Abstract

In this paper, full-wave electromagnetic scattering theory is employed to investigate illusion and invisibility of inhomogeneous anisotropic cylinders and spheres. With the use of a shell designed according to Mie series theory for multiple piecewise anisotropic layers, radar cross section (RCS) of the coated inhomogeneous anisotropic object can be dramatically reduced or disguised as another object in the long-wavelength limit. With the suitable adjustment of the anisotropy parameters of the shell, optimal illusion and invisibility characteristics of the coated inhomogeneous anisotropic object can be achieved. Details of theoretical analysis and numerical examples are presented to validate the proposed methodology.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cloaking design for arbitrarily shape objects based on characteristic mode method

Yan Shi and Lin Zhang
Opt. Express 25(26) 32263-32279 (2017)

Virtual conversion from metal object to dielectric object using metamaterials

Wei Xiang Jiang, Hui Feng Ma, Qiang Cheng, and Tie Jun Cui
Opt. Express 18(11) 11276-11281 (2010)

Bifunctional arbitrarily-shaped cloak for thermal and electric manipulations

Lin Zhang and Yan Shi
Opt. Mater. Express 8(9) 2600-2613 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [Crossref] [PubMed]
  3. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
    [Crossref] [PubMed]
  4. U. Leonhardt, “Notes on conformal invisibility devices,” New J. Phys. 8(7), 118 (2006).
    [Crossref]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  6. W. X. Jiang and T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(2), 026601 (2011).
    [Crossref] [PubMed]
  7. W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98(20), 204101 (2011).
    [Crossref]
  8. W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusion using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
    [Crossref]
  9. Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
    [Crossref] [PubMed]
  10. Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
    [Crossref]
  11. F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “Exernal invisibility cloak for multi-objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
    [Crossref]
  12. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
    [Crossref] [PubMed]
  13. H. Chen, X. Luo, H. Ma, and C. T. Chan, “The anti-cloak,” Opt. Express 16(19), 14603–14608 (2008).
    [Crossref] [PubMed]
  14. G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Cloak/anti-cloak interactions,” Opt. Express 17(5), 3101–3114 (2009).
    [Crossref] [PubMed]
  15. N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009).
    [Crossref] [PubMed]
  16. J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express 18(1), 244–252 (2010).
    [Crossref] [PubMed]
  17. T. M. McManus, J. A. Valiente-Kroon, S. A. R. Horsley, and Y. Hao, “Illusions and cloaks for surface waves,” Sci. Rep. 4, 5977 (2014).
    [Crossref] [PubMed]
  18. S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
    [Crossref] [PubMed]
  19. C. Gu, Y. Xu, S. Li, W. Lu, J. Li, H. Chen, and B. Hou, “A broadband polarization-insensitive cloak based on mode conversion,” Sci. Rep. 5, 12106 (2015).
    [Crossref] [PubMed]
  20. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  21. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
    [Crossref] [PubMed]
  22. A. Alú and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
    [Crossref]
  23. Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5(3), 251–258 (2010).
    [Crossref]
  24. Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
    [Crossref]
  25. F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” New J. Phys. 10(11), 115035 (2008).
    [Crossref]
  26. A. Alú, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12(10), 103028 (2010).
    [Crossref]
  27. Z. H. Jiang and D. H. Werner, “Quasi-three-dimensional angle-tolerant electromagnetic illusion using ultrathin metasurface coatings,” Adv. Funct. Mater. 24(48), 7728–7736 (2014).
    [Crossref]
  28. J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alú, “Dual-polarized reduction of dipole antenna blockage using mantle cloaks,” IEEE Trans. Antenn. Propag. 63(11), 4827–4834 (2015).
    [Crossref]
  29. F. Yang, Z. L. Mei, W. X. Jiang, and T. J. Cui, “Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation,” J. Opt. 17(10), 105610 (2015).
    [Crossref]
  30. L. Zhang, Y. Shi, and C. H. Liang, “Achieving illusion and invisibility of inhomogeneous cylinders and spheres,” J. Opt. 18(8), 085101 (2016).
    [Crossref]
  31. N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
    [Crossref]
  32. C. W. Qiu, L. W. Li, T. S. Yeo, and S. Zouhdi, “Scattering by rotationally symmetric anisotropic spheres: potential formulation and parametric studies,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026609 (2007).
    [Crossref] [PubMed]
  33. Y. L. Geng, C. W. Qiu, and N. Yuan, “Exact solution to electromagnetic scattering by an impedance sphere coated with a uniaxial anisotropic layer,” IEEE Trans. Antenn. Propag. 57(2), 572–576 (2009).
    [Crossref]
  34. S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2), 026602 (2010).
    [Crossref] [PubMed]
  35. A. Monti, J. C. Soric, A. Alú, A. Toscano, and F. Bilotti, “Anisotropic mantle cloaks for TM and TE scattering reduction,” IEEE Trans. Antenn. Propag. 63(4), 1775–1788 (2015).
    [Crossref]
  36. J. M. Jin, Theory and Computation of Electromagnetic Field (IEEE, 2010).
  37. S. Khosravi, A. Rostami, G. Rostami, and M. Dolatyari, “Midinfrared invisibility cloak design using composite optical materials,” IEEE J. Sel. Top. Quantum Electron. 22(1), 4600206 (2016).
    [Crossref]
  38. M. Danaeifar, N. Granpayeh, and M. R. Booket, “Optical invisibility of cylindrical structures and homogeneity effect on scattering cancellation method,” Electron. Lett. 52(1), 29–31 (2016).
    [Crossref]
  39. A. R. Katritzky, S. Sild, and M. Karelson, “Correlation and prediction of the refractive indices of polymers by QSPR,” J. Chem. Inf. Comput. Sci. 38(6), 1171–1176 (1998).
    [Crossref]
  40. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493 (1985).
    [Crossref] [PubMed]

