu, H. Xu, Z. Li, Z. K. Zhou, and J. B. Han, “Dipole plasmon resonance induced large third-order optical nonlinearity of Au triangular nanoprism in infrared region,” Opt. Express 21(15), 17568–17575 (2013).
    [Crossref] [PubMed]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  7. M. J. Bloemer, J. W. Haus, and P. R. Ashley, “Degenerate four-wave mixing in colloidal gold as a function of particle size,” J. Opt. Soc. Am. B 7(5), 790–795 (1990).
    [Crossref]
  8. C. Y. Chiu, P. J. Chung, K. U. Lao, C. W. Liao, and M. H. Huang, “Facet-dependent catalytic activity of gold nanocubes, octahedra, and rhombic dodecahedra toward 4-nitroaniline reduction,” J. Phys. Chem. C 116(44), 23757–23763 (2012).
    [Crossref]
  9. E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
    [Crossref] [PubMed]
  10. Z. Cao, Z. Chen, and L. Escoubas, “Optical, structural, and electrical properties of PEDOT: PSS thin films doped with silver nanoprisms,” Opt. Mater. Express 4(12), 2525–2534 (2014).
    [Crossref]
  11. P. V. Ruijgrok, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Damping of acoustic vibrations of single gold nanoparticles optically trapped in water,” Nano Lett. 12(2), 1063–1069 (2012).
    [Crossref] [PubMed]
  12. H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
    [Crossref] [PubMed]
  13. M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
    [Crossref] [PubMed]
  14. G. V. Hartland, “Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy,” Phys. Chem. Chem. Phys. 6(23), 5263–5274 (2004).
    [Crossref]
  15. T. A. Major, S. S. Lo, K. Yu, and G. V. Hartland, “Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects,” J. Phys. Chem. Lett. 5(5), 866–874 (2014).
    [Crossref] [PubMed]
  16. G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
    [Crossref]
  17. P. Zijlstra, A. L. Tchebotareva, J. W. Chon, M. Gu, and M. Orrit, “Acoustic oscillations and elastic moduli of single gold nanorods,” Nano Lett. 8(10), 3493–3497 (2008).
    [Crossref] [PubMed]
  18. N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles,” J. Chem. Phys. 110(23), 11484–11487 (1999).
    [Crossref]
  19. H. Staleva and G. V. Hartland, “Transient absorption studies of single silver nanocubes,” J. Phys. Chem. C 112(20), 7535–7539 (2008).
    [Crossref]
  20. J. Wu, D. Xiang, and R. Gordon, “Characterizing gold nanorods in aqueous solution by acoustic vibrations probed with four-wave mixing,” Opt. Express 24(12), 12458–12465 (2016).
    [Crossref] [PubMed]
  21. D. Xiang, J. Wu, J. Rottler, and R. Gordon, “Threshold for Terahertz Resonance of Nanoparticles in Water,” Nano Lett. 16(6), 3638–3641 (2016).
    [Crossref] [PubMed]
  22. D. Xiang and R. Gordon, “Nanoparticle Acoustic Resonance Enhanced Nearly Degenerate Four-Wave Mixing,” ACS Photonics 3(8), 1421–1425 (2016).
    [Crossref]
  23. R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
    [Crossref] [PubMed]
  24. H. L. Wu, H. R. Tsai, Y. T. Hung, K. U. Lao, C. W. Liao, P. J. Chung, J. S. Huang, I. C. Chen, and M. H. Huang, “A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates,” Inorg. Chem. 50(17), 8106–8111 (2011).
    [Crossref] [PubMed]
  25. C. C. Chang, H. L. Wu, C. H. Kuo, and M. H. Huang, “Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures,” Chem. Mater. 20(24), 7570–7574 (2008).
    [Crossref]
  26. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
    [Crossref] [PubMed]
  27. C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2(9), 1760–1769 (2008).
    [Crossref] [PubMed]
  28. L. Bonacina, A. Callegari, C. Bonati, F. van Mourik, and M. Chergui, “Time-resolved photodynamics of triangular-shaped silver nanoplates,” Nano Lett. 6(1), 7–10 (2006).
    [Crossref] [PubMed]
  29. H. H. Pan, Z. K. Wang, H. S. Lim, S. C. Ng, V. L. Zhang, M. H. Kuok, T. T. Tran, and X. M. Lu, “Hypersonic confined eigenvibrations of gold nano-octahedra,” Appl. Phys. Lett. 98(13), 133123 (2011).
    [Crossref]
  30. K. Yu, P. Zijlstra, J. E. Sader, Q. H. Xu, and M. Orrit, “Damping of acoustic vibrations of immobilized single gold nanorods in different environments,” Nano Lett. 13(6), 2710–2716 (2013).
    [Crossref] [PubMed]
  31. S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
    [Crossref]

