Abstract

In this paper, we investigate the relationship between depth perception and several disparity parameters in stereoscopic images. A number of subjective experiments were conducted using various 3D displays, which indicate that depth perception of stereoscopic images is proportional to depth difference and is inversely related to the camera distance. Based on this observation, we developed some formulas to quantify the degree of depth perception of stereoscopic images. The proposed method uses depth differences and the camera distance between the objects and the 3D camera. This method also produces improved depth perception estimation by using non-linear functions whose inputs include a depth difference and a camera distance. The results show that the proposed method provides noticeable improvements in terms of correlation and produces more accurate depth perception estimations of stereoscopic images.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Some Aspects of Stereoscopic Depth Perception*†

Kenneth N. Ogle
J. Opt. Soc. Am. 57(9) 1073-1081 (1967)

Precision and Validity of Stereoscopic Depth Perception from Double Images*

Kenneth N. Ogle
J. Opt. Soc. Am. 43(10) 906-913 (1953)

Single-channel stereoscopic video imaging modality based on transparent rotating deflector

Edalat Radfar, Won Hyuk Jang, Leila Freidoony, Jihoon Park, Kichul Kwon, and Byungjo Jung
Opt. Express 23(21) 27661-27671 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. Julesz, “Binocular depth perception computer-generated patterns,” Bell Syst. Tech. J. 39(5), 1125–1162 (1960).
    [Crossref]
  2. B. Julesz, Foundations of Cyclopean Perception (Chicago University, 1971).
  3. B. Julesz, “Binocular depth perception with familiarity cues,” Science 145(3630), 356–362 (1964).
    [Crossref] [PubMed]
  4. B. Rogers and M. Graham, “Similarities between motion parallax and stereopsis in human depth perception,” Vision Res. 22(2), 261–270 (1982).
    [Crossref] [PubMed]
  5. B. Rogers and M. Graham, “Motion parallax as an independent cue for depth perception,” Perception 8(2), 125–134 (1979).
    [Crossref] [PubMed]
  6. I. P. Howard and B. J. Rogers, Binocular Vision and Stereopsis (Oxford University, 1995).
  7. H. M. S. Langlands, “Experiments in binocular vision,” Trans. Opt. Soc. 28(2), 45–82 (1926).
    [Crossref]
  8. F. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2), 99–108 (2004).
    [Crossref]
  9. F. Speranza, W. Tam, R. Renaud, and N. Hur, “Effect of disparity and motion on visual comfort of stereoscopic images,” Proc. SPIE 6055, 60550B (2006).
    [Crossref]
  10. ITU-R, “Methodology for the subjective assessment of the quality of television pictures,” ITU-R Recommendation BT.500–11 (2003).
  11. ITU-R, “Subjective methods for the assessment of stereoscopic 3DTV systems,” Recommendation ITU-R BT.2021 (2012).
  12. I. Tsirlin, L. Wilcox, and R. Allison, “The effect of crosstalk on the perceived depth from disparity and monocular occlusions,” IEEE Trans. Broadcast 57(2), 445–453 (2011).
    [Crossref]
  13. R. Patterson, “Human factors of 3‐D displays,” J. Soc. Inf. Disp. 15(11), 861–871 (2007).
    [Crossref]
  14. ITU-T, “Subjective video quality assessment methods for multimedia applications,” ITU-T Recommendation P.910 (2008).
  15. L. S. Sasieni, The Principles and Practice of Optical Dispensing and Fitting (Butterworths, 1975).
  16. G. Snedecor and W. Cochran, Statistical Methods (Oxford & IBH, 1967).
  17. D. Anderson, D. Sweeney, and T. Williams, Statistics for Business & Economics (Cengage Learning, 2011).
  18. R. Lomax, Statistical Concepts: a Second Course (Routledge, 2007).
  19. G. Box, “Non-normality and tests on variances,” Biometrika 40(3/4), 318–335 (1953).
    [Crossref]
  20. R. Duda, P. Hart, and D. Stork, Pattern Classification (John Wiley & Sons, 2012).
  21. N. Qian, “Binocular disparity and the perception of depth,” Neuron 18(3), 359–368 (1997).
    [Crossref] [PubMed]

2011 (1)

I. Tsirlin, L. Wilcox, and R. Allison, “The effect of crosstalk on the perceived depth from disparity and monocular occlusions,” IEEE Trans. Broadcast 57(2), 445–453 (2011).
[Crossref]