2016 (3)

L. Zhang, Y. Shi, and C. H. Liang, “Achieving illusion and invisibility of inhomogeneous cylinders and spheres,” J. Opt. 18(8), 085101 (2016).
[Crossref]

S. Khosravi, A. Rostami, G. Rostami, and M. Dolatyari, “Midinfrared invisibility cloak design using composite optical materials,” IEEE J. Sel. Top. Quantum Electron. 22(1), 4600206 (2016).
[Crossref]

M. Danaeifar, N. Granpayeh, and M. R. Booket, “Optical invisibility of cylindrical structures and homogeneity effect on scattering cancellation method,” Electron. Lett. 52(1), 29–31 (2016).
[Crossref]

2015 (7)

A. Monti, J. C. Soric, A. Alú, A. Toscano, and F. Bilotti, “Anisotropic mantle cloaks for TM and TE scattering reduction,” IEEE Trans. Antenn. Propag. 63(4), 1775–1788 (2015).
[Crossref]

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alú, “Dual-polarized reduction of dipole antenna blockage using mantle cloaks,” IEEE Trans. Antenn. Propag. 63(11), 4827–4834 (2015).
[Crossref]

F. Yang, Z. L. Mei, W. X. Jiang, and T. J. Cui, “Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation,” J. Opt. 17(10), 105610 (2015).
[Crossref]

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

C. Gu, Y. Xu, S. Li, W. Lu, J. Li, H. Chen, and B. Hou, “A broadband polarization-insensitive cloak based on mode conversion,” Sci. Rep. 5, 12106 (2015).
[Crossref] [PubMed]

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

2014 (4)

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “Exernal invisibility cloak for multi-objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

T. M. McManus, J. A. Valiente-Kroon, S. A. R. Horsley, and Y. Hao, “Illusions and cloaks for surface waves,” Sci. Rep. 4, 5977 (2014).
[Crossref] [PubMed]

Z. H. Jiang and D. H. Werner, “Quasi-three-dimensional angle-tolerant electromagnetic illusion using ultrathin metasurface coatings,” Adv. Funct. Mater. 24(48), 7728–7736 (2014).
[Crossref]

2013 (1)

W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusion using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

2011 (2)

W. X. Jiang and T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(2), 026601 (2011).
[Crossref] [PubMed]

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98(20), 204101 (2011).
[Crossref]

2010 (4)

Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5(3), 251–258 (2010).
[Crossref]

A. Alú, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12(10), 103028 (2010).
[Crossref]

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2), 026602 (2010).
[Crossref] [PubMed]

J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express 18(1), 244–252 (2010).
[Crossref] [PubMed]

2009 (5)

G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Cloak/anti-cloak interactions,” Opt. Express 17(5), 3101–3114 (2009).
[Crossref] [PubMed]

N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009).
[Crossref] [PubMed]

Y. L. Geng, C. W. Qiu, and N. Yuan, “Exact solution to electromagnetic scattering by an impedance sphere coated with a uniaxial anisotropic layer,” IEEE Trans. Antenn. Propag. 57(2), 572–576 (2009).
[Crossref]

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

2008 (3)

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

H. Chen, X. Luo, H. Ma, and C. T. Chan, “The anti-cloak,” Opt. Express 16(19), 14603–14608 (2008).
[Crossref] [PubMed]

F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” New J. Phys. 10(11), 115035 (2008).
[Crossref]

2007 (1)

C. W. Qiu, L. W. Li, T. S. Yeo, and S. Zouhdi, “Scattering by rotationally symmetric anisotropic spheres: potential formulation and parametric studies,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026609 (2007).
[Crossref] [PubMed]

2006 (5)

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

U. Leonhardt, “Notes on conformal invisibility devices,” New J. Phys. 8(7), 118 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

2005 (2)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

A. Alú and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
[Crossref]

1998 (1)

A. R. Katritzky, S. Sild, and M. Karelson, “Correlation and prediction of the refractive indices of polymers by QSPR,” J. Chem. Inf. Comput. Sci. 38(6), 1171–1176 (1998).
[Crossref]

1985 (1)

Alexander, R. W.

Alú, A.

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alú, “Dual-polarized reduction of dipole antenna blockage using mantle cloaks,” IEEE Trans. Antenn. Propag. 63(11), 4827–4834 (2015).
[Crossref]

A. Monti, J. C. Soric, A. Alú, A. Toscano, and F. Bilotti, “Anisotropic mantle cloaks for TM and TE scattering reduction,” IEEE Trans. Antenn. Propag. 63(4), 1775–1788 (2015).
[Crossref]

A. Alú, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12(10), 103028 (2010).
[Crossref]

A. Alú and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
[Crossref]

Alù, A.

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2), 026602 (2010).
[Crossref] [PubMed]

G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Cloak/anti-cloak interactions,” Opt. Express 17(5), 3101–3114 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Bell, R. J.

Bilotti, F.

A. Monti, J. C. Soric, A. Alú, A. Toscano, and F. Bilotti, “Anisotropic mantle cloaks for TM and TE scattering reduction,” IEEE Trans. Antenn. Propag. 63(4), 1775–1788 (2015).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alú, “Dual-polarized reduction of dipole antenna blockage using mantle cloaks,” IEEE Trans. Antenn. Propag. 63(11), 4827–4834 (2015).
[Crossref]

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2), 026602 (2010).
[Crossref] [PubMed]

F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” New J. Phys. 10(11), 115035 (2008).
[Crossref]

Booket, M. R.

