Abstract

We report Er-doped Ge-Ga-Se films and waveguides deposited using co-thermal evaporation and patterned with plasma etching. Strong photoluminescence at 1.54 µm with intrinsic lifetime of 1 ms was obtained from deposited films with 1490 nm excitation. Erbium population inversion up to 50% was achieved, with a maximum of ~55% possible at saturation for the first time to the author’s knowledge, approaching the theoretical maximum of 65%. Whilst gain was not achieved due to the presence of upconversion pumped photoinduced absorption, this nonetheless represents a further important step towards the realization of future chalcogenide Erbium doped waveguide amplifiers at 1550 nm and in the Mid-infrared.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Emission properties of erbium-doped Ge-Ga-Se glasses, thin films and waveguides for laser amplifiers

Kunlun Yan, Khu Vu, Zhiyong Yang, Rongping Wang, Sukanta Debbarma, Barry Luther-Davies, and Steve Madden
Opt. Mater. Express 4(3) 464-475 (2014)

Photoluminescence in Er-doped Ge-As-Se chalcogenide thin films

Kunlun Yan, Rongping Wang, Khu Vu, Steve Madden, Kidane Belay, Robert Elliman, and Barry Luther-Davies
Opt. Mater. Express 2(9) 1270-1277 (2012)

Comparative study of praseodymium additives in active selenide chalcogenide optical fibers

Zhuoqi Tang, Lukasz Sojka, David Furniss, Joel Nunes, Hesham Sakr, Emma Barney, Slawomir Sujecki, Trevor M. Benson, and Angela B. Seddon
Opt. Mater. Express 8(12) 3910-3926 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
    [Crossref] [PubMed]
  2. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  3. L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
    [Crossref]
  4. J. Ikuta, K. Maeda, T. Sakai, T. Ikari, K. Koughia, M. Munzar, and S. O. Kasap, “Optical and photoluminescence properties of Er-doped (GeSe2)(1-x)(Ga2Se(3))(x) bulk glasses,” J. Mater. Sci. 18, S231–S234 (2007).
  5. T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
    [Crossref]
  6. T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997).
    [Crossref]
  7. H. Tawarayama, E. Ishikawa, K. Yamanaka, K. Itoh, K. Okada, H. Aoki, H. Yanagita, Y. Matsuoka, and H. Toratani, “Optical amplification at 1.3 um in a praseodymium-doped sulfide-glass fiber,” J. Am. Ceram. Soc. 83(4), 792–796 (2000).
    [Crossref]
  8. A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
    [Crossref]
  9. K. Yan, K. Vu, and S. Madden, “Internal gain in Er-doped As2S3 chalcogenide planar waveguides,” Opt. Lett. 40(5), 796–799 (2015).
    [Crossref] [PubMed]
  10. D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
    [Crossref]
  11. T. W. Allen, M. M. Hawkeye, C. J. Haugen, R. G. DeCorby, J. N. McMullin, D. Tonchev, K. Koughia, and S. O. Kasap, “Photoluminescence measurements of Er-doped chalcogenide glasses,” J. Vac. Sci. Technol. A 22(3), 921–924 (2004).
    [Crossref]
  12. K. Koughia, M. Munzar, T. Aoki, and S. O. Kasap, “Photoluminescence spectra and lifetimes of 4I13/2 -> 4I15/2 and 4I11/2 -> 4I15/2 transitions in erbium doped GeGaSe and GeGaS glasses,” J. Mater. Sci. 18, S153–S157 (2007).
  13. T. Imai, K. Maeda, M. Fujita, and N. Saito, “Photoluminescence properties of erbium-doped amorphous gallium-germanium-selenium films fabricated by RF sputtering,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S1), S106–S109 (2009).
    [Crossref]
  14. V. Nazabal, P. Camy, P. Nemec, H. Lhermite, J. Charrier, J. L. Doualan, S. Zhang, M. Frumar, and J. L. Adam, “Erbium doped germanium based sulphide optical waveguide amplifier for near and mid-IR,” Proc. SPIE 7366, 73661T (2009).
    [Crossref]
  15. D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
    [Crossref]
  16. E. Barthelemy, C. Vigreux-Bercovici, P. Yot, and A. Pradel, “Co-thermal evaporation: a new method to deposit telluride films,” Optoelectron. Adv. Mat. 1, 487–490 (2007).
  17. K. L. Yan, K. Vu, Z. Y. Yang, R. P. Wang, S. Debbarma, B. Luther-Davies, and S. Madden, “Emission properties of erbium-doped Ge-Ga-Se glasses, thin films and waveguides for laser amplifiers,” Opt. Mater. Express 4(3), 464–475 (2014).
    [Crossref]
  18. K. Vu and S. Madden, “Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 2.8 dB/cm internal gain,” Opt. Express 18(18), 19192–19200 (2010).
    [Crossref] [PubMed]
  19. S. M. Salem, M. B. S. Osman, A. M. Salem, H. M. Hashem, and H. A. Saleh, “Physical Properties and Structural Characterization of Thermally Evaporated Ge(25-x)GaxSe75 System,” Current Sci. International 04, 12 (2015).
  20. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
    [Crossref] [PubMed]
  21. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).
    [Crossref]
  22. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395–2413 (1971).
    [Crossref] [PubMed]
  23. D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007).
    [Crossref]
  24. F. P. Payne and J. P. R. Lacey, “A theoretical-analysis of scattering loss from planar optical wave-guides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
    [Crossref]
  25. T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
    [Crossref] [PubMed]
  26. A. Andriesh, M. Iovu, O. Shpotiuk, and I. Culeac, “Optical losses and photo-induced absorption in chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 11, 2172–2178 (2009).
  27. T. Y. Ivanova, A. A. Man’shina, A. V. Kurochkin, T. S. Tver’yanovich, and V. B. Smirnov, “Non-radiative energy transfer from Er3+ ions to the electronic states of the chalcogenide glass matrix,” J. Non-Cryst. Solids 326, 320–324 (2003).
    [Crossref]
  28. T. Y. Ivanova, A. A. Manshina, A. V. Povolotskiy, Y. S. Tver’yanovich, S. K. Liaw, and Y. S. Hsieh, “Erbium-mediated photoconductivity of Ga-Ge-S-Se: Er(3+) chalcogenide glasses,” J. Phys. D Appl. Phys. 41(17), 175110 (2008).
    [Crossref]
  29. A. M. Andriesh, I. P. Culeac, and V. M. Loghin, “Photoinduced changes of optical absorption in chalcogenide glass fibres,” Pure Appl. Opt. 1(2), 12 (1992).
    [Crossref]
  30. P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Elsevier Science, 1999).
  31. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
    [Crossref]
  32. J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
    [Crossref] [PubMed]
  33. T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
    [Crossref] [PubMed]
  34. Z. G. Lian, W. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34(8), 1234–1236 (2009).
    [Crossref] [PubMed]