2016 (3)

D. Xiang, J. Wu, J. Rottler, and R. Gordon, “Threshold for Terahertz Resonance of Nanoparticles in Water,” Nano Lett. 16(6), 3638–3641 (2016).
[Crossref] [PubMed]

D. Xiang and R. Gordon, “Nanoparticle Acoustic Resonance Enhanced Nearly Degenerate Four-Wave Mixing,” ACS Photonics 3(8), 1421–1425 (2016).
[Crossref]

J. Wu, D. Xiang, and R. Gordon, “Characterizing gold nanorods in aqueous solution by acoustic vibrations probed with four-wave mixing,” Opt. Express 24(12), 12458–12465 (2016).
[Crossref] [PubMed]

2014 (3)

Z. Cao, Z. Chen, and L. Escoubas, “Optical, structural, and electrical properties of PEDOT: PSS thin films doped with silver nanoprisms,” Opt. Mater. Express 4(12), 2525–2534 (2014).
[Crossref]

S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
[Crossref]

T. A. Major, S. S. Lo, K. Yu, and G. V. Hartland, “Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects,” J. Phys. Chem. Lett. 5(5), 866–874 (2014).
[Crossref] [PubMed]

2013 (2)

K. Yu, P. Zijlstra, J. E. Sader, Q. H. Xu, and M. Orrit, “Damping of acoustic vibrations of immobilized single gold nanorods in different environments,” Nano Lett. 13(6), 2710–2716 (2013).
[Crossref] [PubMed]

Z. Chen, H. Dai, J. Liu, H. Xu, Z. Li, Z. K. Zhou, and J. B. Han, “Dipole plasmon resonance induced large third-order optical nonlinearity of Au triangular nanoprism in infrared region,” Opt. Express 21(15), 17568–17575 (2013).
[Crossref] [PubMed]

2012 (3)

C. Y. Chiu, P. J. Chung, K. U. Lao, C. W. Liao, and M. H. Huang, “Facet-dependent catalytic activity of gold nanocubes, octahedra, and rhombic dodecahedra toward 4-nitroaniline reduction,” J. Phys. Chem. C 116(44), 23757–23763 (2012).
[Crossref]

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

P. V. Ruijgrok, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Damping of acoustic vibrations of single gold nanoparticles optically trapped in water,” Nano Lett. 12(2), 1063–1069 (2012).
[Crossref] [PubMed]

2011 (3)

H. L. Wu, H. R. Tsai, Y. T. Hung, K. U. Lao, C. W. Liao, P. J. Chung, J. S. Huang, I. C. Chen, and M. H. Huang, “A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates,” Inorg. Chem. 50(17), 8106–8111 (2011).
[Crossref] [PubMed]

Q. Min, Y. Pang, D. J. Collins, N. A. Kuklev, K. Gottselig, D. W. Steuerman, and R. Gordon, “Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles,” Opt. Express 19(2), 1648–1655 (2011).
[Crossref] [PubMed]

H. H. Pan, Z. K. Wang, H. S. Lim, S. C. Ng, V. L. Zhang, M. H. Kuok, T. T. Tran, and X. M. Lu, “Hypersonic confined eigenvibrations of gold nano-octahedra,” Appl. Phys. Lett. 98(13), 133123 (2011).
[Crossref]

2010 (2)

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (5)

H. Staleva and G. V. Hartland, “Transient absorption studies of single silver nanocubes,” J. Phys. Chem. C 112(20), 7535–7539 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

C. C. Chang, H. L. Wu, C. H. Kuo, and M. H. Huang, “Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures,” Chem. Mater. 20(24), 7570–7574 (2008).
[Crossref]

C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2(9), 1760–1769 (2008).
[Crossref] [PubMed]

P. Zijlstra, A. L. Tchebotareva, J. W. Chon, M. Gu, and M. Orrit, “Acoustic oscillations and elastic moduli of single gold nanorods,” Nano Lett. 8(10), 3493–3497 (2008).
[Crossref] [PubMed]

2007 (1)

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

2006 (2)

L. Bonacina, A. Callegari, C. Bonati, F. van Mourik, and M. Chergui, “Time-resolved photodynamics of triangular-shaped silver nanoplates,” Nano Lett. 6(1), 7–10 (2006).
[Crossref] [PubMed]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

2005 (1)

M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
[Crossref] [PubMed]

2004 (1)

G. V. Hartland, “Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy,” Phys. Chem. Chem. Phys. 6(23), 5263–5274 (2004).
[Crossref]

2002 (1)

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[Crossref]

2001 (1)

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[Crossref] [PubMed]

1999 (1)

N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles,” J. Chem. Phys. 110(23), 11484–11487 (1999).
[Crossref]

1990 (1)

Alkilany, A. M.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Ashley, P. R.