M. Danaeifar, N. Granpayeh, and M. R. Booket, “Optical invisibility of cylindrical structures and homogeneity effect on scattering cancellation method,” Electron. Lett. 52(1), 29–31 (2016).
[Crossref]

Castaldi, G.

Chan, C. T.

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

H. Chen, X. Luo, H. Ma, and C. T. Chan, “The anti-cloak,” Opt. Express 16(19), 14603–14608 (2008).
[Crossref] [PubMed]

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Chen, H.

C. Gu, Y. Xu, S. Li, W. Lu, J. Li, H. Chen, and B. Hou, “A broadband polarization-insensitive cloak based on mode conversion,” Sci. Rep. 5, 12106 (2015).
[Crossref] [PubMed]

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

H. Chen, X. Luo, H. Ma, and C. T. Chan, “The anti-cloak,” Opt. Express 16(19), 14603–14608 (2008).
[Crossref] [PubMed]

Chen, H. B.

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

Cheng, Q.

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98(20), 204101 (2011).
[Crossref]

Cui, T. J.

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

F. Yang, Z. L. Mei, W. X. Jiang, and T. J. Cui, “Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation,” J. Opt. 17(10), 105610 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusion using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

W. X. Jiang and T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(2), 026601 (2011).
[Crossref] [PubMed]

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98(20), 204101 (2011).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Danaeifar, M.

M. Danaeifar, N. Granpayeh, and M. R. Booket, “Optical invisibility of cylindrical structures and homogeneity effect on scattering cancellation method,” Electron. Lett. 52(1), 29–31 (2016).
[Crossref]

Dolatyari, M.

S. Khosravi, A. Rostami, G. Rostami, and M. Dolatyari, “Midinfrared invisibility cloak design using composite optical materials,” IEEE J. Sel. Top. Quantum Electron. 22(1), 4600206 (2016).
[Crossref]

Engheta, N.

G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Cloak/anti-cloak interactions,” Opt. Express 17(5), 3101–3114 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

A. Alú and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
[Crossref]

Galdi, V.

Gallina, I.

Gao, H.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Gao, L.

Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5(3), 251–258 (2010).
[Crossref]

Geng, Y. L.

Y. L. Geng, C. W. Qiu, and N. Yuan, “Exact solution to electromagnetic scattering by an impedance sphere coated with a uniaxial anisotropic layer,” IEEE Trans. Antenn. Propag. 57(2), 572–576 (2009).
[Crossref]

Granpayeh, N.

M. Danaeifar, N. Granpayeh, and M. R. Booket, “Optical invisibility of cylindrical structures and homogeneity effect on scattering cancellation method,” Electron. Lett. 52(1), 29–31 (2016).
[Crossref]

Gu, C.

C. Gu, Y. Xu, S. Li, W. Lu, J. Li, H. Chen, and B. Hou, “A broadband polarization-insensitive cloak based on mode conversion,” Sci. Rep. 5, 12106 (2015).
[Crossref] [PubMed]

Han, T. C.

W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusion using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

Hao, Y.

T. M. McManus, J. A. Valiente-Kroon, S. A. R. Horsley, and Y. Hao, “Illusions and cloaks for surface waves,” Sci. Rep. 4, 5977 (2014).
[Crossref] [PubMed]

Horsley, S. A. R.

T. M. McManus, J. A. Valiente-Kroon, S. A. R. Horsley, and Y. Hao, “Illusions and cloaks for surface waves,” Sci. Rep. 4, 5977 (2014).
[Crossref] [PubMed]

Hou, B.

C. Gu, Y. Xu, S. Li, W. Lu, J. Li, H. Chen, and B. Hou, “A broadband polarization-insensitive cloak based on mode conversion,” Sci. Rep. 5, 12106 (2015).
[Crossref] [PubMed]

Huo, F. F.

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “Exernal invisibility cloak for multi-objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

Jiang, W. X.

F. Yang, Z. L. Mei, W. X. Jiang, and T. J. Cui, “Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation,” J. Opt. 17(10), 105610 (2015).
[Crossref]

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusion using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

W. X. Jiang and T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(2), 026601 (2011).
[Crossref] [PubMed]

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98(20), 204101 (2011).
[Crossref]

Jiang, Y.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Jiang, Z. H.

Z. H. Jiang and D. H. Werner, “Quasi-three-dimensional angle-tolerant electromagnetic illusion using ultrathin metasurface coatings,” Adv. Funct. Mater. 24(48), 7728–7736 (2014).
[Crossref]

J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express 18(1), 244–252 (2010).
[Crossref] [PubMed]

Joannopoulos, J. D.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Karelson, M.

A. R. Katritzky, S. Sild, and M. Karelson, “Correlation and prediction of the refractive indices of polymers by QSPR,” J. Chem. Inf. Comput. Sci. 38(6), 1171–1176 (1998).
[Crossref]

Katritzky, A. R.

A. R. Katritzky, S. Sild, and M. Karelson, “Correlation and prediction of the refractive indices of polymers by QSPR,” J. Chem. Inf. Comput. Sci. 38(6), 1171–1176 (1998).
[Crossref]

Kerkhoff, A.

A. Alú, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12(10), 103028 (2010).
[Crossref]

Khosravi, S.

S. Khosravi, A. Rostami, G. Rostami, and M. Dolatyari, “Midinfrared invisibility cloak design using composite optical materials,” IEEE J. Sel. Top. Quantum Electron. 22(1), 4600206 (2016).
[Crossref]

Lai, Y.

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

Landy, N. I.