2015 (2)

K. Yan, K. Vu, and S. Madden, “Internal gain in Er-doped As2S3 chalcogenide planar waveguides,” Opt. Lett. 40(5), 796–799 (2015).
[Crossref] [PubMed]

S. M. Salem, M. B. S. Osman, A. M. Salem, H. M. Hashem, and H. A. Saleh, “Physical Properties and Structural Characterization of Thermally Evaporated Ge(25-x)GaxSe75 System,” Current Sci. International 04, 12 (2015).

2014 (1)

2013 (1)

2011 (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

2010 (3)

2009 (5)

Z. G. Lian, W. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34(8), 1234–1236 (2009).
[Crossref] [PubMed]

A. Andriesh, M. Iovu, O. Shpotiuk, and I. Culeac, “Optical losses and photo-induced absorption in chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 11, 2172–2178 (2009).

T. Imai, K. Maeda, M. Fujita, and N. Saito, “Photoluminescence properties of erbium-doped amorphous gallium-germanium-selenium films fabricated by RF sputtering,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S1), S106–S109 (2009).
[Crossref]

V. Nazabal, P. Camy, P. Nemec, H. Lhermite, J. Charrier, J. L. Doualan, S. Zhang, M. Frumar, and J. L. Adam, “Erbium doped germanium based sulphide optical waveguide amplifier for near and mid-IR,” Proc. SPIE 7366, 73661T (2009).
[Crossref]

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[Crossref]

2008 (2)

A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).
[Crossref]

T. Y. Ivanova, A. A. Manshina, A. V. Povolotskiy, Y. S. Tver’yanovich, S. K. Liaw, and Y. S. Hsieh, “Erbium-mediated photoconductivity of Ga-Ge-S-Se: Er(3+) chalcogenide glasses,” J. Phys. D Appl. Phys. 41(17), 175110 (2008).
[Crossref]

2007 (5)

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007).
[Crossref]

E. Barthelemy, C. Vigreux-Bercovici, P. Yot, and A. Pradel, “Co-thermal evaporation: a new method to deposit telluride films,” Optoelectron. Adv. Mat. 1, 487–490 (2007).

K. Koughia, M. Munzar, T. Aoki, and S. O. Kasap, “Photoluminescence spectra and lifetimes of 4I13/2 -> 4I15/2 and 4I11/2 -> 4I15/2 transitions in erbium doped GeGaSe and GeGaS glasses,” J. Mater. Sci. 18, S153–S157 (2007).

J. Ikuta, K. Maeda, T. Sakai, T. Ikari, K. Koughia, M. Munzar, and S. O. Kasap, “Optical and photoluminescence properties of Er-doped (GeSe2)(1-x)(Ga2Se(3))(x) bulk glasses,” J. Mater. Sci. 18, S231–S234 (2007).

2006 (1)

2004 (1)

T. W. Allen, M. M. Hawkeye, C. J. Haugen, R. G. DeCorby, J. N. McMullin, D. Tonchev, K. Koughia, and S. O. Kasap, “Photoluminescence measurements of Er-doped chalcogenide glasses,” J. Vac. Sci. Technol. A 22(3), 921–924 (2004).
[Crossref]

2003 (1)

T. Y. Ivanova, A. A. Man’shina, A. V. Kurochkin, T. S. Tver’yanovich, and V. B. Smirnov, “Non-radiative energy transfer from Er3+ ions to the electronic states of the chalcogenide glass matrix,” J. Non-Cryst. Solids 326, 320–324 (2003).
[Crossref]

2002 (1)

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

2001 (1)

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

2000 (1)

H. Tawarayama, E. Ishikawa, K. Yamanaka, K. Itoh, K. Okada, H. Aoki, H. Yanagita, Y. Matsuoka, and H. Toratani, “Optical amplification at 1.3 um in a praseodymium-doped sulfide-glass fiber,” J. Am. Ceram. Soc. 83(4), 792–796 (2000).
[Crossref]

1997 (2)

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997).
[Crossref]

T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
[Crossref] [PubMed]

1996 (1)

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[Crossref]

1994 (1)

F. P. Payne and J. P. R. Lacey, “A theoretical-analysis of scattering loss from planar optical wave-guides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

1992 (1)

A. M. Andriesh, I. P. Culeac, and V. M. Loghin, “Photoinduced changes of optical absorption in chalcogenide glass fibres,” Pure Appl. Opt. 1(2), 12 (1992).
[Crossref]

1991 (1)

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[Crossref]

1971 (1)

Adam, J. L.