Bloemer, M. J.

Bonacina, L.

L. Bonacina, A. Callegari, C. Bonati, F. van Mourik, and M. Chergui, “Time-resolved photodynamics of triangular-shaped silver nanoplates,” Nano Lett. 6(1), 7–10 (2006).
[Crossref] [PubMed]

Bonati, C.

L. Bonacina, A. Callegari, C. Bonati, F. van Mourik, and M. Chergui, “Time-resolved photodynamics of triangular-shaped silver nanoplates,” Nano Lett. 6(1), 7–10 (2006).
[Crossref] [PubMed]

Callegari, A.

L. Bonacina, A. Callegari, C. Bonati, F. van Mourik, and M. Chergui, “Time-resolved photodynamics of triangular-shaped silver nanoplates,” Nano Lett. 6(1), 7–10 (2006).
[Crossref] [PubMed]

Cao, Y.

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[Crossref] [PubMed]

Cao, Z.

Chang, C. C.

C. C. Chang, H. L. Wu, C. H. Kuo, and M. H. Huang, “Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures,” Chem. Mater. 20(24), 7570–7574 (2008).
[Crossref]

Chen, I. C.

H. L. Wu, H. R. Tsai, Y. T. Hung, K. U. Lao, C. W. Liao, P. J. Chung, J. S. Huang, I. C. Chen, and M. H. Huang, “A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates,” Inorg. Chem. 50(17), 8106–8111 (2011).
[Crossref] [PubMed]

Chen, M.

C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2(9), 1760–1769 (2008).
[Crossref] [PubMed]

Chen, Y.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

Chen, Z.

Chergui, M.

L. Bonacina, A. Callegari, C. Bonati, F. van Mourik, and M. Chergui, “Time-resolved photodynamics of triangular-shaped silver nanoplates,” Nano Lett. 6(1), 7–10 (2006).
[Crossref] [PubMed]

Chevy, F.

N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles,” J. Chem. Phys. 110(23), 11484–11487 (1999).
[Crossref]

Chiu, C. Y.

C. Y. Chiu, P. J. Chung, K. U. Lao, C. W. Liao, and M. H. Huang, “Facet-dependent catalytic activity of gold nanocubes, octahedra, and rhombic dodecahedra toward 4-nitroaniline reduction,” J. Phys. Chem. C 116(44), 23757–23763 (2012).
[Crossref]

Cho, S. O.

C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2(9), 1760–1769 (2008).
[Crossref] [PubMed]

Chon, J. W.

P. Zijlstra, A. L. Tchebotareva, J. W. Chon, M. Gu, and M. Orrit, “Acoustic oscillations and elastic moduli of single gold nanorods,” Nano Lett. 8(10), 3493–3497 (2008).
[Crossref] [PubMed]

Chung, P. J.

C. Y. Chiu, P. J. Chung, K. U. Lao, C. W. Liao, and M. H. Huang, “Facet-dependent catalytic activity of gold nanocubes, octahedra, and rhombic dodecahedra toward 4-nitroaniline reduction,” J. Phys. Chem. C 116(44), 23757–23763 (2012).
[Crossref]

H. L. Wu, H. R. Tsai, Y. T. Hung, K. U. Lao, C. W. Liao, P. J. Chung, J. S. Huang, I. C. Chen, and M. H. Huang, “A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates,” Inorg. Chem. 50(17), 8106–8111 (2011).
[Crossref] [PubMed]

Collins, D. J.

Dai, H.

de Liejer, S.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

Del Fatti, N.

N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles,” J. Chem. Phys. 110(23), 11484–11487 (1999).
[Crossref]

Dreaden, E. C.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

El-Sayed, M. A.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

Escoubas, L.

Flytzanis, C.

N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles,” J. Chem. Phys. 110(23), 11484–11487 (1999).
[Crossref]

Gelfand, R. M.

S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
[Crossref]

Ginger, D. S.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

Gordon, R.

