Abstract

Applicability of optical trapping tools for nanomanipulation is limited by the available laser power and trap efficiency. We utilized the strong confinement of light in a slot-graphite photonic crystal to develop high-efficiency parallel trapping over a large area. The stiffness is 35 times higher than our previously demonstrated on-chip, near field traps. We demonstrate the ability to trap both dielectric and metallic particles of sub-micron size. We find that the growth kinetics of nanoparticle arrays on the slot-graphite template depends on particle size. This difference is exploited to selectively trap one type of particle out of a binary colloidal mixture, creating an efficient optical sieve. This technique has rich potential for analysis, diagnostics, and enrichment and sorting of microscopic entities.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  2. K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
    [Crossref]
  3. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  4. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
    [Crossref] [PubMed]
  5. S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
    [Crossref] [PubMed]
  6. M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
    [Crossref] [PubMed]
  7. A. Jannasch, A. F. Demirors, P. D. J. van Oostrum, A. van Blaaderen, and E. Schaffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
    [Crossref]
  8. T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi, L. Forró, and S. Jeney, “Resonances arising from hydrodynamic memory in Brownian motion,” Nature 478(7367), 85–88 (2011).
    [Crossref] [PubMed]
  9. A. Jannasch, M. Mahamdeh, and E. Schäffer, “Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise,” Phys. Rev. Lett. 107(22), 228301 (2011).
    [Crossref] [PubMed]
  10. J. Dong, C. E. Castro, M. C. Boyce, M. J. Lang, and S. Lindquist, “Optical trapping with high forces reveals unexpected behaviors of prion fibrils,” Nat. Struct. Mol. Biol. 17(12), 1422–1430 (2010).
    [Crossref] [PubMed]
  11. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
    [Crossref] [PubMed]
  12. V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express 16(18), 13831–13844 (2008).
    [Crossref] [PubMed]
  13. Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103(9), 093119 (2008).
    [Crossref]
  14. E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, and O. M. Maragò, “Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties,” ACS Nano 5(2), 905–913 (2011).
    [Crossref] [PubMed]
  15. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
    [Crossref] [PubMed]
  16. K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Opt. Express 15(19), 12017–12029 (2007).
    [Crossref] [PubMed]
  17. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
    [Crossref]
  18. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
    [Crossref]
  19. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  20. A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
    [Crossref] [PubMed]
  21. S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
    [Crossref] [PubMed]
  22. S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
    [Crossref] [PubMed]
  23. D. Erickson, X. Serey, Y.-F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
    [Crossref] [PubMed]
  24. E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett. 13(5), 2290–2294 (2013).
    [Crossref] [PubMed]
  25. J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
    [Crossref] [PubMed]
  26. P. Jing, J. Wu, and L. Y. Lin, “Patterned optical trapping with two-dimensional photonic crystals,” ACS Photonics 1(5), 398–402 (2014).
    [Crossref]
  27. L. Milord, E. Gerelli, C. Jamois, A. Harouri, C. Chevalier, P. Viktorovitch, X. Letartre, and T. Benyattou, “Engineering of slow Bloch modes for optical trapping,” Appl. Phys. Lett. 106(12), 121110 (2015).
    [Crossref]
  28. J. Ma, L. J. Martínez, and M. L. Povinelli, “Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice,” Opt. Express 20(6), 6816–6824 (2012).
    [Crossref] [PubMed]
  29. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]
  30. L. J. Martínez, N. Huang, J. Ma, C. Lin, E. Jaquay, and M. L. Povinelli, “Design and optical characterization of high-Q guided-resonance modes in the slot-graphite photonic crystal lattice,” Opt. Express 21(25), 30975–30983 (2013).
    [Crossref] [PubMed]
  31. N. Huang, L. J. Martínez, and M. L. Povinelli, “Tuning the transmission lineshape of a photonic crystal slab guided-resonance mode by polarization control,” Opt. Express 21(18), 20675–20682 (2013).
    [Crossref] [PubMed]
  32. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref] [PubMed]
  33. W. P. Wong and K. Halvorsen, “The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur,” Opt. Express 14(25), 12517–12531 (2006).
    [Crossref] [PubMed]
  34. M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, and T. Matsunaga, “Size-selective microcavity array for rapid and efficient detection of circulating tumor cells,” Anal. Chem. 82(15), 6629–6635 (2010).
    [Crossref] [PubMed]
  35. S. C. Hur, A. J. Mach, and D. Di Carlo, “High-throughput size-based rare cell enrichment using microscale vortices,” Biomicrofluidics 5(2), 022206 (2011).
    [Crossref] [PubMed]
  36. B. Preinerstorfer, M. Lämmerhofer, and W. Lindner, “Synthesis and application of novel phenylboronate affinity materials based on organic polymer particles for selective trapping of glycoproteins,” J. Sep. Sci. 32(10), 1673–1685 (2009).
    [Crossref] [PubMed]
  37. M. Wiklund, S. Nilsson, and H. M. Hertz, “Ultrasonic trapping in capillaries for trace-amount biomedical analysis,” J. Appl. Phys. 90(1), 421–426 (2001).
    [Crossref]
  38. G. Agarwal and C. Livermore, “Chip-based size-selective sorting of biological cells using high frequency acoustic excitation,” Lab Chip 11(13), 2204–2211 (2011).
    [Crossref] [PubMed]
  39. J. Kim, J. Erath, A. Rodriguez, and C. Yang, “A high-efficiency microfluidic device for size-selective trapping and sorting,” Lab Chip 14(14), 2480–2490 (2014).
    [Crossref] [PubMed]
  40. T. Petit, L. Zhang, K. E. Peyer, B. E. Kratochvil, and B. J. Nelson, “Selective trapping and manipulation of microscale objects using mobile microvortices,” Nano Lett. 12(1), 156–160 (2012).
    [Crossref] [PubMed]
  41. P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
    [Crossref] [PubMed]
  42. I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
    [Crossref]
  43. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
    [Crossref]
  44. P. C. Chaumet and A. Rahmani, “Optical tweezers: dressed for success,” Nat. Nanotechnol. 9(4), 252–253 (2014).
    [Crossref] [PubMed]
  45. X. Serey, S. Mandal, Y.-F. Chen, and D. Erickson, “DNA transport and delivery in thermal gradients near optofluidic resonators,” Phys. Rev. Lett. 108(4), 048102 (2012).
    [Crossref] [PubMed]
  46. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
    [Crossref]
  47. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
    [Crossref]
  48. R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012).
    [Crossref] [PubMed]
  49. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