V. Nazabal, P. Camy, P. Nemec, H. Lhermite, J. Charrier, J. L. Doualan, S. Zhang, M. Frumar, and J. L. Adam, “Erbium doped germanium based sulphide optical waveguide amplifier for near and mid-IR,” Proc. SPIE 7366, 73661T (2009).
[Crossref]

Aggarwal, I. D.

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
[Crossref] [PubMed]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Allen, T. W.

T. W. Allen, M. M. Hawkeye, C. J. Haugen, R. G. DeCorby, J. N. McMullin, D. Tonchev, K. Koughia, and S. O. Kasap, “Photoluminescence measurements of Er-doped chalcogenide glasses,” J. Vac. Sci. Technol. A 22(3), 921–924 (2004).
[Crossref]

Andriesh, A.

A. Andriesh, M. Iovu, O. Shpotiuk, and I. Culeac, “Optical losses and photo-induced absorption in chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 11, 2172–2178 (2009).

Andriesh, A. M.

A. M. Andriesh, I. P. Culeac, and V. M. Loghin, “Photoinduced changes of optical absorption in chalcogenide glass fibres,” Pure Appl. Opt. 1(2), 12 (1992).
[Crossref]

Aoki, H.

H. Tawarayama, E. Ishikawa, K. Yamanaka, K. Itoh, K. Okada, H. Aoki, H. Yanagita, Y. Matsuoka, and H. Toratani, “Optical amplification at 1.3 um in a praseodymium-doped sulfide-glass fiber,” J. Am. Ceram. Soc. 83(4), 792–796 (2000).
[Crossref]

Aoki, T.

K. Koughia, M. Munzar, T. Aoki, and S. O. Kasap, “Photoluminescence spectra and lifetimes of 4I13/2 -> 4I15/2 and 4I11/2 -> 4I15/2 transitions in erbium doped GeGaSe and GeGaS glasses,” J. Mater. Sci. 18, S153–S157 (2007).

Barthelemy, E.

E. Barthelemy, C. Vigreux-Bercovici, P. Yot, and A. Pradel, “Co-thermal evaporation: a new method to deposit telluride films,” Optoelectron. Adv. Mat. 1, 487–490 (2007).

Benson, T. M.

Brady, D.

Bulla, D.

Bulla, D. A.

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

Bulla, D. A. P.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[Crossref]

Camy, P.

V. Nazabal, P. Camy, P. Nemec, H. Lhermite, J. Charrier, J. L. Doualan, S. Zhang, M. Frumar, and J. L. Adam, “Erbium doped germanium based sulphide optical waveguide amplifier for near and mid-IR,” Proc. SPIE 7366, 73661T (2009).
[Crossref]

Chardon, A. M.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Charrier, J.

V. Nazabal, P. Camy, P. Nemec, H. Lhermite, J. Charrier, J. L. Doualan, S. Zhang, M. Frumar, and J. L. Adam, “Erbium doped germanium based sulphide optical waveguide amplifier for near and mid-IR,” Proc. SPIE 7366, 73661T (2009).
[Crossref]

Choi, D. Y.

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref] [PubMed]

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007).
[Crossref]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

Cole, B.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Culeac, I.

A. Andriesh, M. Iovu, O. Shpotiuk, and I. Culeac, “Optical losses and photo-induced absorption in chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 11, 2172–2178 (2009).

Culeac, I. P.

A. M. Andriesh, I. P. Culeac, and V. M. Loghin, “Photoinduced changes of optical absorption in chalcogenide glass fibres,” Pure Appl. Opt. 1(2), 12 (1992).
[Crossref]

Debbarma, S.

DeCorby, R. G.

T. W. Allen, M. M. Hawkeye, C. J. Haugen, R. G. DeCorby, J. N. McMullin, D. Tonchev, K. Koughia, and S. O. Kasap, “Photoluminescence measurements of Er-doped chalcogenide glasses,” J. Vac. Sci. Technol. A 22(3), 921–924 (2004).
[Crossref]

Doualan, J. L.

V. Nazabal, P. Camy, P. Nemec, H. Lhermite, J. Charrier, J. L. Doualan, S. Zhang, M. Frumar, and J. L. Adam, “Erbium doped germanium based sulphide optical waveguide amplifier for near and mid-IR,” Proc. SPIE 7366, 73661T (2009).
[Crossref]

Eggleton, B. J.

Fallahkhair, A. B.

Frantz, J. A.

Frumar, M.