D. Xiang, J. Wu, J. Rottler, and R. Gordon, “Threshold for Terahertz Resonance of Nanoparticles in Water,” Nano Lett. 16(6), 3638–3641 (2016).
[Crossref] [PubMed]

J. Wu, D. Xiang, and R. Gordon, “Characterizing gold nanorods in aqueous solution by acoustic vibrations probed with four-wave mixing,” Opt. Express 24(12), 12458–12465 (2016).
[Crossref] [PubMed]

D. Xiang and R. Gordon, “Nanoparticle Acoustic Resonance Enhanced Nearly Degenerate Four-Wave Mixing,” ACS Photonics 3(8), 1421–1425 (2016).
[Crossref]

S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
[Crossref]

Q. Min, Y. Pang, D. J. Collins, N. A. Kuklev, K. Gottselig, D. W. Steuerman, and R. Gordon, “Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles,” Opt. Express 19(2), 1648–1655 (2011).
[Crossref] [PubMed]

Gottselig, K.

Gu, L.

Gu, M.

P. Zijlstra, A. L. Tchebotareva, J. W. Chon, M. Gu, and M. Orrit, “Acoustic oscillations and elastic moduli of single gold nanorods,” Nano Lett. 8(10), 3493–3497 (2008).
[Crossref] [PubMed]

Guyer, S. R.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Han, J. B.

Hartland, G. V.

T. A. Major, S. S. Lo, K. Yu, and G. V. Hartland, “Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects,” J. Phys. Chem. Lett. 5(5), 866–874 (2014).
[Crossref] [PubMed]

H. Staleva and G. V. Hartland, “Transient absorption studies of single silver nanocubes,” J. Phys. Chem. C 112(20), 7535–7539 (2008).
[Crossref]

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

G. V. Hartland, “Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy,” Phys. Chem. Chem. Phys. 6(23), 5263–5274 (2004).
[Crossref]

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[Crossref]

Haus, J. W.

Hu, M.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[Crossref]

Huang, J. S.

H. L. Wu, H. R. Tsai, Y. T. Hung, K. U. Lao, C. W. Liao, P. J. Chung, J. S. Huang, I. C. Chen, and M. H. Huang, “A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates,” Inorg. Chem. 50(17), 8106–8111 (2011).
[Crossref] [PubMed]

Huang, M. H.

C. Y. Chiu, P. J. Chung, K. U. Lao, C. W. Liao, and M. H. Huang, “Facet-dependent catalytic activity of gold nanocubes, octahedra, and rhombic dodecahedra toward 4-nitroaniline reduction,” J. Phys. Chem. C 116(44), 23757–23763 (2012).
[Crossref]

H. L. Wu, H. R. Tsai, Y. T. Hung, K. U. Lao, C. W. Liao, P. J. Chung, J. S. Huang, I. C. Chen, and M. H. Huang, “A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates,” Inorg. Chem. 50(17), 8106–8111 (2011).
[Crossref] [PubMed]

C. C. Chang, H. L. Wu, C. H. Kuo, and M. H. Huang, “Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures,” Chem. Mater. 20(24), 7570–7574 (2008).
[Crossref]

Huang, X.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

Hung, Y. T.

H. L. Wu, H. R. Tsai, Y. T. Hung, K. U. Lao, C. W. Liao, P. J. Chung, J. S. Huang, I. C. Chen, and M. H. Huang, “A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates,” Inorg. Chem. 50(17), 8106–8111 (2011).
[Crossref] [PubMed]

Jin, R.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[Crossref] [PubMed]

Kelly, K. L.

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[Crossref] [PubMed]

Koch, C. T.

Kuklev, N. A.

Kulkarni, A. P.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

Kuo, C. H.

C. C. Chang, H. L. Wu, C. H. Kuo, and M. H. Huang, “Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures,” Chem. Mater. 20(24), 7570–7574 (2008).
[Crossref]

Kuok, M. H.

H. H. Pan, Z. K. Wang, H. S. Lim, S. C. Ng, V. L. Zhang, M. H. Kuok, T. T. Tran, and X. M. Lu, “Hypersonic confined eigenvibrations of gold nano-octahedra,” Appl. Phys. Lett. 98(13), 133123 (2011).
[Crossref]

Lao, K. U.

C. Y. Chiu, P. J. Chung, K. U. Lao, C. W. Liao, and M. H. Huang, “Facet-dependent catalytic activity of gold nanocubes, octahedra, and rhombic dodecahedra toward 4-nitroaniline reduction,” J. Phys. Chem. C 116(44), 23757–23763 (2012).
[Crossref]

H. L. Wu, H. R. Tsai, Y. T. Hung, K. U. Lao, C. W. Liao, P. J. Chung, J. S. Huang, I. C. Chen, and M. H. Huang, “A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates,” Inorg. Chem. 50(17), 8106–8111 (2011).
[Crossref] [PubMed]

Lee, E. J.