Leonhardt, U.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

U. Leonhardt, “Notes on conformal invisibility devices,” New J. Phys. 8(7), 118 (2006).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

Li, J.

C. Gu, Y. Xu, S. Li, W. Lu, J. Li, H. Chen, and B. Hou, “A broadband polarization-insensitive cloak based on mode conversion,” Sci. Rep. 5, 12106 (2015).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Li, L.

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “Exernal invisibility cloak for multi-objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

Li, L. W.

C. W. Qiu, L. W. Li, T. S. Yeo, and S. Zouhdi, “Scattering by rotationally symmetric anisotropic spheres: potential formulation and parametric studies,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026609 (2007).
[Crossref] [PubMed]

Li, S.

C. Gu, Y. Xu, S. Li, W. Lu, J. Li, H. Chen, and B. Hou, “A broadband polarization-insensitive cloak based on mode conversion,” Sci. Rep. 5, 12106 (2015).
[Crossref] [PubMed]

Li, T.

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “Exernal invisibility cloak for multi-objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

Liang, C. H.

L. Zhang, Y. Shi, and C. H. Liang, “Achieving illusion and invisibility of inhomogeneous cylinders and spheres,” J. Opt. 18(8), 085101 (2016).
[Crossref]

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “Exernal invisibility cloak for multi-objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

Long, L. L.

Lu, W.

C. Gu, Y. Xu, S. Li, W. Lu, J. Li, H. Chen, and B. Hou, “A broadband polarization-insensitive cloak based on mode conversion,” Sci. Rep. 5, 12106 (2015).
[Crossref] [PubMed]

Luo, X.

Ma, H.

Ma, H. F.

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98(20), 204101 (2011).
[Crossref]

Massoud, A. T.

McManus, T. M.

T. M. McManus, J. A. Valiente-Kroon, S. A. R. Horsley, and Y. Hao, “Illusions and cloaks for surface waves,” Sci. Rep. 4, 5977 (2014).
[Crossref] [PubMed]

Mei, Z. L.

F. Yang, Z. L. Mei, W. X. Jiang, and T. J. Cui, “Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation,” J. Opt. 17(10), 105610 (2015).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Monti, A.

A. Monti, J. C. Soric, A. Alú, A. Toscano, and F. Bilotti, “Anisotropic mantle cloaks for TM and TE scattering reduction,” IEEE Trans. Antenn. Propag. 63(4), 1775–1788 (2015).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alú, “Dual-polarized reduction of dipole antenna blockage using mantle cloaks,” IEEE Trans. Antenn. Propag. 63(11), 4827–4834 (2015).
[Crossref]

Ni, Y. X.

Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5(3), 251–258 (2010).
[Crossref]

Ordal, M. A.

Padilla, W. J.

Pendry, J. B.

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Qi, M. Q.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Qiu, C. W.

W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusion using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5(3), 251–258 (2010).
[Crossref]

Y. L. Geng, C. W. Qiu, and N. Yuan, “Exact solution to electromagnetic scattering by an impedance sphere coated with a uniaxial anisotropic layer,” IEEE Trans. Antenn. Propag. 57(2), 572–576 (2009).
[Crossref]

C. W. Qiu, L. W. Li, T. S. Yeo, and S. Zouhdi, “Scattering by rotationally symmetric anisotropic spheres: potential formulation and parametric studies,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026609 (2007).
[Crossref] [PubMed]

Querry, M. R.

Rainwater, D.

A. Alú, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12(10), 103028 (2010).
[Crossref]

Rostami, A.

S. Khosravi, A. Rostami, G. Rostami, and M. Dolatyari, “Midinfrared invisibility cloak design using composite optical materials,” IEEE J. Sel. Top. Quantum Electron. 22(1), 4600206 (2016).
[Crossref]

Rostami, G.

S. Khosravi, A. Rostami, G. Rostami, and M. Dolatyari, “Midinfrared invisibility cloak design using composite optical materials,” IEEE J. Sel. Top. Quantum Electron. 22(1), 4600206 (2016).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shi, Y.

L. Zhang, Y. Shi, and C. H. Liang, “Achieving illusion and invisibility of inhomogeneous cylinders and spheres,” J. Opt. 18(8), 085101 (2016).
[Crossref]

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

Sild, S.

A. R. Katritzky, S. Sild, and M. Karelson, “Correlation and prediction of the refractive indices of polymers by QSPR,” J. Chem. Inf. Comput. Sci. 38(6), 1171–1176 (1998).
[Crossref]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Soljacic, M.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Soric, J. C.

A. Monti, J. C. Soric, A. Alú, A. Toscano, and F. Bilotti, “Anisotropic mantle cloaks for TM and TE scattering reduction,” IEEE Trans. Antenn. Propag. 63(4), 1775–1788 (2015).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alú, “Dual-polarized reduction of dipole antenna blockage using mantle cloaks,” IEEE Trans. Antenn. Propag. 63(11), 4827–4834 (2015).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sun, H.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Tang, W.

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

Toscano, A.

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alú, “Dual-polarized reduction of dipole antenna blockage using mantle cloaks,” IEEE Trans. Antenn. Propag. 63(11), 4827–4834 (2015).
[Crossref]

A. Monti, J. C. Soric, A. Alú, A. Toscano, and F. Bilotti, “Anisotropic mantle cloaks for TM and TE scattering reduction,” IEEE Trans. Antenn. Propag. 63(4), 1775–1788 (2015).
[Crossref]

Tricarico, S.

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2), 026602 (2010).
[Crossref] [PubMed]

F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” New J. Phys. 10(11), 115035 (2008).
[Crossref]

Turpin, J. P.

Tyc, T.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

Valiente-Kroon, J. A.