V. Nazabal, P. Camy, P. Nemec, H. Lhermite, J. Charrier, J. L. Doualan, S. Zhang, M. Frumar, and J. L. Adam, “Erbium doped germanium based sulphide optical waveguide amplifier for near and mid-IR,” Proc. SPIE 7366, 73661T (2009).
[Crossref]

Fujita, M.

T. Imai, K. Maeda, M. Fujita, and N. Saito, “Photoluminescence properties of erbium-doped amorphous gallium-germanium-selenium films fabricated by RF sputtering,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S1), S106–S109 (2009).
[Crossref]

Furniss, D.

Gai, X.

Han, T.

Hashem, H. M.

S. M. Salem, M. B. S. Osman, A. M. Salem, H. M. Hashem, and H. A. Saleh, “Physical Properties and Structural Characterization of Thermally Evaporated Ge(25-x)GaxSe75 System,” Current Sci. International 04, 12 (2015).

Haugen, C. J.

T. W. Allen, M. M. Hawkeye, C. J. Haugen, R. G. DeCorby, J. N. McMullin, D. Tonchev, K. Koughia, and S. O. Kasap, “Photoluminescence measurements of Er-doped chalcogenide glasses,” J. Vac. Sci. Technol. A 22(3), 921–924 (2004).
[Crossref]

Hawkeye, M. M.

T. W. Allen, M. M. Hawkeye, C. J. Haugen, R. G. DeCorby, J. N. McMullin, D. Tonchev, K. Koughia, and S. O. Kasap, “Photoluminescence measurements of Er-doped chalcogenide glasses,” J. Vac. Sci. Technol. A 22(3), 921–924 (2004).
[Crossref]

Hewak, D. W.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997).
[Crossref]

T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
[Crossref] [PubMed]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[Crossref]

Hsieh, Y. S.

T. Y. Ivanova, A. A. Manshina, A. V. Povolotskiy, Y. S. Tver’yanovich, S. K. Liaw, and Y. S. Hsieh, “Erbium-mediated photoconductivity of Ga-Ge-S-Se: Er(3+) chalcogenide glasses,” J. Phys. D Appl. Phys. 41(17), 175110 (2008).
[Crossref]

Huber, G.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[Crossref]

Ikari, T.

J. Ikuta, K. Maeda, T. Sakai, T. Ikari, K. Koughia, M. Munzar, and S. O. Kasap, “Optical and photoluminescence properties of Er-doped (GeSe2)(1-x)(Ga2Se(3))(x) bulk glasses,” J. Mater. Sci. 18, S231–S234 (2007).

Ikuta, J.

J. Ikuta, K. Maeda, T. Sakai, T. Ikari, K. Koughia, M. Munzar, and S. O. Kasap, “Optical and photoluminescence properties of Er-doped (GeSe2)(1-x)(Ga2Se(3))(x) bulk glasses,” J. Mater. Sci. 18, S231–S234 (2007).

Imai, T.

T. Imai, K. Maeda, M. Fujita, and N. Saito, “Photoluminescence properties of erbium-doped amorphous gallium-germanium-selenium films fabricated by RF sputtering,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S1), S106–S109 (2009).
[Crossref]

Iovu, M.

A. Andriesh, M. Iovu, O. Shpotiuk, and I. Culeac, “Optical losses and photo-induced absorption in chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 11, 2172–2178 (2009).

Ishikawa, E.

H. Tawarayama, E. Ishikawa, K. Yamanaka, K. Itoh, K. Okada, H. Aoki, H. Yanagita, Y. Matsuoka, and H. Toratani, “Optical amplification at 1.3 um in a praseodymium-doped sulfide-glass fiber,” J. Am. Ceram. Soc. 83(4), 792–796 (2000).
[Crossref]

Itoh, K.

H. Tawarayama, E. Ishikawa, K. Yamanaka, K. Itoh, K. Okada, H. Aoki, H. Yanagita, Y. Matsuoka, and H. Toratani, “Optical amplification at 1.3 um in a praseodymium-doped sulfide-glass fiber,” J. Am. Ceram. Soc. 83(4), 792–796 (2000).
[Crossref]

Ivanova, T. Y.

T. Y. Ivanova, A. A. Manshina, A. V. Povolotskiy, Y. S. Tver’yanovich, S. K. Liaw, and Y. S. Hsieh, “Erbium-mediated photoconductivity of Ga-Ge-S-Se: Er(3+) chalcogenide glasses,” J. Phys. D Appl. Phys. 41(17), 175110 (2008).
[Crossref]

T. Y. Ivanova, A. A. Man’shina, A. V. Kurochkin, T. S. Tver’yanovich, and V. B. Smirnov, “Non-radiative energy transfer from Er3+ ions to the electronic states of the chalcogenide glass matrix,” J. Non-Cryst. Solids 326, 320–324 (2003).
[Crossref]

Jensen, T.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[Crossref]

Kasap, S. O.

J. Ikuta, K. Maeda, T. Sakai, T. Ikari, K. Koughia, M. Munzar, and S. O. Kasap, “Optical and photoluminescence properties of Er-doped (GeSe2)(1-x)(Ga2Se(3))(x) bulk glasses,” J. Mater. Sci. 18, S231–S234 (2007).

K. Koughia, M. Munzar, T. Aoki, and S. O. Kasap, “Photoluminescence spectra and lifetimes of 4I13/2 -> 4I15/2 and 4I11/2 -> 4I15/2 transitions in erbium doped GeGaSe and GeGaS glasses,” J. Mater. Sci. 18, S153–S157 (2007).