C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2(9), 1760–1769 (2008).
[Crossref] [PubMed]

Li, C.

C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2(9), 1760–1769 (2008).
[Crossref] [PubMed]

Li, Z.

Liao, C. W.

C. Y. Chiu, P. J. Chung, K. U. Lao, C. W. Liao, and M. H. Huang, “Facet-dependent catalytic activity of gold nanocubes, octahedra, and rhombic dodecahedra toward 4-nitroaniline reduction,” J. Phys. Chem. C 116(44), 23757–23763 (2012).
[Crossref]

H. L. Wu, H. R. Tsai, Y. T. Hung, K. U. Lao, C. W. Liao, P. J. Chung, J. S. Huang, I. C. Chen, and M. H. Huang, “A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates,” Inorg. Chem. 50(17), 8106–8111 (2011).
[Crossref] [PubMed]

Lim, H. S.

H. H. Pan, Z. K. Wang, H. S. Lim, S. C. Ng, V. L. Zhang, M. H. Kuok, T. T. Tran, and X. M. Lu, “Hypersonic confined eigenvibrations of gold nano-octahedra,” Appl. Phys. Lett. 98(13), 133123 (2011).
[Crossref]

Lin, C. H.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

Lippitz, M.

M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
[Crossref] [PubMed]

Liu, J.

Liz-Marzán, L. M.

Lo, S. S.

T. A. Major, S. S. Lo, K. Yu, and G. V. Hartland, “Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects,” J. Phys. Chem. Lett. 5(5), 866–874 (2014).
[Crossref] [PubMed]

Lu, X. M.

H. H. Pan, Z. K. Wang, H. S. Lim, S. C. Ng, V. L. Zhang, M. H. Kuok, T. T. Tran, and X. M. Lu, “Hypersonic confined eigenvibrations of gold nano-octahedra,” Appl. Phys. Lett. 98(13), 133123 (2011).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Major, T. A.

T. A. Major, S. S. Lo, K. Yu, and G. V. Hartland, “Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects,” J. Phys. Chem. Lett. 5(5), 866–874 (2014).
[Crossref] [PubMed]

Marquez, M.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

McLellan, J. M.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

Min, Q.

Mirkin, C. A.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[Crossref] [PubMed]

Mulvaney, P.

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[Crossref]

Munechika, K.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

Munro, A. M.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

Murphy, C. J.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

Nelayah, J.

Ng, S. C.

H. H. Pan, Z. K. Wang, H. S. Lim, S. C. Ng, V. L. Zhang, M. H. Kuok, T. T. Tran, and X. M. Lu, “Hypersonic confined eigenvibrations of gold nano-octahedra,” Appl. Phys. Lett. 98(13), 133123 (2011).
[Crossref]

Noone, K. M.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

Orrit, M.

K. Yu, P. Zijlstra, J. E. Sader, Q. H. Xu, and M. Orrit, “Damping of acoustic vibrations of immobilized single gold nanorods in different environments,” Nano Lett. 13(6), 2710–2716 (2013).
[Crossref] [PubMed]

P. V. Ruijgrok, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Damping of acoustic vibrations of single gold nanoparticles optically trapped in water,” Nano Lett. 12(2), 1063–1069 (2012).
[Crossref] [PubMed]

P. Zijlstra, A. L. Tchebotareva, J. W. Chon, M. Gu, and M. Orrit, “Acoustic oscillations and elastic moduli of single gold nanorods,” Nano Lett. 8(10), 3493–3497 (2008).
[Crossref] [PubMed]

M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
[Crossref] [PubMed]

Pan, H. H.

H. H. Pan, Z. K. Wang, H. S. Lim, S. C. Ng, V. L. Zhang, M. H. Kuok, T. T. Tran, and X. M. Lu, “Hypersonic confined eigenvibrations of gold nano-octahedra,” Appl. Phys. Lett. 98(13), 133123 (2011).
[Crossref]

Pang, Y.

Pastoriza-Santos, I.

Petrova, H.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

Plante, I. J. L.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

Rottler, J.

D. Xiang, J. Wu, J. Rottler, and R. Gordon, “Threshold for Terahertz Resonance of Nanoparticles in Water,” Nano Lett. 16(6), 3638–3641 (2016).
[Crossref] [PubMed]

Ruijgrok, P. V.

P. V. Ruijgrok, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Damping of acoustic vibrations of single gold nanoparticles optically trapped in water,” Nano Lett. 12(2), 1063–1069 (2012).
[Crossref] [PubMed]

Sader, J. E.