T. M. McManus, J. A. Valiente-Kroon, S. A. R. Horsley, and Y. Hao, “Illusions and cloaks for surface waves,” Sci. Rep. 4, 5977 (2014).
[Crossref] [PubMed]

Vegni, L.

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2), 026602 (2010).
[Crossref] [PubMed]

F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” New J. Phys. 10(11), 115035 (2008).
[Crossref]

Wan, X.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Werner, D. H.

Z. H. Jiang and D. H. Werner, “Quasi-three-dimensional angle-tolerant electromagnetic illusion using ultrathin metasurface coatings,” Adv. Funct. Mater. 24(48), 7728–7736 (2014).
[Crossref]

J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express 18(1), 244–252 (2010).
[Crossref] [PubMed]

Werner, P. L.

Wu, Y.

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Xiang, N.

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

Xu, H.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Xu, S.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Xu, Y.

C. Gu, Y. Xu, S. Li, W. Lu, J. Li, H. Chen, and B. Hou, “A broadband polarization-insensitive cloak based on mode conversion,” Sci. Rep. 5, 12106 (2015).
[Crossref] [PubMed]

Yang, F.

F. Yang, Z. L. Mei, W. X. Jiang, and T. J. Cui, “Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation,” J. Opt. 17(10), 105610 (2015).
[Crossref]

Yang, X. M.

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98(20), 204101 (2011).
[Crossref]

Yeo, T. S.

C. W. Qiu, L. W. Li, T. S. Yeo, and S. Zouhdi, “Scattering by rotationally symmetric anisotropic spheres: potential formulation and parametric studies,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026609 (2007).
[Crossref] [PubMed]

Yu, F.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Yuan, N.

Y. L. Geng, C. W. Qiu, and N. Yuan, “Exact solution to electromagnetic scattering by an impedance sphere coated with a uniaxial anisotropic layer,” IEEE Trans. Antenn. Propag. 57(2), 572–576 (2009).
[Crossref]

Zhang, B.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, Y. Shi, and C. H. Liang, “Achieving illusion and invisibility of inhomogeneous cylinders and spheres,” J. Opt. 18(8), 085101 (2016).
[Crossref]

Zhang, S.

W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusion using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

Zhang, Y. M.

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “Exernal invisibility cloak for multi-objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

Zhang, Z. Q.

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

Zhang, Z.-Q.

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Zhao, J.

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Zouhdi, S.

C. W. Qiu, L. W. Li, T. S. Yeo, and S. Zouhdi, “Scattering by rotationally symmetric anisotropic spheres: potential formulation and parametric studies,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026609 (2007).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusion using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

Z. H. Jiang and D. H. Werner, “Quasi-three-dimensional angle-tolerant electromagnetic illusion using ultrathin metasurface coatings,” Adv. Funct. Mater. 24(48), 7728–7736 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

Appl. Phys. Lett. (1)

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98(20), 204101 (2011).
[Crossref]

Electron. Lett. (1)

M. Danaeifar, N. Granpayeh, and M. R. Booket, “Optical invisibility of cylindrical structures and homogeneity effect on scattering cancellation method,” Electron. Lett. 52(1), 29–31 (2016).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “Exernal invisibility cloak for multi-objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Khosravi, A. Rostami, G. Rostami, and M. Dolatyari, “Midinfrared invisibility cloak design using composite optical materials,” IEEE J. Sel. Top. Quantum Electron. 22(1), 4600206 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

Y. L. Geng, C. W. Qiu, and N. Yuan, “Exact solution to electromagnetic scattering by an impedance sphere coated with a uniaxial anisotropic layer,” IEEE Trans. Antenn. Propag. 57(2), 572–576 (2009).
[Crossref]

A. Monti, J. C. Soric, A. Alú, A. Toscano, and F. Bilotti, “Anisotropic mantle cloaks for TM and TE scattering reduction,” IEEE Trans. Antenn. Propag. 63(4), 1775–1788 (2015).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alú, “Dual-polarized reduction of dipole antenna blockage using mantle cloaks,” IEEE Trans. Antenn. Propag. 63(11), 4827–4834 (2015).
[Crossref]

J. Appl. Phys. (1)

A. Alú and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
[Crossref]

J. Chem. Inf. Comput. Sci. (1)

A. R. Katritzky, S. Sild, and M. Karelson, “Correlation and prediction of the refractive indices of polymers by QSPR,” J. Chem. Inf. Comput. Sci. 38(6), 1171–1176 (1998).
[Crossref]

J. Opt. (2)

F. Yang, Z. L. Mei, W. X. Jiang, and T. J. Cui, “Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation,” J. Opt. 17(10), 105610 (2015).
[Crossref]

L. Zhang, Y. Shi, and C. H. Liang, “Achieving illusion and invisibility of inhomogeneous cylinders and spheres,” J. Opt. 18(8), 085101 (2016).
[Crossref]

Light Sci. Appl. (1)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

New J. Phys. (3)

F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” New J. Phys. 10(11), 115035 (2008).
[Crossref]

A. Alú, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12(10), 103028 (2010).
[Crossref]

U. Leonhardt, “Notes on conformal invisibility devices,” New J. Phys. 8(7), 118 (2006).
[Crossref]

Opt. Express (4)

Phys. Rev. B (1)

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (4)

W. X. Jiang and T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(2), 026601 (2011).
[Crossref] [PubMed]

C. W. Qiu, L. W. Li, T. S. Yeo, and S. Zouhdi, “Scattering by rotationally symmetric anisotropic spheres: potential formulation and parametric studies,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026609 (2007).
[Crossref] [PubMed]

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2), 026602 (2010).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

Plasmonics (1)

Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5(3), 251–258 (2010).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Sci. Rep. (2)

C. Gu, Y. Xu, S. Li, W. Lu, J. Li, H. Chen, and B. Hou, “A broadband polarization-insensitive cloak based on mode conversion,” Sci. Rep. 5, 12106 (2015).
[Crossref] [PubMed]

T. M. McManus, J. A. Valiente-Kroon, S. A. R. Horsley, and Y. Hao, “Illusions and cloaks for surface waves,” Sci. Rep. 4, 5977 (2014).
[Crossref] [PubMed]

Science (4)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

Other (1)

J. M. Jin, Theory and Computation of Electromagnetic Field (IEEE, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 SCS of a cylinder versus the argument k 0 r .
Fig. 2
Fig. 2 SCS of a sphere versus the argument k 0 a .
Fig. 3
Fig. 3 A continuously inhomogeneous sphere. (a) constitutive parameters. (b) approximation model with piecewise homogeneous layers.
Fig. 4
Fig. 4 Illusion for a continuously inhomogeneous sphere. (a) magnetic field distribution of the coated sphere in the XOY plane at 900MHz. (b) magnetic field distribution of the illusion sphere in the XOY plane at 900MHz. (c) bistatic RCSs of the coated and illusion spheres in XOY plane.
Fig. 5
Fig. 5 Illusion for a two-layer inhomogeneous sphere. (a) magnetic field distribution of the coated sphere in the XOY plane at 500MHz. (b) magnetic field distribution of the illusion sphere in the XOY plane at 500MHz. (c) bistatic RCS of the coated and illusion spheres in XOY plane. (d) bistatic RCSs of the coated and illusion spheres in XOZ plane
Fig. 6
Fig. 6 Optimal illusion effect of a homogeneous sphere. (a) evaluation function versus AR. (b) bistatic RCSs for different AR.
Fig. 7
Fig. 7 Illusion for a homogeneous anisotropic sphere. (a) magnetic field distribution of the coated sphere with the optimal AR in the XOY plane at 400MHz. (b) magnetic field distribution of the illusion sphere in the XOY plane at 400MHz.
Fig. 8
Fig. 8 Invisibility for a two-layer inhomogeneous sphere. (a) magnetic field distribution of the uncoated sphere in the XOY plane at 600MHz. (b) magnetic field distribution of the coated sphere in the XOY plane at 600MHz.
Fig. 9
Fig. 9 Comparison of bistatic RCS between the coated and uncoated spheres. (a) RCS in XOY plane for TM polarization. (b) RCS in XOZ plane for TM polarization. (c) RCS in XOY plane for TE polarization. (d) RCS in XOZ plane for TE polarization.
Fig. 10
Fig. 10 Optimal invisibility effect of an inhomogeneous sphere. (a) evaluation function versus AR. (b) bistatic RCSs for different AR.
Fig. 11
Fig. 11 Illusion for a two-layer inhomogeneous cylinder. (a) magnetic field distribution at 300MHz for the coated cylinder. (b) magnetic field distribution at 300MHz for the illusion cylinder.
Fig. 12
Fig. 12 Optimal illusion effect of an inhomogeneous cylinder. (a) evaluation function versus AR. (b) bistatic RCSs for different AR.
Fig. 13
Fig. 13 Invisibility for a four-layer inhomogeneous cylinder. (a) magnetic field distribution at 800MHz for the uncoated target. (b) magnetic field distribution at 800MHz for the coated target. (c) bistatic RCSs of the uncoated and coated cylinders.
Fig. 14
Fig. 14 Optimal invisibility effect of an inhomogeneous cylinder. (a) evaluation function versus AR. (b) bistatic RCSs for different AR.
Fig. 15
Fig. 15 An inhomogeneous cylinder with lossy εθ. (a) magnetic field distribution at 800MHz for the uncoated target. (b) magnetic field distribution at 800MHz for the coated target. (c) bistatic RCSs of the uncoated and coated cylinders.
Fig. 16
Fig. 16 An inhomogeneous cylinder with lossy εr. (a) magnetic field distribution at 800MHz for the uncoated target. (b) magnetic field distribution at 800MHz for the coated target. (c) bistatic RCSs of the uncoated and coated cylinders.
Fig. 17
Fig. 17 Illusion of a conducting cylinder. (a) schematic figure of the structure. (b) bistatic RCS of the uncoated and coated cylinders. (c) magnetic field distribution at 3THz for the coated cylinder. (d) magnetic field distribution at 3THz for the illusion cylinder.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