T. W. Allen, M. M. Hawkeye, C. J. Haugen, R. G. DeCorby, J. N. McMullin, D. Tonchev, K. Koughia, and S. O. Kasap, “Photoluminescence measurements of Er-doped chalcogenide glasses,” J. Vac. Sci. Technol. A 22(3), 921–924 (2004).
[Crossref]

Kohoutek, T.

Koughia, K.

K. Koughia, M. Munzar, T. Aoki, and S. O. Kasap, “Photoluminescence spectra and lifetimes of 4I13/2 -> 4I15/2 and 4I11/2 -> 4I15/2 transitions in erbium doped GeGaSe and GeGaS glasses,” J. Mater. Sci. 18, S153–S157 (2007).

J. Ikuta, K. Maeda, T. Sakai, T. Ikari, K. Koughia, M. Munzar, and S. O. Kasap, “Optical and photoluminescence properties of Er-doped (GeSe2)(1-x)(Ga2Se(3))(x) bulk glasses,” J. Mater. Sci. 18, S231–S234 (2007).

T. W. Allen, M. M. Hawkeye, C. J. Haugen, R. G. DeCorby, J. N. McMullin, D. Tonchev, K. Koughia, and S. O. Kasap, “Photoluminescence measurements of Er-doped chalcogenide glasses,” J. Vac. Sci. Technol. A 22(3), 921–924 (2004).
[Crossref]

Kurochkin, A. V.

T. Y. Ivanova, A. A. Man’shina, A. V. Kurochkin, T. S. Tver’yanovich, and V. B. Smirnov, “Non-radiative energy transfer from Er3+ ions to the electronic states of the chalcogenide glass matrix,” J. Non-Cryst. Solids 326, 320–324 (2003).
[Crossref]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical-analysis of scattering loss from planar optical wave-guides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Lhermite, H.

V. Nazabal, P. Camy, P. Nemec, H. Lhermite, J. Charrier, J. L. Doualan, S. Zhang, M. Frumar, and J. L. Adam, “Erbium doped germanium based sulphide optical waveguide amplifier for near and mid-IR,” Proc. SPIE 7366, 73661T (2009).
[Crossref]

Li, K. S.

Lian, Z. G.

Liaw, S. K.

T. Y. Ivanova, A. A. Manshina, A. V. Povolotskiy, Y. S. Tver’yanovich, S. K. Liaw, and Y. S. Hsieh, “Erbium-mediated photoconductivity of Ga-Ge-S-Se: Er(3+) chalcogenide glasses,” J. Phys. D Appl. Phys. 41(17), 175110 (2008).
[Crossref]

Loghin, V. M.

A. M. Andriesh, I. P. Culeac, and V. M. Loghin, “Photoinduced changes of optical absorption in chalcogenide glass fibres,” Pure Appl. Opt. 1(2), 12 (1992).
[Crossref]

Luther-Davies, B.

K. L. Yan, K. Vu, Z. Y. Yang, R. P. Wang, S. Debbarma, B. Luther-Davies, and S. Madden, “Emission properties of erbium-doped Ge-Ga-Se glasses, thin films and waveguides for laser amplifiers,” Opt. Mater. Express 4(3), 464–475 (2014).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
[Crossref] [PubMed]

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[Crossref]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007).
[Crossref]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

Ma, P.

Madden, S.

K. Yan, K. Vu, and S. Madden, “Internal gain in Er-doped As2S3 chalcogenide planar waveguides,” Opt. Lett. 40(5), 796–799 (2015).
[Crossref] [PubMed]

K. L. Yan, K. Vu, Z. Y. Yang, R. P. Wang, S. Debbarma, B. Luther-Davies, and S. Madden, “Emission properties of erbium-doped Ge-Ga-Se glasses, thin films and waveguides for laser amplifiers,” Opt. Mater. Express 4(3), 464–475 (2014).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref] [PubMed]

K. Vu and S. Madden, “Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 2.8 dB/cm internal gain,” Opt. Express 18(18), 19192–19200 (2010).
[Crossref] [PubMed]

T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
[Crossref] [PubMed]

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007).
[Crossref]

Madden, S. J.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[Crossref]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

Maeda, K.

T. Imai, K. Maeda, M. Fujita, and N. Saito, “Photoluminescence properties of erbium-doped amorphous gallium-germanium-selenium films fabricated by RF sputtering,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S1), S106–S109 (2009).
[Crossref]

J. Ikuta, K. Maeda, T. Sakai, T. Ikari, K. Koughia, M. Munzar, and S. O. Kasap, “Optical and photoluminescence properties of Er-doped (GeSe2)(1-x)(Ga2Se(3))(x) bulk glasses,” J. Mater. Sci. 18, S231–S234 (2007).

Mairaj, A. K.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Man’shina, A. A.

T. Y. Ivanova, A. A. Man’shina, A. V. Kurochkin, T. S. Tver’yanovich, and V. B. Smirnov, “Non-radiative energy transfer from Er3+ ions to the electronic states of the chalcogenide glass matrix,” J. Non-Cryst. Solids 326, 320–324 (2003).
[Crossref]

Manshina, A. A.

