Abstract

Continuous-wave single-frequency high power 397.5 nm laser with long lifetime and perfect beam quality is one of the essential resource to generate the squeezed and entanglement states of optical beams resonant with D1 line of Rubidium atoms at 795 nm. In this paper, We present the experimental generation of single-frequency high power 397.5 nm ultra-violet (UV) laser with long lifetime and perfect beam quality by using periodically poled MgO-doped stoichiometric lithium tantalate (MgO:PPSLT) crystal as the frequency doubler in an external enhancement ring cavity. When the transmission of the input coupler is 5.5%, the maximal output power of single-frequency 397.5 nm UV laser of 407 mW is obtained under the incident pump power of 1.9 W with the corresponding conversion efficiency of 22.8%. When the output power is 290 mW, the measured power stability and the beam quality are lower than 0.28% and 1.02, respectively. Moreover, any damage is not observed in our experiment which lasts about 1 year.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation on the thermal characteristic of MgO:PPSLT crystal by transmission spectrum of a swept cavity

Jiao Wei, Huadong Lu, Pixian Jin, and Kunchi Peng
Opt. Express 25(4) 3545-3552 (2017)

Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime

Xin Wen, Yashuai Han, Jiandong Bai, Jun He, Yanhua Wang, Baodong Yang, and Junmin Wang
Opt. Express 22(26) 32293-32300 (2014)

Intracavity frequency-doubled and single-frequency Ti:sapphire laser with optimal length of the gain medium

Huadong Lu, Xuejun Sun, Jiao Wei, and Jing Su
Appl. Opt. 54(13) 4262-4266 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Wu, Z. Yan, Y. Liu, R. Deng, X. Jia, C. Xie, and K. Peng, “Experimental generation of tripartite polarization entangled states of bright optical beams,” Appl. Phys. Lett. 108, 161102 (2016).
    [Crossref]
  2. B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001).
    [Crossref]
  3. W. Yang, Y. Wang, Y. Zheng, and H. Lu, “Comparative study of the frequency-doubling performance on ring and linear cavity at short wavelength region,” Opt. Express 23(15), 19624–19633 (2015).
    [Crossref]
  4. Y. Han, X. Wen, J. Bai, B. Yang, Y. Wang, J. He, and J. Wang, “Generation of 130 mW of 397.5 nm tunable laser via ring-cavity-enhanced frequency doubling,” J. Opt. Soc. Am. B 31(8), 1942–1947 (2014).
    [Crossref]
  5. F. Villa, A. Chiummo, E. Giacobino, and A. Bramati, “High-efficiency blue-light generation with a ring cavity with periodically poled KTP,” J. Opt. Soc. Am. B 24(3), 576–580 (2007).
    [Crossref]
  6. http://www.coherent.com/products/index.cfm?341/MBD-200 .
  7. http://www.toptica.com/index.php?id=24 .
  8. H. Lu, X. Sun, J. Wei, and J. Su, “Intracavity frequency-doubled and single-frequency Ti:sapphire laser with optimal length of the gain medium,” Appl. Opt. 54(13), 4262–4266 (2015).
    [Crossref]
  9. X. Wen, Y. Han, and J. Wang, “Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals,” Laser Phys. 26, 045401 (2016).
    [Crossref]
  10. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
    [Crossref]
  11. G. K. Samanta, S. C. Kumar, and M. E. Zadeh, “Stable, 9.6 W, continuous-wave, single-frequency, fiber-based green source at 532 nm,” Opt. Lett. 34(10), 1561–1563 (2009).
    [Crossref]
  12. S. C. Kumar, G. K. Samanta, and M. E. Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17(16), 13711–13726 (2009).
    [Crossref]
  13. M. Stappel, D. Kolbe, and J. Walz, “Continuous-wave, double-pass second-harmonic generation with 60% efficiency in a single MgO:PPSLT crystal,” Opt. Lett. 39(10), 2951–2954 (2014).
    [Crossref]
  14. A. A. Surin, T. E. Borisenko, and S. V. Larin, “Generation of 14 W at 589 nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO:sPPLT crystal,” Opt. Lett. 41(11), 2644–2647 (2016).
    [Crossref]
  15. I. Ricciardi, M. De Rosa, A. Roccao, P. Ferraro, A. Vannucci, P. Spano, and P. De Natale, “Sum-frequency generation of cw ultraviolet radiation in periodically poled LiTaO3,” Opt. Lett. 34(9), 1348–1350 (2009).
    [Crossref]
  16. J. Hirohashi, K. Imai, H. Motegi, Y. Tomihari, T. Fukui, and Y. Furukawa, “Sub-watts 355 nm generation with 2nd- and 3rd- order-QPM PPMgSLT,” OSA/CLEO/QELSCMG4 (2010).
  17. X. Sun, J. Wei, W. Wang, and H. Lu, “Realization of a continuous frequency-tuning Ti:sapphire laser with an intracavity locked etalon,” Chin. Opt. Lett. 13(7), 071401 (2015).
    [Crossref]
  18. Y. Sun, H. Lu, and J. Su, “Continuous-wave, single-frequency, all-solid-state Ti:Al2O3 laser,” J. Quantum Opt. 14(3), 344–347 (2008).
  19. Q. Yin, H. Lu, and K. Peng, “Investigation of the thermal lens effect of the TGG crystal in high-power frequency-doubled laser with single frequency operation,” Opt. Express 23(4), 4981–4990 (2015).
    [Crossref]
  20. Q. Yin, H. Lu, J. Su, and K. Peng, “High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal,” Opt. Lett. 41(9), 2033–2036 (2016).
    [Crossref]
  21. M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
    [Crossref]
  22. E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett. 16(18), 1400–1402 (1991).
    [Crossref]
  23. M. Pizzocaro, D. Calonico, P. C. Pastor, J. Catani, G. A. Costanzo, F. Levi, and L. Lorini, “Efficient frequency doubling at 399 nm,” Appl. Opt. 53(16), 3388–3392 (2014).
    [Crossref]
  24. F. T. Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled KTP,” Opt. Commun. 227, 389–403 (2003).
    [Crossref]
  25. H. H. Lim, T. Katagai, S. Kurimura, T. Shimizu, K. Noguchi, N. Ohmae, N. Mio, and I. Shoji, “Thermal performance in high power SHG characterized by phase-matched calorimetry,” Opt. Express 19(23), 22588–22593 (2011).
    [Crossref]