K. Yu, P. Zijlstra, J. E. Sader, Q. H. Xu, and M. Orrit, “Damping of acoustic vibrations of immobilized single gold nanorods in different environments,” Nano Lett. 13(6), 2710–2716 (2013).
[Crossref] [PubMed]

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[Crossref]

Schatz, G. C.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Sherry, L. J.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

Shuford, K. L.

C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2(9), 1760–1769 (2008).
[Crossref] [PubMed]

Siekkinen, A. R.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

Sigle, W.

Staleva, H.

H. Staleva and G. V. Hartland, “Transient absorption studies of single silver nanocubes,” J. Phys. Chem. C 112(20), 7535–7539 (2008).
[Crossref]

Steuerman, D. W.

Tchebotareva, A. L.

P. V. Ruijgrok, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Damping of acoustic vibrations of single gold nanoparticles optically trapped in water,” Nano Lett. 12(2), 1063–1069 (2012).
[Crossref] [PubMed]

P. Zijlstra, A. L. Tchebotareva, J. W. Chon, M. Gu, and M. Orrit, “Acoustic oscillations and elastic moduli of single gold nanorods,” Nano Lett. 8(10), 3493–3497 (2008).
[Crossref] [PubMed]

Tillack, A. F.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

Tran, T. T.

H. H. Pan, Z. K. Wang, H. S. Lim, S. C. Ng, V. L. Zhang, M. H. Kuok, T. T. Tran, and X. M. Lu, “Hypersonic confined eigenvibrations of gold nano-octahedra,” Appl. Phys. Lett. 98(13), 133123 (2011).
[Crossref]

Tsai, H. R.

H. L. Wu, H. R. Tsai, Y. T. Hung, K. U. Lao, C. W. Liao, P. J. Chung, J. S. Huang, I. C. Chen, and M. H. Huang, “A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates,” Inorg. Chem. 50(17), 8106–8111 (2011).
[Crossref] [PubMed]

Vallée, F.

N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles,” J. Chem. Phys. 110(23), 11484–11487 (1999).
[Crossref]

van Aken, P. A.

van Dijk, M. A.

M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

van Mourik, F.

L. Bonacina, A. Callegari, C. Bonati, F. van Mourik, and M. Chergui, “Time-resolved photodynamics of triangular-shaped silver nanoplates,” Nano Lett. 6(1), 7–10 (2006).
[Crossref] [PubMed]

Voisin, C.

N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles,” J. Chem. Phys. 110(23), 11484–11487 (1999).
[Crossref]

Wang, Z. K.

H. H. Pan, Z. K. Wang, H. S. Lim, S. C. Ng, V. L. Zhang, M. H. Kuok, T. T. Tran, and X. M. Lu, “Hypersonic confined eigenvibrations of gold nano-octahedra,” Appl. Phys. Lett. 98(13), 133123 (2011).
[Crossref]

Wheaton, S.

S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
[Crossref]

Wiley, B. J.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

Wilson, O.

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[Crossref]

Wu, H. L.

H. L. Wu, H. R. Tsai, Y. T. Hung, K. U. Lao, C. W. Liao, P. J. Chung, J. S. Huang, I. C. Chen, and M. H. Huang, “A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates,” Inorg. Chem. 50(17), 8106–8111 (2011).
[Crossref] [PubMed]

C. C. Chang, H. L. Wu, C. H. Kuo, and M. H. Huang, “Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures,” Chem. Mater. 20(24), 7570–7574 (2008).
[Crossref]

Wu, J.

D. Xiang, J. Wu, J. Rottler, and R. Gordon, “Threshold for Terahertz Resonance of Nanoparticles in Water,” Nano Lett. 16(6), 3638–3641 (2016).
[Crossref] [PubMed]

J. Wu, D. Xiang, and R. Gordon, “Characterizing gold nanorods in aqueous solution by acoustic vibrations probed with four-wave mixing,” Opt. Express 24(12), 12458–12465 (2016).
[Crossref] [PubMed]

Xia, Y.

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

Xiang, D.

D. Xiang and R. Gordon, “Nanoparticle Acoustic Resonance Enhanced Nearly Degenerate Four-Wave Mixing,” ACS Photonics 3(8), 1421–1425 (2016).
[Crossref]

J. Wu, D. Xiang, and R. Gordon, “Characterizing gold nanorods in aqueous solution by acoustic vibrations probed with four-wave mixing,” Opt. Express 24(12), 12458–12465 (2016).
[Crossref] [PubMed]

D. Xiang, J. Wu, J. Rottler, and R. Gordon, “Threshold for Terahertz Resonance of Nanoparticles in Water,” Nano Lett. 16(6), 3638–3641 (2016).
[Crossref] [PubMed]

Xu, H.