ε ¯ ¯ i =[ ε ir ε iθ ε 0 ], μ ¯ ¯ i =[ μ 0 μ 0 μ iz ].
H z inc = m= j m J m ( k 0 r) e jmθ ,
{ H z = m= j m A m J 1m ( k 1 r) e jmθ r< r 1 H z = m= j m [ B m J 2m ( k 2 r)+ C m Y 2m ( k 2 r)] e jmθ r 1 <r< r 2 H z = m= j m [ F m J 3m ( k 3 r)+ G m Y 3m ( k 3 r)] e jmθ r 2 <r< r 3 H z = m= j m [ J m ( k 0 r)+ D m H m (1) ( k 0 r)] e jmθ r> r 3 ,
H z sca = m= j m D m H m (1) ( k 0 r) e jmθ .
D m = J 1m ( k 1 r 1 ) J 2m ( k 2 r 1 ) Y 2m ( k 2 r 1 ) 0 0 0 k 1 ω ε 1θ J 1m ( k 2 r 1 ) k 2 ω ε 2θ J 2m ( k 2 r 1 ) k 2 ω ε 2θ Y 2m ( k 2 r 1 ) 0 0 0 0 J 2m ( k 2 r 2 ) N 2m ( k 2 r 2 ) J 3m ( k 3 r 2 ) Y 3m ( k 3 r 2 ) 0 0 k 2 ω ε 2θ J 3m ( k 2 r 2 ) k 2 ω ε 2θ N 3m ( k 2 r 2 ) k 3 ω ε 3θ J 3m ( k 3 r 2 ) k 3 ω ε 3θ Y 3m ( k 3 r 2 ) 0 0 0 0 J 3m ( k 3 r 3 ) Y 3m ( k 3 r 3 ) J m ( k 0 r 3 ) 0 0 0 k 3 ω ε 3θ J m ( k 3 r 3 ) k 3 ω ε 3θ N m ( k 3 r 3 ) k 0 ω ε 0 J m ( k 0 r 3 ) J 1m ( k 1 r 1 ) J 2m ( k 2 r 1 ) Y 2m ( k 2 r 1 ) 0 0 0 k 1 ω ε 1θ J 1m ( k 2 r 1 ) k 2 ω ε 2θ J 2m ( k 2 r 1 ) k 2 ω ε 2θ Y 2m ( k 2 r 1 ) 0 0 0 0 J 2m ( k 2 r 2 ) Y 2m ( k 2 r 2 ) J 3m ( k 3 r 2 ) Y 3m ( k 3 r 2 ) 0 0 k 2 ω ε 2θ J m ( k 2 r 2 ) k 2 ω ε 2θ Y 2m ( k 2 r 2 ) k 3 ω ε 3θ J 3m ( k 3 r 2 ) k 3 ω ε 3θ Y 3m ( k 3 r 2 ) 0 0 0 0 J 3m ( k 3 r 3 ) N 3m ( k 3 r 3 ) H m (1) ( k 0 r 3 ) 0 0 0 k 3 ω ε 3θ J 3m ( k 3 r 3 ) k 3 ω ε 3θ Y 3m ( k 3 r 3 ) k 0 ω ε 0 H m (1) ( k 0 r 3 ) ,
σ= lim r [ 2πr | H z sca | 2 | H z inc | 2 ], C sca = 4 k 0 m= | D m | 2 .
S m = J m ( k e r e ) J m ( k 0 r e ) k e ω ε e J m ( k e r e ) k 0 ω ε 0 J m ( k 0 r e ) J m ( k e r e ) H m (1) ( k 0 r e ) k e ω ε e J m ( k e r e ) k 0 ω ε 0 H m (1) ( k 0 r e ) .
( r 3 r 1 ) 2 = ( μ 2z μ 1z )+( μ 3z μ 2z ) ( r 2 r 1 ) 2 +( μ e μ 0 ) ( r e r 1 ) 2 μ 3z μ 0 ,
( r 3 r 2 ) 2 t 3 = ε 3θ t 3 ε e (2) ε 3θ + t 3 ε e (2) r 3 2 ( ε 3θ + ε 0 t 3 )( ε e + ε 0 ) r e 2 ( ε 3θ ε 0 t 3 )( ε e ε 0 ) r 3 2 ( ε 3θ ε 0 t 3 )( ε e + ε 0 ) r e 2 ( ε 3θ + ε 0 t 3 )( ε e ε 0 ) ,
ε e (2) = ε 2θ + ε e (1) t 2 ε 2θ ε e (1) t 2 ( r 1 r 2 ) 2 t 2 ε 2θ + ε e (1) t 2 ε 2θ ε e (1) t 2 + ( r 1 r 2 ) 2 t 2 ε 2θ t 2 , ε e (1) ={ ε 1θ t 1 the core is dielectric 0 the core is conductor ,
t i = A R i (i=1,2,3).
( r n+1 r 1 ) 2 = ( μ 2z μ 1z )+( μ 3z μ 2z ) ( r 2 r 1 ) 2 +( μ 4z μ 3z ) ( r 3 r 1 ) 2 ++( μ (n+1)z μ nz ) ( r n1 r 1 ) 2 +( μ e μ 0 ) ( r e r 1 ) 2 μ (n+1)z μ 0 ,
( r n+1 r n ) 2 t n+1 = ε (n+1)θ t n+1 ε e (n) ε (n+1)θ + t n+1 ε e (n) r n+1 2 ( ε (n+1)θ + ε 0 t n+1 )( ε e + ε 0 ) r e 2 ( ε (n+1)θ ε 0 t n+1 )( ε e ε 0 ) r n+1 2 ( ε (n+1)θ ε 0 t n+1 )( ε e + ε 0 ) r e 2 ( ε (n+1)θ + ε 0 t n+1 )( ε e ε 0 ) ,
ε e (n) = ε nθ + ε e (n-1) t n ε nθ ε e (n-1) t n ( r n1 r n ) 2 t n ε nθ + ε e (n-1) t n ε nθ ε e (n-1) t n + ( r n1 r n ) 2 t n ε nθ t n , ε e (1) ={ ε 1θ t 1 the core is dielectric 0 the core is conductor .