2016 (4)

L. Wu, Z. Yan, Y. Liu, R. Deng, X. Jia, C. Xie, and K. Peng, “Experimental generation of tripartite polarization entangled states of bright optical beams,” Appl. Phys. Lett. 108, 161102 (2016).
[Crossref]

X. Wen, Y. Han, and J. Wang, “Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals,” Laser Phys. 26, 045401 (2016).
[Crossref]

Q. Yin, H. Lu, J. Su, and K. Peng, “High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal,” Opt. Lett. 41(9), 2033–2036 (2016).
[Crossref]

A. A. Surin, T. E. Borisenko, and S. V. Larin, “Generation of 14 W at 589 nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO:sPPLT crystal,” Opt. Lett. 41(11), 2644–2647 (2016).
[Crossref]

2015 (5)

2014 (3)

2011 (1)

2009 (3)

2008 (2)

2007 (1)

2003 (1)

F. T. Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled KTP,” Opt. Commun. 227, 389–403 (2003).
[Crossref]

2001 (1)

B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001).
[Crossref]

1991 (1)

Bai, J.

Borisenko, T. E.

Bramati, A.

Calonico, D.

Catani, J.

Chiummo, A.

Costanzo, G. A.

De Natale, P.

De Rosa, M.

Deng, R.

L. Wu, Z. Yan, Y. Liu, R. Deng, X. Jia, C. Xie, and K. Peng, “Experimental generation of tripartite polarization entangled states of bright optical beams,” Appl. Phys. Lett. 108, 161102 (2016).
[Crossref]

Ferraro, P.

Fukui, T.

J. Hirohashi, K. Imai, H. Motegi, Y. Tomihari, T. Fukui, and Y. Furukawa, “Sub-watts 355 nm generation with 2nd- and 3rd- order-QPM PPMgSLT,” OSA/CLEO/QELSCMG4 (2010).

Furukawa, Y.

J. Hirohashi, K. Imai, H. Motegi, Y. Tomihari, T. Fukui, and Y. Furukawa, “Sub-watts 355 nm generation with 2nd- and 3rd- order-QPM PPMgSLT,” OSA/CLEO/QELSCMG4 (2010).