2007 (1)

R. Patterson, “Human factors of 3‐D displays,” J. Soc. Inf. Disp. 15(11), 861–871 (2007).
[Crossref]

2006 (1)

F. Speranza, W. Tam, R. Renaud, and N. Hur, “Effect of disparity and motion on visual comfort of stereoscopic images,” Proc. SPIE 6055, 60550B (2006).
[Crossref]

2004 (1)

F. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2), 99–108 (2004).
[Crossref]

1997 (1)

N. Qian, “Binocular disparity and the perception of depth,” Neuron 18(3), 359–368 (1997).
[Crossref] [PubMed]

1982 (1)

B. Rogers and M. Graham, “Similarities between motion parallax and stereopsis in human depth perception,” Vision Res. 22(2), 261–270 (1982).
[Crossref] [PubMed]

1979 (1)

B. Rogers and M. Graham, “Motion parallax as an independent cue for depth perception,” Perception 8(2), 125–134 (1979).
[Crossref] [PubMed]

1964 (1)

B. Julesz, “Binocular depth perception with familiarity cues,” Science 145(3630), 356–362 (1964).
[Crossref] [PubMed]

1960 (1)

B. Julesz, “Binocular depth perception computer-generated patterns,” Bell Syst. Tech. J. 39(5), 1125–1162 (1960).
[Crossref]

1953 (1)

G. Box, “Non-normality and tests on variances,” Biometrika 40(3/4), 318–335 (1953).
[Crossref]

1926 (1)

H. M. S. Langlands, “Experiments in binocular vision,” Trans. Opt. Soc. 28(2), 45–82 (1926).
[Crossref]

Allison, R.

I. Tsirlin, L. Wilcox, and R. Allison, “The effect of crosstalk on the perceived depth from disparity and monocular occlusions,” IEEE Trans. Broadcast 57(2), 445–453 (2011).
[Crossref]

Box, G.

G. Box, “Non-normality and tests on variances,” Biometrika 40(3/4), 318–335 (1953).
[Crossref]

Graham, M.

B. Rogers and M. Graham, “Similarities between motion parallax and stereopsis in human depth perception,” Vision Res. 22(2), 261–270 (1982).
[Crossref] [PubMed]

B. Rogers and M. Graham, “Motion parallax as an independent cue for depth perception,” Perception 8(2), 125–134 (1979).
[Crossref] [PubMed]

Hur, N.

F. Speranza, W. Tam, R. Renaud, and N. Hur, “Effect of disparity and motion on visual comfort of stereoscopic images,” Proc. SPIE 6055, 60550B (2006).
[Crossref]

Julesz, B.

B. Julesz, “Binocular depth perception with familiarity cues,” Science 145(3630), 356–362 (1964).
[Crossref] [PubMed]

B. Julesz, “Binocular depth perception computer-generated patterns,” Bell Syst. Tech. J. 39(5), 1125–1162 (1960).
[Crossref]

Kooi, F.

F. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2), 99–108 (2004).
[Crossref]

Langlands, H. M. S.

H. M. S. Langlands, “Experiments in binocular vision,” Trans. Opt. Soc. 28(2), 45–82 (1926).
[Crossref]

Patterson, R.

R. Patterson, “Human factors of 3‐D displays,” J. Soc. Inf. Disp. 15(11), 861–871 (2007).
[Crossref]

Qian, N.

N. Qian, “Binocular disparity and the perception of depth,” Neuron 18(3), 359–368 (1997).
[Crossref] [PubMed]

Renaud, R.

F. Speranza, W. Tam, R. Renaud, and N. Hur, “Effect of disparity and motion on visual comfort of stereoscopic images,” Proc. SPIE 6055, 60550B (2006).
[Crossref]

Rogers, B.

B. Rogers and M. Graham, “Similarities between motion parallax and stereopsis in human depth perception,” Vision Res. 22(2), 261–270 (1982).
[Crossref] [PubMed]

B. Rogers and M. Graham, “Motion parallax as an independent cue for depth perception,” Perception 8(2), 125–134 (1979).
[Crossref] [PubMed]

Speranza, F.

F. Speranza, W. Tam, R. Renaud, and N. Hur, “Effect of disparity and motion on visual comfort of stereoscopic images,” Proc. SPIE 6055, 60550B (2006).
[Crossref]

Tam, W.