Xu, Q. H.

K. Yu, P. Zijlstra, J. E. Sader, Q. H. Xu, and M. Orrit, “Damping of acoustic vibrations of immobilized single gold nanorods in different environments,” Nano Lett. 13(6), 2710–2716 (2013).
[Crossref] [PubMed]

Yu, K.

T. A. Major, S. S. Lo, K. Yu, and G. V. Hartland, “Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects,” J. Phys. Chem. Lett. 5(5), 866–874 (2014).
[Crossref] [PubMed]

K. Yu, P. Zijlstra, J. E. Sader, Q. H. Xu, and M. Orrit, “Damping of acoustic vibrations of immobilized single gold nanorods in different environments,” Nano Lett. 13(6), 2710–2716 (2013).
[Crossref] [PubMed]

Zhang, V. L.

H. H. Pan, Z. K. Wang, H. S. Lim, S. C. Ng, V. L. Zhang, M. H. Kuok, T. T. Tran, and X. M. Lu, “Hypersonic confined eigenvibrations of gold nano-octahedra,” Appl. Phys. Lett. 98(13), 133123 (2011).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zheng, J. G.

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[Crossref] [PubMed]

Zhou, Z. K.

Zijlstra, P.

K. Yu, P. Zijlstra, J. E. Sader, Q. H. Xu, and M. Orrit, “Damping of acoustic vibrations of immobilized single gold nanorods in different environments,” Nano Lett. 13(6), 2710–2716 (2013).
[Crossref] [PubMed]

P. V. Ruijgrok, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Damping of acoustic vibrations of single gold nanoparticles optically trapped in water,” Nano Lett. 12(2), 1063–1069 (2012).
[Crossref] [PubMed]

P. Zijlstra, A. L. Tchebotareva, J. W. Chon, M. Gu, and M. Orrit, “Acoustic oscillations and elastic moduli of single gold nanorods,” Nano Lett. 8(10), 3493–3497 (2008).
[Crossref] [PubMed]

ACS Nano (1)

C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, “A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,” ACS Nano 2(9), 1760–1769 (2008).
[Crossref] [PubMed]

ACS Photonics (1)

D. Xiang and R. Gordon, “Nanoparticle Acoustic Resonance Enhanced Nearly Degenerate Four-Wave Mixing,” ACS Photonics 3(8), 1421–1425 (2016).
[Crossref]

Appl. Phys. Lett. (1)

H. H. Pan, Z. K. Wang, H. S. Lim, S. C. Ng, V. L. Zhang, M. H. Kuok, T. T. Tran, and X. M. Lu, “Hypersonic confined eigenvibrations of gold nano-octahedra,” Appl. Phys. Lett. 98(13), 133123 (2011).
[Crossref]

Chem. Mater. (1)

C. C. Chang, H. L. Wu, C. H. Kuo, and M. H. Huang, “Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures,” Chem. Mater. 20(24), 7570–7574 (2008).
[Crossref]

Chem. Soc. Rev. (1)

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

Inorg. Chem. (1)

H. L. Wu, H. R. Tsai, Y. T. Hung, K. U. Lao, C. W. Liao, P. J. Chung, J. S. Huang, I. C. Chen, and M. H. Huang, “A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates,” Inorg. Chem. 50(17), 8106–8111 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (2)

N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles,” J. Chem. Phys. 110(23), 11484–11487 (1999).
[Crossref]

H. Petrova, C. H. Lin, S. de Liejer, M. Hu, J. M. McLellan, A. R. Siekkinen, B. J. Wiley, M. Marquez, Y. Xia, J. E. Sader, and G. V. Hartland, “Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes,” J. Chem. Phys. 126(9), 094709 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[Crossref]

J. Phys. Chem. C (2)

H. Staleva and G. V. Hartland, “Transient absorption studies of single silver nanocubes,” J. Phys. Chem. C 112(20), 7535–7539 (2008).
[Crossref]

C. Y. Chiu, P. J. Chung, K. U. Lao, C. W. Liao, and M. H. Huang, “Facet-dependent catalytic activity of gold nanocubes, octahedra, and rhombic dodecahedra toward 4-nitroaniline reduction,” J. Phys. Chem. C 116(44), 23757–23763 (2012).
[Crossref]

J. Phys. Chem. Lett. (1)

T. A. Major, S. S. Lo, K. Yu, and G. V. Hartland, “Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects,” J. Phys. Chem. Lett. 5(5), 866–874 (2014).
[Crossref] [PubMed]

Nano Lett. (8)