Giacobino, E.

Goudarzi, F. T.

F. T. Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled KTP,” Opt. Commun. 227, 389–403 (2003).
[Crossref]

Han, Y.

X. Wen, Y. Han, and J. Wang, “Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals,” Laser Phys. 26, 045401 (2016).
[Crossref]

Y. Han, X. Wen, J. Bai, B. Yang, Y. Wang, J. He, and J. Wang, “Generation of 130 mW of 397.5 nm tunable laser via ring-cavity-enhanced frequency doubling,” J. Opt. Soc. Am. B 31(8), 1942–1947 (2014).
[Crossref]

He, J.

Hirohashi, J.

J. Hirohashi, K. Imai, H. Motegi, Y. Tomihari, T. Fukui, and Y. Furukawa, “Sub-watts 355 nm generation with 2nd- and 3rd- order-QPM PPMgSLT,” OSA/CLEO/QELSCMG4 (2010).

Imai, K.

J. Hirohashi, K. Imai, H. Motegi, Y. Tomihari, T. Fukui, and Y. Furukawa, “Sub-watts 355 nm generation with 2nd- and 3rd- order-QPM PPMgSLT,” OSA/CLEO/QELSCMG4 (2010).

Jia, X.

L. Wu, Z. Yan, Y. Liu, R. Deng, X. Jia, C. Xie, and K. Peng, “Experimental generation of tripartite polarization entangled states of bright optical beams,” Appl. Phys. Lett. 108, 161102 (2016).
[Crossref]

Julsgaard, B.

B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001).
[Crossref]

Katagai, T.

Kimble, H. J.

Kolbe, D.

Kozhekin, A.

B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001).
[Crossref]

Kumar, S. C.

Kurimura, S.

Larin, S. V.

Levi, F.

Lim, H. H.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref]

H. H. Lim, T. Katagai, S. Kurimura, T. Shimizu, K. Noguchi, N. Ohmae, N. Mio, and I. Shoji, “Thermal performance in high power SHG characterized by phase-matched calorimetry,” Opt. Express 19(23), 22588–22593 (2011).
[Crossref]

Liu, Y.

L. Wu, Z. Yan, Y. Liu, R. Deng, X. Jia, C. Xie, and K. Peng, “Experimental generation of tripartite polarization entangled states of bright optical beams,” Appl. Phys. Lett. 108, 161102 (2016).
[Crossref]

Lorini, L.

Lu, H.

Mio, N.

Moriwaki, S.

Motegi, H.

J. Hirohashi, K. Imai, H. Motegi, Y. Tomihari, T. Fukui, and Y. Furukawa, “Sub-watts 355 nm generation with 2nd- and 3rd- order-QPM PPMgSLT,” OSA/CLEO/QELSCMG4 (2010).

Nishizawa, N.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref]

Noguchi, K.

Ohmae, N.

Okamoto, R.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref]

Okano, M.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref]

Pastor, P. C.

Peng, K.

Pizzocaro, M.

Polzik, E. S.

B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001).
[Crossref]

E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett. 16(18), 1400–1402 (1991).
[Crossref]

Ricciardi, I.

Riis, E.

F. T. Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled KTP,” Opt. Commun. 227, 389–403 (2003).
[Crossref]

Roccao, A.

Samanta, G. K.

Shimizu, T.

Shoji, I.

Spano, P.

Stappel, M.

Su, J.

Sun, X.

Sun, Y.

Y. Sun, H. Lu, and J. Su, “Continuous-wave, single-frequency, all-solid-state Ti:Al2O3 laser,” J. Quantum Opt. 14(3), 344–347 (2008).

Surin, A. A.

Suzuki, I.

Takeno, K.

Takeuchi, S.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref]

Tomihari, Y.

J. Hirohashi, K. Imai, H. Motegi, Y. Tomihari, T. Fukui, and Y. Furukawa, “Sub-watts 355 nm generation with 2nd- and 3rd- order-QPM PPMgSLT,” OSA/CLEO/QELSCMG4 (2010).

Tovstonog, S. V.

Vannucci, A.

Villa, F.

Walz, J.

Wang, J.