2015 (1)

L. Milord, E. Gerelli, C. Jamois, A. Harouri, C. Chevalier, P. Viktorovitch, X. Letartre, and T. Benyattou, “Engineering of slow Bloch modes for optical trapping,” Appl. Phys. Lett. 106(12), 121110 (2015).
[Crossref]

2014 (5)

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

P. Jing, J. Wu, and L. Y. Lin, “Patterned optical trapping with two-dimensional photonic crystals,” ACS Photonics 1(5), 398–402 (2014).
[Crossref]

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

J. Kim, J. Erath, A. Rodriguez, and C. Yang, “A high-efficiency microfluidic device for size-selective trapping and sorting,” Lab Chip 14(14), 2480–2490 (2014).
[Crossref] [PubMed]

P. C. Chaumet and A. Rahmani, “Optical tweezers: dressed for success,” Nat. Nanotechnol. 9(4), 252–253 (2014).
[Crossref] [PubMed]

2013 (5)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref] [PubMed]

E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett. 13(5), 2290–2294 (2013).
[Crossref] [PubMed]

L. J. Martínez, N. Huang, J. Ma, C. Lin, E. Jaquay, and M. L. Povinelli, “Design and optical characterization of high-Q guided-resonance modes in the slot-graphite photonic crystal lattice,” Opt. Express 21(25), 30975–30983 (2013).
[Crossref] [PubMed]

N. Huang, L. J. Martínez, and M. L. Povinelli, “Tuning the transmission lineshape of a photonic crystal slab guided-resonance mode by polarization control,” Opt. Express 21(18), 20675–20682 (2013).
[Crossref] [PubMed]

2012 (6)

J. Ma, L. J. Martínez, and M. L. Povinelli, “Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice,” Opt. Express 20(6), 6816–6824 (2012).
[Crossref] [PubMed]

A. Jannasch, A. F. Demirors, P. D. J. van Oostrum, A. van Blaaderen, and E. Schaffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

X. Serey, S. Mandal, Y.-F. Chen, and D. Erickson, “DNA transport and delivery in thermal gradients near optofluidic resonators,” Phys. Rev. Lett. 108(4), 048102 (2012).
[Crossref] [PubMed]

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
[Crossref]

T. Petit, L. Zhang, K. E. Peyer, B. E. Kratochvil, and B. J. Nelson, “Selective trapping and manipulation of microscale objects using mobile microvortices,” Nano Lett. 12(1), 156–160 (2012).
[Crossref] [PubMed]

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012).
[Crossref] [PubMed]

2011 (11)

G. Agarwal and C. Livermore, “Chip-based size-selective sorting of biological cells using high frequency acoustic excitation,” Lab Chip 11(13), 2204–2211 (2011).
[Crossref] [PubMed]

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
[Crossref] [PubMed]

T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi, L. Forró, and S. Jeney, “Resonances arising from hydrodynamic memory in Brownian motion,” Nature 478(7367), 85–88 (2011).
[Crossref] [PubMed]

A. Jannasch, M. Mahamdeh, and E. Schäffer, “Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise,” Phys. Rev. Lett. 107(22), 228301 (2011).
[Crossref] [PubMed]

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref] [PubMed]