T. Y. Ivanova, A. A. Manshina, A. V. Povolotskiy, Y. S. Tver’yanovich, S. K. Liaw, and Y. S. Hsieh, “Erbium-mediated photoconductivity of Ga-Ge-S-Se: Er(3+) chalcogenide glasses,” J. Phys. D Appl. Phys. 41(17), 175110 (2008).
[Crossref]

Matsuoka, Y.

H. Tawarayama, E. Ishikawa, K. Yamanaka, K. Itoh, K. Okada, H. Aoki, H. Yanagita, Y. Matsuoka, and H. Toratani, “Optical amplification at 1.3 um in a praseodymium-doped sulfide-glass fiber,” J. Am. Ceram. Soc. 83(4), 792–796 (2000).
[Crossref]

McMullin, J. N.

T. W. Allen, M. M. Hawkeye, C. J. Haugen, R. G. DeCorby, J. N. McMullin, D. Tonchev, K. Koughia, and S. O. Kasap, “Photoluminescence measurements of Er-doped chalcogenide glasses,” J. Vac. Sci. Technol. A 22(3), 921–924 (2004).
[Crossref]

Miniscalco, W. J.

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[Crossref]

Moore, R. C.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997).
[Crossref]

Munzar, M.

J. Ikuta, K. Maeda, T. Sakai, T. Ikari, K. Koughia, M. Munzar, and S. O. Kasap, “Optical and photoluminescence properties of Er-doped (GeSe2)(1-x)(Ga2Se(3))(x) bulk glasses,” J. Mater. Sci. 18, S231–S234 (2007).

K. Koughia, M. Munzar, T. Aoki, and S. O. Kasap, “Photoluminescence spectra and lifetimes of 4I13/2 -> 4I15/2 and 4I11/2 -> 4I15/2 transitions in erbium doped GeGaSe and GeGaS glasses,” J. Mater. Sci. 18, S153–S157 (2007).

Murphy, T. E.

Nazabal, V.

V. Nazabal, P. Camy, P. Nemec, H. Lhermite, J. Charrier, J. L. Doualan, S. Zhang, M. Frumar, and J. L. Adam, “Erbium doped germanium based sulphide optical waveguide amplifier for near and mid-IR,” Proc. SPIE 7366, 73661T (2009).
[Crossref]

Nemec, P.

V. Nazabal, P. Camy, P. Nemec, H. Lhermite, J. Charrier, J. L. Doualan, S. Zhang, M. Frumar, and J. L. Adam, “Erbium doped germanium based sulphide optical waveguide amplifier for near and mid-IR,” Proc. SPIE 7366, 73661T (2009).
[Crossref]

Okada, K.

H. Tawarayama, E. Ishikawa, K. Yamanaka, K. Itoh, K. Okada, H. Aoki, H. Yanagita, Y. Matsuoka, and H. Toratani, “Optical amplification at 1.3 um in a praseodymium-doped sulfide-glass fiber,” J. Am. Ceram. Soc. 83(4), 792–796 (2000).
[Crossref]

Orava, J.

Osman, M. B. S.

S. M. Salem, M. B. S. Osman, A. M. Salem, H. M. Hashem, and H. A. Saleh, “Physical Properties and Structural Characterization of Thermally Evaporated Ge(25-x)GaxSe75 System,” Current Sci. International 04, 12 (2015).

Pan, W.

Payne, D. N.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997).
[Crossref]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[Crossref]

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical-analysis of scattering loss from planar optical wave-guides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Pelusi, M. D.

Povolotskiy, A. V.

T. Y. Ivanova, A. A. Manshina, A. V. Povolotskiy, Y. S. Tver’yanovich, S. K. Liaw, and Y. S. Hsieh, “Erbium-mediated photoconductivity of Ga-Ge-S-Se: Er(3+) chalcogenide glasses,” J. Phys. D Appl. Phys. 41(17), 175110 (2008).
[Crossref]

Pradel, A.

E. Barthelemy, C. Vigreux-Bercovici, P. Yot, and A. Pradel, “Co-thermal evaporation: a new method to deposit telluride films,” Optoelectron. Adv. Mat. 1, 487–490 (2007).

Prasad, A.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[Crossref]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Riziotis, C.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Rode, A.

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007).
[Crossref]

Rode, A. V.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[Crossref]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

Saito, N.

T. Imai, K. Maeda, M. Fujita, and N. Saito, “Photoluminescence properties of erbium-doped amorphous gallium-germanium-selenium films fabricated by RF sputtering,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S1), S106–S109 (2009).
[Crossref]

Sakai, T.

J. Ikuta, K. Maeda, T. Sakai, T. Ikari, K. Koughia, M. Munzar, and S. O. Kasap, “Optical and photoluminescence properties of Er-doped (GeSe2)(1-x)(Ga2Se(3))(x) bulk glasses,” J. Mater. Sci. 18, S231–S234 (2007).

Saleh, H. A.

S. M. Salem, M. B. S. Osman, A. M. Salem, H. M. Hashem, and H. A. Saleh, “Physical Properties and Structural Characterization of Thermally Evaporated Ge(25-x)GaxSe75 System,” Current Sci. International 04, 12 (2015).

Salem, A. M.

S. M. Salem, M. B. S. Osman, A. M. Salem, H. M. Hashem, and H. A. Saleh, “Physical Properties and Structural Characterization of Thermally Evaporated Ge(25-x)GaxSe75 System,” Current Sci. International 04, 12 (2015).

Salem, S. M.