F. Speranza, W. Tam, R. Renaud, and N. Hur, “Effect of disparity and motion on visual comfort of stereoscopic images,” Proc. SPIE 6055, 60550B (2006).
[Crossref]

Toet, A.

F. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2), 99–108 (2004).
[Crossref]

Tsirlin, I.

I. Tsirlin, L. Wilcox, and R. Allison, “The effect of crosstalk on the perceived depth from disparity and monocular occlusions,” IEEE Trans. Broadcast 57(2), 445–453 (2011).
[Crossref]

Wilcox, L.

I. Tsirlin, L. Wilcox, and R. Allison, “The effect of crosstalk on the perceived depth from disparity and monocular occlusions,” IEEE Trans. Broadcast 57(2), 445–453 (2011).
[Crossref]

Bell Syst. Tech. J. (1)

B. Julesz, “Binocular depth perception computer-generated patterns,” Bell Syst. Tech. J. 39(5), 1125–1162 (1960).
[Crossref]

Biometrika (1)

G. Box, “Non-normality and tests on variances,” Biometrika 40(3/4), 318–335 (1953).
[Crossref]

Displays (1)

F. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2), 99–108 (2004).
[Crossref]

IEEE Trans. Broadcast (1)

I. Tsirlin, L. Wilcox, and R. Allison, “The effect of crosstalk on the perceived depth from disparity and monocular occlusions,” IEEE Trans. Broadcast 57(2), 445–453 (2011).
[Crossref]

J. Soc. Inf. Disp. (1)

R. Patterson, “Human factors of 3‐D displays,” J. Soc. Inf. Disp. 15(11), 861–871 (2007).
[Crossref]

Neuron (1)

N. Qian, “Binocular disparity and the perception of depth,” Neuron 18(3), 359–368 (1997).
[Crossref] [PubMed]

Perception (1)

B. Rogers and M. Graham, “Motion parallax as an independent cue for depth perception,” Perception 8(2), 125–134 (1979).
[Crossref] [PubMed]

Proc. SPIE (1)

F. Speranza, W. Tam, R. Renaud, and N. Hur, “Effect of disparity and motion on visual comfort of stereoscopic images,” Proc. SPIE 6055, 60550B (2006).
[Crossref]

Science (1)

B. Julesz, “Binocular depth perception with familiarity cues,” Science 145(3630), 356–362 (1964).
[Crossref] [PubMed]

Trans. Opt. Soc. (1)

H. M. S. Langlands, “Experiments in binocular vision,” Trans. Opt. Soc. 28(2), 45–82 (1926).
[Crossref]

Vision Res. (1)

B. Rogers and M. Graham, “Similarities between motion parallax and stereopsis in human depth perception,” Vision Res. 22(2), 261–270 (1982).
[Crossref] [PubMed]

Other (10)

B. Julesz, Foundations of Cyclopean Perception (Chicago University, 1971).

ITU-R, “Methodology for the subjective assessment of the quality of television pictures,” ITU-R Recommendation BT.500–11 (2003).

ITU-R, “Subjective methods for the assessment of stereoscopic 3DTV systems,” Recommendation ITU-R BT.2021 (2012).

I. P. Howard and B. J. Rogers, Binocular Vision and Stereopsis (Oxford University, 1995).

R. Duda, P. Hart, and D. Stork, Pattern Classification (John Wiley & Sons, 2012).

ITU-T, “Subjective video quality assessment methods for multimedia applications,” ITU-T Recommendation P.910 (2008).

L. S. Sasieni, The Principles and Practice of Optical Dispensing and Fitting (Butterworths, 1975).

G. Snedecor and W. Cochran, Statistical Methods (Oxford & IBH, 1967).

D. Anderson, D. Sweeney, and T. Williams, Statistics for Business & Economics (Cengage Learning, 2011).

R. Lomax, Statistical Concepts: a Second Course (Routledge, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Fig. 1
Fig. 1

Viewing environments (H: monitor height): (a) TV monitor, (b) PC monitor, (c) notebooks.

Fig. 2
Fig. 2

Camera distance and depth differences.

Fig. 3
Fig. 3

Example of the test images: (a) left and right images, (b) combined image, (c) object A, (d) object B, (e) object C, (f) object D.