ε ¯ ¯ i =[ ε ir ε iθ ε iθ ].
E θ inc = E 0 cosφ k 0 r n=1 j n (2n+1) J ^ n ( k 0 r) P n (cosθ),
{ E θ = E 0 cosφ ω m=1 j m 2m+1 m(m+1) A m J ^ 1m ( k 1 r) P m 1 (cosθ) r< r 1 E θ = E 0 cosφ ω m=1 j m 2m+1 m(m+1) [ B m J ^ 2m ( k 2 r)+ C m Y ^ 2m ( k 2 r)] P m 1 (cosθ) r 1 <r< r 2 E θ = E 0 cosφ ω m=1 j m 2m+1 m(m+1) [ F m J ^ 3m ( k 3 r)+ G m Y ^ 3m ( k 3 r)] P m 1 (cosθ) r 2 <r< r 3 E θ = E 0 cosφ ω m=1 j m 2m+1 m(m+1) [ J ^ m ( k 0 r)+ D m H ^ m (1) ( k 0 r)] P m 1 (cosθ) r> r 3 ,
E θ = E 0 cosφ ω m=1 j m 2m+1 m(m+1) D m H ^ m (1) ( k 0 r) P m 1 (cosθ)
D m = J ^ 1m ( k 1 r 1 ) J ^ 2m ( k 2 r 1 ) Y ^ 2m ( k 2 r 1 ) 0 0 0 k 1 ω ε 1θ J ^ 1m ( k 1 r 1 ) k 2 ω ε 2θ J ^ 2m ( k 2 r 1 ) k 2 ω ε 2θ Y ^ 2m ( k 2 r 1 ) 0 0 0 0 J ^ 2m ( k 2 r 2 ) Y ^ 2m ( k 2 r 2 ) J ^ 3m ( k 3 r 2 ) Y ^ 3m ( k 3 r 2 ) 0 0 k 2 ω ε 2θ J ^ 2m ( k 2 r 2 ) k 2 ω ε 2θ Y ^ 2m ( k 2 r 2 ) k 3 ω ε 3θ J ^ 3m ( k 3 r 2 ) k 3 ω ε 3θ Y ^ 3m ( k 3 r 2 ) 0 0 0 0 J ^ 3m ( k 3 r 3 ) Y ^ 3m ( k 3 r 3 ) J ^ m ( k 0 r 3 ) 0 0 0 k 3 ω ε 3θ J ^ 3m ( k 3 r 3 ) k 3 ω ε 3θ Y ^ 3m ( k 3 r 3 ) k 0 ω ε 0 J ^ m ( k 0 r 3 ) J ^ 1m ( k 1 r 1 ) J ^ 2m ( k 2 r 1 ) Y ^ 2m ( k 2 r 1 ) 0 0 0 k 1 ω ε 1θ J ^ 1m ( k 1 r 1 ) k 2 ω ε 2θ J ^ 2m ( k 2 r 1 ) k 2 ω ε 2θ Y ^ 2m ( k 2 r 1 ) 0 0 0 0 J ^ 2m ( k 2 r 2 ) Y ^ 2m ( k 2 r 2 ) J ^ 3m ( k 3 r 2 ) Y ^ 3m ( k 3 r 2 ) 0 0 k 2 ω ε 2θ J ^ 2m ( k 2 r 2 ) k 2 ω ε 2θ Y ^ 2m ( k 2 r 2 ) k 3 ω ε 3θ J ^ 3m ( k 3 r 2 ) k 3 ω ε 3θ Y ^ 3m ( k 3 r 2 ) 0 0 0 0 J ^ 3m ( k 3 r 3 ) Y ^ 3m ( k 3 r 3 ) H ^ m (1) ( k 0 r 3 ) 0 0 0 k 3 ω ε 3θ J ^ 3m ( k 3 r 3 ) k 3 ω ε 3θ Y ^ 3m ( k 3 r 3 ) k 0 ω ε 0 H ^ m (1) ( k 0 r 3 ) .
σ= lim r [ 4π r 2 | E sc | 2 | E inc | 2 ], C sca = 2π k 0 2 m=1 (2m+1) | D m | 2 .
S m = J ^ m ( k e r e ) J ^ m ( k 0 r e ) k e ω ε e J ^ m ( k e r e ) k 0 ω ε 0 J ^ m ( k 0 r e ) J ^ m ( k e r e ) H ^ m (1) ( k 0 r e ) k e ω ε e J ^ m ( k e r e ) k 0 ω ε 0 H ^ m (1) ( k 0 r e ) .
( r n+1 r n ) 2 t n+1 +1 = ε (n+1)θ 1 2 (1+ t n+1 ) ε e (n) ε (n+1)θ + 1 2 t n+1 ε e (n) r n+1 3 (2 ε 0 + ε e )( ε (n+1)θ + 1 2 t n+1 ε 0 )+ r e 3 ( ε 0 ε e )( ε (n+1)θ t n+1 ε 0 ) r n+1 3 (2 ε 0 + ε e )[ ε (n+1)θ 1 2 (1+ t n+1 ) ε 0 ]+ r e 3 ( ε 0 ε e )[ ε (n+1)θ +(1+ t n+1 ) ε 0 ] ,
ε e (n) = 2 ( r n r n1 ) 2 t n +1 2 ε nθ 1 2 (1+ t n ) ε e (n1) ε nθ + 1 2 t n ε e (n1) (1+ t n ) ( r n r n1 ) 2 t n +1 + t n ε nθ 1 2 (1+ t n ) ε e (n1) ε nθ + 1 2 t n ε e (n1) ε nθ , ε e (1) ={ 2 ε 1θ 1+ t 1 the core is dielectric 0 the core is conductor ,
t i = 2A R i +0.25 0.5 (i=1,2n+1).
σ 1 = 1 4π 0 π 0 2π | σ c (θ,φ) σ i (θ,φ) | sinθdφdθ for illusion,
σ 2 = 1 4π 0 π 0 2π | σ c (θ,φ) |sinθdφdθ for invisibility,
ε r = ε h (1+f) ε m +(1f) ε h (1+f) ε h +(1f) ε m , ε θ =f ε m +(1f) ε h ,
ε m = ε ω p 2 ω 2 jωγ ,

Metrics