X. Wen, Y. Han, and J. Wang, “Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals,” Laser Phys. 26, 045401 (2016).
[Crossref]

Y. Han, X. Wen, J. Bai, B. Yang, Y. Wang, J. He, and J. Wang, “Generation of 130 mW of 397.5 nm tunable laser via ring-cavity-enhanced frequency doubling,” J. Opt. Soc. Am. B 31(8), 1942–1947 (2014).
[Crossref]

Wang, W.

Wang, Y.

Wei, J.

Wen, X.

X. Wen, Y. Han, and J. Wang, “Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals,” Laser Phys. 26, 045401 (2016).
[Crossref]

Y. Han, X. Wen, J. Bai, B. Yang, Y. Wang, J. He, and J. Wang, “Generation of 130 mW of 397.5 nm tunable laser via ring-cavity-enhanced frequency doubling,” J. Opt. Soc. Am. B 31(8), 1942–1947 (2014).
[Crossref]

Wu, L.

L. Wu, Z. Yan, Y. Liu, R. Deng, X. Jia, C. Xie, and K. Peng, “Experimental generation of tripartite polarization entangled states of bright optical beams,” Appl. Phys. Lett. 108, 161102 (2016).
[Crossref]

Xie, C.

L. Wu, Z. Yan, Y. Liu, R. Deng, X. Jia, C. Xie, and K. Peng, “Experimental generation of tripartite polarization entangled states of bright optical beams,” Appl. Phys. Lett. 108, 161102 (2016).
[Crossref]

Yan, Z.

L. Wu, Z. Yan, Y. Liu, R. Deng, X. Jia, C. Xie, and K. Peng, “Experimental generation of tripartite polarization entangled states of bright optical beams,” Appl. Phys. Lett. 108, 161102 (2016).
[Crossref]

Yang, B.

Yang, W.

Yin, Q.

Zadeh, M. E.

Zheng, Y.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

L. Wu, Z. Yan, Y. Liu, R. Deng, X. Jia, C. Xie, and K. Peng, “Experimental generation of tripartite polarization entangled states of bright optical beams,” Appl. Phys. Lett. 108, 161102 (2016).
[Crossref]

Chin. Opt. Lett. (1)

J. Opt. Soc. Am. B (2)

J. Quantum Opt. (1)

Y. Sun, H. Lu, and J. Su, “Continuous-wave, single-frequency, all-solid-state Ti:Al2O3 laser,” J. Quantum Opt. 14(3), 344–347 (2008).

Laser Phys. (1)

X. Wen, Y. Han, and J. Wang, “Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals,” Laser Phys. 26, 045401 (2016).
[Crossref]

Nature (1)

B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001).
[Crossref]

Opt. Commun. (1)

F. T. Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled KTP,” Opt. Commun. 227, 389–403 (2003).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Sci. Rep. (1)

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref]

Other (3)

http://www.coherent.com/products/index.cfm?341/MBD-200 .

http://www.toptica.com/index.php?id=24 .

J. Hirohashi, K. Imai, H. Motegi, Y. Tomihari, T. Fukui, and Y. Furukawa, “Sub-watts 355 nm generation with 2nd- and 3rd- order-QPM PPMgSLT,” OSA/CLEO/QELSCMG4 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of frequency doubling system. f1,f2: coupling lens; HWP: half-wave plate; PBS: polarization beam splitter; PM: power meter; BQM: beam quality meter; PD: photodiode detector.

Fig. 2
Fig. 2

SHG power from the MgO:PPSLT crystal used in single pass at the output of the crystal.

Fig. 3
Fig. 3

Output power of the single-frequency 397.5nm UV laser.

Fig. 4
Fig. 4

Conversion efficiency versus the incident pump power.

Fig. 5
Fig. 5

The resonant signals of the cavity. (a) optimal phase-matching temperature, (b) detuning far from the phase-matching temperature.

Fig. 6
Fig. 6

The temperature tuning curve of the MgO:PPSLT crystal.

Fig. 7
Fig. 7

Power stability of the 397.5 nm UV laser for 30 min.

Fig. 8
Fig. 8

Frequency drift of the 397.5 nm laser.

Fig. 9
Fig. 9

Measured M2 values and the spatial beam profile for the 397.5 nm UV laser.

Fig. 10
Fig. 10

Measured intensity noise of the generated 397.5 nm laser compared to 795 nm laser.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T opt = L 2 + L 2 4 + E nl P in

Metrics