S. M. Salem, M. B. S. Osman, A. M. Salem, H. M. Hashem, and H. A. Saleh, “Physical Properties and Structural Characterization of Thermally Evaporated Ge(25-x)GaxSe75 System,” Current Sci. International 04, 12 (2015).

Samson, B. N.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997).
[Crossref]

Sanghera, J. S.

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
[Crossref] [PubMed]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Schweizer, T.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997).
[Crossref]

T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
[Crossref] [PubMed]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[Crossref]

Seddon, A. B.

Shaw, L. B.

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
[Crossref] [PubMed]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Shepherd, D. P.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Shpotiuk, O.

A. Andriesh, M. Iovu, O. Shpotiuk, and I. Culeac, “Optical losses and photo-induced absorption in chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 11, 2172–2178 (2009).

Smirnov, V. B.

T. Y. Ivanova, A. A. Man’shina, A. V. Kurochkin, T. S. Tver’yanovich, and V. B. Smirnov, “Non-radiative energy transfer from Er3+ ions to the electronic states of the chalcogenide glass matrix,” J. Non-Cryst. Solids 326, 320–324 (2003).
[Crossref]

Smith, P. G. R.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Ta’eed, V. G.

Tawarayama, H.

H. Tawarayama, E. Ishikawa, K. Yamanaka, K. Itoh, K. Okada, H. Aoki, H. Yanagita, Y. Matsuoka, and H. Toratani, “Optical amplification at 1.3 um in a praseodymium-doped sulfide-glass fiber,” J. Am. Ceram. Soc. 83(4), 792–796 (2000).
[Crossref]

Thielen, P. A.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Tien, P. K.

Tonchev, D.

T. W. Allen, M. M. Hawkeye, C. J. Haugen, R. G. DeCorby, J. N. McMullin, D. Tonchev, K. Koughia, and S. O. Kasap, “Photoluminescence measurements of Er-doped chalcogenide glasses,” J. Vac. Sci. Technol. A 22(3), 921–924 (2004).
[Crossref]

Toratani, H.

H. Tawarayama, E. Ishikawa, K. Yamanaka, K. Itoh, K. Okada, H. Aoki, H. Yanagita, Y. Matsuoka, and H. Toratani, “Optical amplification at 1.3 um in a praseodymium-doped sulfide-glass fiber,” J. Am. Ceram. Soc. 83(4), 792–796 (2000).
[Crossref]

Tver’yanovich, T. S.

T. Y. Ivanova, A. A. Man’shina, A. V. Kurochkin, T. S. Tver’yanovich, and V. B. Smirnov, “Non-radiative energy transfer from Er3+ ions to the electronic states of the chalcogenide glass matrix,” J. Non-Cryst. Solids 326, 320–324 (2003).
[Crossref]

Tver’yanovich, Y. S.

T. Y. Ivanova, A. A. Manshina, A. V. Povolotskiy, Y. S. Tver’yanovich, S. K. Liaw, and Y. S. Hsieh, “Erbium-mediated photoconductivity of Ga-Ge-S-Se: Er(3+) chalcogenide glasses,” J. Phys. D Appl. Phys. 41(17), 175110 (2008).
[Crossref]

Vigreux-Bercovici, C.

E. Barthelemy, C. Vigreux-Bercovici, P. Yot, and A. Pradel, “Co-thermal evaporation: a new method to deposit telluride films,” Optoelectron. Adv. Mat. 1, 487–490 (2007).

Vu, K.

Wagner, T.

Wang, R.

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

Wang, R. P.

K. L. Yan, K. Vu, Z. Y. Yang, R. P. Wang, S. Debbarma, B. Luther-Davies, and S. Madden, “Emission properties of erbium-doped Ge-Ga-Se glasses, thin films and waveguides for laser amplifiers,” Opt. Mater. Express 4(3), 464–475 (2014).
[Crossref]

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[Crossref]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007).
[Crossref]

Yamanaka, K.

H. Tawarayama, E. Ishikawa, K. Yamanaka, K. Itoh, K. Okada, H. Aoki, H. Yanagita, Y. Matsuoka, and H. Toratani, “Optical amplification at 1.3 um in a praseodymium-doped sulfide-glass fiber,” J. Am. Ceram. Soc. 83(4), 792–796 (2000).
[Crossref]

Yan, K.

Yan, K. L.

Yanagita, H.

H. Tawarayama, E. Ishikawa, K. Yamanaka, K. Itoh, K. Okada, H. Aoki, H. Yanagita, Y. Matsuoka, and H. Toratani, “Optical amplification at 1.3 um in a praseodymium-doped sulfide-glass fiber,” J. Am. Ceram. Soc. 83(4), 792–796 (2000).
[Crossref]

Yang, Z.

Yang, Z. Y.

Yot, P.

E. Barthelemy, C. Vigreux-Bercovici, P. Yot, and A. Pradel, “Co-thermal evaporation: a new method to deposit telluride films,” Optoelectron. Adv. Mat. 1, 487–490 (2007).

Yu, Y.

Zhang, S.

V. Nazabal, P. Camy, P. Nemec, H. Lhermite, J. Charrier, J. L. Doualan, S. Zhang, M. Frumar, and J. L. Adam, “Erbium doped germanium based sulphide optical waveguide amplifier for near and mid-IR,” Proc. SPIE 7366, 73661T (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[Crossref]

Current Sci. International (1)

S. M. Salem, M. B. S. Osman, A. M. Salem, H. M. Hashem, and H. A. Saleh, “Physical Properties and Structural Characterization of Thermally Evaporated Ge(25-x)GaxSe75 System,” Current Sci. International 04, 12 (2015).