D. Xiang, J. Wu, J. Rottler, and R. Gordon, “Threshold for Terahertz Resonance of Nanoparticles in Water,” Nano Lett. 16(6), 3638–3641 (2016).
[Crossref] [PubMed]

P. Zijlstra, A. L. Tchebotareva, J. W. Chon, M. Gu, and M. Orrit, “Acoustic oscillations and elastic moduli of single gold nanorods,” Nano Lett. 8(10), 3493–3497 (2008).
[Crossref] [PubMed]

P. V. Ruijgrok, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Damping of acoustic vibrations of single gold nanoparticles optically trapped in water,” Nano Lett. 12(2), 1063–1069 (2012).
[Crossref] [PubMed]

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

K. Yu, P. Zijlstra, J. E. Sader, Q. H. Xu, and M. Orrit, “Damping of acoustic vibrations of immobilized single gold nanorods in different environments,” Nano Lett. 13(6), 2710–2716 (2013).
[Crossref] [PubMed]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

L. Bonacina, A. Callegari, C. Bonati, F. van Mourik, and M. Chergui, “Time-resolved photodynamics of triangular-shaped silver nanoplates,” Nano Lett. 6(1), 7–10 (2006).
[Crossref] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

G. V. Hartland, “Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy,” Phys. Chem. Chem. Phys. 6(23), 5263–5274 (2004).
[Crossref]

Phys. Rev. Lett. (1)

M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
[Crossref] [PubMed]

Science (1)

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 FWM experimental setup. ECL: external cavity laser; BS: beam splitter; MR: mirror; IRS: iris; APD: avalanche photodetector; DBRL: distributed Bragg reflector laser; PC: polarization controller; FC: fiber coupler; OSA: optical spectrum analyzer; BR: blocker; OC: optical chopper; PR: polarizer; FPC: fiber-port collimator.
Fig. 2
Fig. 2 (a) SEM image of silver nanoprisms obtained at 300k × magnification. (b) SEM image of the nanoprism stacks for thickness estimation (~10 nm). (c) Nanoprisms’ edge length distribution obtained by manually measuring 100 nanoprisms and fitted by Gaussian distribution. The error represents the standard deviation. (d) Extinction spectrum of silver nanoprisms in aqueous solution.
Fig. 3
Fig. 3 Edge length distribution of different sizes: (a) 53.4 nm average edge length. The inset shows the SEM image obtained at 350k × magnification; (b) 43.2 nm average edge length. The inset shows the SEM image obtained at 300k × magnification; (c) 36.1 nm average edge length. The inset shows the SEM image obtained at 300k × magnification. The edge length distribution is obtained by manually measuring 100 nano-octahedrons for each size and fitted by Gaussian distribution. The error represents the standard deviation. (d) Extinction spectra of different size nano-octahedrons in aqueous solution.
Fig. 4
Fig. 4 (a) FWM signal of the silver nanoprism sample as a function of the beat frequency between the ECL and DBR lasers. The error bar represents the standard deviation calculated by 148 data points at each beat frequency. The 29.7 GHz resonance peak corresponds to the frequency of the in-plane vibrational mode. The dashed line indicates the theoretically calculated resonant frequency of 28.9 GHz according to the SEM result. The grey area indicates a 17.2 GHz broadening induced mainly by the size distribution. (b) Simulated mode profiles of maximal displacements with a mode frequency of 28.7 GHz within a vibrational cycle. The solid lines indicate the outlines of the undeformed nanoprisms.
Fig. 5
Fig. 5 FWM signal of gold nano-octahedrons with different sizes: (a) 53.4 nm average edge length with a resonance at 13.8 GHz. The inset shows the simulated mode profiles of maximal displacements with a mode frequency of 13.3 GHz within a vibrational cycle. The solid lines indicate the outlines of the undeformed nano-octahedrons; (b) 43.2 nm average edge length with a resonance at 18.2 GHz; (c) 36.1 nm average edge length with a resonance at 21.9 GHz. The error bar represents the standard deviation calculated by 148 data points at each beat frequency. The dashed line indicates the theoretically calculated resonant frequency according to the SEM result. The grey area indicates the broadening induced by the size distribution. (d) Inverse dependency of the mode frequency on the edge length.

Tables (1)

Tables Icon

Table 1 Acoustic mode information of nano-octahedrons with different sizes

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

υ p r i s m = V l , s i l v e r 3 L p r i s m
FWHM= Δ υ p r i s m = Δ L p r i s m V l , s i l v e r 3 L p r i s m 2 = Δ L p r i s m L p r i s m υ p r i s m
υ o c t a h e d r o n = V l , g o l d 3 2 L o c t a h e d r o n

Metrics