Fig. 4
Fig. 4

Relationship between object widths and distances (object A).

Fig. 5
Fig. 5

(a) disparity difference distributions, (b) average disparity differences.

Fig. 6
Fig. 6

Disparity difference histogram.

Fig. 7
Fig. 7

Test image presentation.

Fig. 8
Fig. 8

Depth perception accuracy at depth differences (Display A): (a) distance = 400 cm, (b) distance = 450cm, (c) distance = 500cm, (d) distance = 550cm.

Fig. 9
Fig. 9

Depth perception accuracy at depth differences (Display B): (a) distance = 400 cm, (b) distance = 450cm, (c) distance = 500cm, (d) distance = 550cm.

Fig. 10
Fig. 10

Depth perception accuracy at depth differences (Display C): (a) distance = 400 cm, (b) distance = 450cm, (c) distance = 500cm, (d) distance = 550cm.

Fig. 11
Fig. 11

Depth perception accuracy at depth differences (Display D): (a) distance = 400 cm, (b) distance = 450cm, (c) distance = 500cm, (d) distance = 550cm.

Fig. 12
Fig. 12

Scatter plots between each pair of displays.

Fig. 13
Fig. 13

Depth perception accuracy at different interpupillary distances: (a) Display A, (b) Display B, (c) Display C, (d) Display D.

Fig. 14
Fig. 14

Depth perception accuracy at the stereoscopic acuity level: (a) Display A, (b) Display B, (c) Display C, (d) Display D.

Fig. 15
Fig. 15

Depth perception accuracy at the depth ratio: (a) Display A, (b) Display B, (c) Display C, (d) Display D.

Fig. 16
Fig. 16

Curve fitting.

Fig. 17
Fig. 17

Curve fitting (left: positive disparity, right: negative disparity): (a-b) sigmoid function (asymptotically correct model), (c-d) exponential function (the non-asymptotically correct), (e-f) logarithmic function (the non-asymptotically correct).

Fig. 18
Fig. 18

Differences between real accuracy and estimated accuracy (sigmoid functions, leave-one-out): (a) Display A, (b) Display B, (c) Display C, (d) Display D.

Fig. 19
Fig. 19

Example of stereo random dot generated images.

Fig. 20
Fig. 20

Depth perception accuracy at disparity difference: (a) positive disparity, (b) negative disparity.

Fig. 21
Fig. 21

Binocular disparity in stereoscopic images.

Fig. 22
Fig. 22

Depth perception accuracy at binocular disparity: (a) Display A, (b) Display B, (c) Display C, (d) Display D.

Fig. 23
Fig. 23

(a) horizontal movement, (b) computational disparity as a function of horizontal location.

Fig. 24
Fig. 24

(a) two objects with a fixed horizontal distance and a fixed depth difference, (b) computational disparity as a function of horizontal location of object M.

Tables (14)

Tables Icon

Table 1 Display specifications used in the subjective experiments

Tables Icon

Table 2 Test conditions

Tables Icon

Table 3 Depth perception accuracy of each display

Tables Icon

Table 4 The correlation coefficients between each pair of displays

Tables Icon

Table 5 Performance comparison

Tables Icon

Table 6 The results of the two-way ANOVA test (camera distance, depth difference): (a) Display A, (b) Display B, (c) Display C, (d) Display D

Tables Icon

Table 7 The results of the one-way ANOVA test (depth ratio)

Tables Icon

Table 8 Performance analyses of the three functions (Display A)

Tables Icon

Table 9 Performance analyses of the three functions (Display B)

Tables Icon

Table 10 Performance analyses of the three functions (Display C)

Tables Icon

Table 11 Performance analyses of the three functions (Display D)

Tables Icon

Table 12 The correlation coefficients for the random dot stereo images

Tables Icon

Table 13 Computational disparity of various combinations of camera distances and depth differences

Tables Icon

Table 14 Accuracy correlation comparison of the computational disparity and the proposed model

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

depthperceptionaccuracy= Thenumberofviewerswhochoosecorrectobject Thetotalnumberofviewers
depthratio= Thedepthdifferencebetweenobjects Thedistancebetweencameraandobjects
Sigmoid:f(x)= a (1+ e bx ) +c
Exponential:f(x)= a 1 exp( b 1 x)+ a 2 exp( b 2 x)
Logarithmic:f(x)=alog(x)+b

Metrics