Electron. Lett. (2)

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[Crossref]

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photonics Technol. Lett. 22(7), 495–497 (2010).
[Crossref]

J. Am. Ceram. Soc. (1)

H. Tawarayama, E. Ishikawa, K. Yamanaka, K. Itoh, K. Okada, H. Aoki, H. Yanagita, Y. Matsuoka, and H. Toratani, “Optical amplification at 1.3 um in a praseodymium-doped sulfide-glass fiber,” J. Am. Ceram. Soc. 83(4), 792–796 (2000).
[Crossref]

J. Appl. Phys. (1)

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007).
[Crossref]

J. Lightwave Technol. (2)

J. Mater. Sci. (2)

J. Ikuta, K. Maeda, T. Sakai, T. Ikari, K. Koughia, M. Munzar, and S. O. Kasap, “Optical and photoluminescence properties of Er-doped (GeSe2)(1-x)(Ga2Se(3))(x) bulk glasses,” J. Mater. Sci. 18, S231–S234 (2007).

K. Koughia, M. Munzar, T. Aoki, and S. O. Kasap, “Photoluminescence spectra and lifetimes of 4I13/2 -> 4I15/2 and 4I11/2 -> 4I15/2 transitions in erbium doped GeGaSe and GeGaS glasses,” J. Mater. Sci. 18, S153–S157 (2007).

J. Non-Cryst. Solids (1)

T. Y. Ivanova, A. A. Man’shina, A. V. Kurochkin, T. S. Tver’yanovich, and V. B. Smirnov, “Non-radiative energy transfer from Er3+ ions to the electronic states of the chalcogenide glass matrix,” J. Non-Cryst. Solids 326, 320–324 (2003).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

A. Andriesh, M. Iovu, O. Shpotiuk, and I. Culeac, “Optical losses and photo-induced absorption in chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 11, 2172–2178 (2009).

J. Phys. D Appl. Phys. (1)

T. Y. Ivanova, A. A. Manshina, A. V. Povolotskiy, Y. S. Tver’yanovich, S. K. Liaw, and Y. S. Hsieh, “Erbium-mediated photoconductivity of Ga-Ge-S-Se: Er(3+) chalcogenide glasses,” J. Phys. D Appl. Phys. 41(17), 175110 (2008).
[Crossref]

J. Vac. Sci. Technol. A (1)

T. W. Allen, M. M. Hawkeye, C. J. Haugen, R. G. DeCorby, J. N. McMullin, D. Tonchev, K. Koughia, and S. O. Kasap, “Photoluminescence measurements of Er-doped chalcogenide glasses,” J. Vac. Sci. Technol. A 22(3), 921–924 (2004).
[Crossref]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical-analysis of scattering loss from planar optical wave-guides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Optoelectron. Adv. Mat. (1)

E. Barthelemy, C. Vigreux-Bercovici, P. Yot, and A. Pradel, “Co-thermal evaporation: a new method to deposit telluride films,” Optoelectron. Adv. Mat. 1, 487–490 (2007).

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

T. Imai, K. Maeda, M. Fujita, and N. Saito, “Photoluminescence properties of erbium-doped amorphous gallium-germanium-selenium films fabricated by RF sputtering,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S1), S106–S109 (2009).
[Crossref]

Proc. SPIE (1)

V. Nazabal, P. Camy, P. Nemec, H. Lhermite, J. Charrier, J. L. Doualan, S. Zhang, M. Frumar, and J. L. Adam, “Erbium doped germanium based sulphide optical waveguide amplifier for near and mid-IR,” Proc. SPIE 7366, 73661T (2009).
[Crossref]

Pure Appl. Opt. (1)

A. M. Andriesh, I. P. Culeac, and V. M. Loghin, “Photoinduced changes of optical absorption in chalcogenide glass fibres,” Pure Appl. Opt. 1(2), 12 (1992).
[Crossref]

Other (1)

P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Elsevier Science, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) 1/e lifetime, intrinsic lifetime and a lifetime decay curve (inserted), and (b) PL intensity versus pump intensity at 1490 nm.
Fig. 2
Fig. 2 (a) Details of the designed structure, (b) cross section of obtained 2 μm waveguide by SEM and (c) simulated TE fundamental mode for the 2-μm waveguide.
Fig. 3
Fig. 3 (a) Raw cutback insertion loss data with linear fit line, (b) measured optical propagation loss spectrum of 2 μm waveguides with fitted data.
Fig. 4
Fig. 4 Erbium absorption curve and optical enhancement spectrum under 1505 nm excitation.
Fig. 5
Fig. 5 Loss increment curve due to photoinduced absorption effect and the fitted curve.
Fig. 6
Fig. 6 (a) Calculated optical enhancement as a function of the population inversion and experimental optical enhancement; (b) experimental optical enhancement and the Erbium absorption from a 26 mm waveguide.
Fig. 7
Fig. 7 (a) Calculated maximum pump efficiency versus pump wavelength; (b) measured peak enhancement at 1538 nm as a function of pump power (measured at fibre connector).

Metrics