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, and O. M. Maragò, “Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties,” ACS Nano 5(2), 905–913 (2011).
[Crossref] [PubMed]

S. C. Hur, A. J. Mach, and D. Di Carlo, “High-throughput size-based rare cell enrichment using microscale vortices,” Biomicrofluidics 5(2), 022206 (2011).
[Crossref] [PubMed]

D. Erickson, X. Serey, Y.-F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

2010 (4)

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, and T. Matsunaga, “Size-selective microcavity array for rapid and efficient detection of circulating tumor cells,” Anal. Chem. 82(15), 6629–6635 (2010).
[Crossref] [PubMed]

J. Dong, C. E. Castro, M. C. Boyce, M. J. Lang, and S. Lindquist, “Optical trapping with high forces reveals unexpected behaviors of prion fibrils,” Nat. Struct. Mol. Biol. 17(12), 1422–1430 (2010).
[Crossref] [PubMed]

2009 (3)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

B. Preinerstorfer, M. Lämmerhofer, and W. Lindner, “Synthesis and application of novel phenylboronate affinity materials based on organic polymer particles for selective trapping of glycoproteins,” J. Sep. Sci. 32(10), 1673–1685 (2009).
[Crossref] [PubMed]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

2008 (3)

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express 16(18), 13831–13844 (2008).
[Crossref] [PubMed]

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103(9), 093119 (2008).
[Crossref]

2007 (2)

2006 (3)

2004 (2)

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

2001 (1)

M. Wiklund, S. Nilsson, and H. M. Hertz, “Ultrasonic trapping in capillaries for trace-amount biomedical analysis,” J. Appl. Phys. 90(1), 421–426 (2001).
[Crossref]

1996 (1)

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[Crossref]

Acimovic, S. S.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Agarwal, G.

G. Agarwal and C. Livermore, “Chip-based size-selective sorting of biological cells using high frequency acoustic excitation,” Lab Chip 11(13), 2204–2211 (2011).
[Crossref] [PubMed]

Almeida, V. R.

Amendola, V.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, and O. M. Maragò, “Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties,” ACS Nano 5(2), 905–913 (2011).
[Crossref] [PubMed]

Ander, M.

Arakaki, A.

M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, and T. Matsunaga, “Size-selective microcavity array for rapid and efficient detection of circulating tumor cells,” Anal. Chem. 82(15), 6629–6635 (2010).
[Crossref] [PubMed]

Barrios, C. A.

Belushkin, M.

T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi, L. Forró, and S. Jeney, “Resonances arising from hydrodynamic memory in Brownian motion,” Nature 478(7367), 85–88 (2011).
[Crossref] [PubMed]

Benyattou, T.

L. Milord, E. Gerelli, C. Jamois, A. Harouri, C. Chevalier, P. Viktorovitch, X. Letartre, and T. Benyattou, “Engineering of slow Bloch modes for optical trapping,” Appl. Phys. Lett. 106(12), 121110 (2015).
[Crossref]

Berthelot, J.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Block, S. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref] [PubMed]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Borghese, F.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, and O. M. Maragò, “Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties,” ACS Nano 5(2), 905–913 (2011).
[Crossref] [PubMed]

Bormuth, V.

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Boyce, M. C.

J. Dong, C. E. Castro, M. C. Boyce, M. J. Lang, and S. Lindquist, “Optical trapping with high forces reveals unexpected behaviors of prion fibrils,” Nat. Struct. Mol. Biol. 17(12), 1422–1430 (2010).
[Crossref] [PubMed]

Cacciola, A.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, and O. M. Maragò, “Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties,” ACS Nano 5(2), 905–913 (2011).
[Crossref] [PubMed]

Castro, C. E.

J. Dong, C. E. Castro, M. C. Boyce, M. J. Lang, and S. Lindquist, “Optical trapping with high forces reveals unexpected behaviors of prion fibrils,” Nat. Struct. Mol. Biol. 17(12), 1422–1430 (2010).
[Crossref] [PubMed]

Cavallaro, E.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, and O. M. Maragò, “Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties,” ACS Nano 5(2), 905–913 (2011).
[Crossref] [PubMed]

Chaumet, P. C.

P. C. Chaumet and A. Rahmani, “Optical tweezers: dressed for success,” Nat. Nanotechnol. 9(4), 252–253 (2014).
[Crossref] [PubMed]

Chen, Y.-F.

X. Serey, S. Mandal, Y.-F. Chen, and D. Erickson, “DNA transport and delivery in thermal gradients near optofluidic resonators,” Phys. Rev. Lett. 108(4), 048102 (2012).
[Crossref] [PubMed]

D. Erickson, X. Serey, Y.-F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

Chevalier, C.

L. Milord, E. Gerelli, C. Jamois, A. Harouri, C. Chevalier, P. Viktorovitch, X. Letartre, and T. Benyattou, “Engineering of slow Bloch modes for optical trapping,” Appl. Phys. Lett. 106(12), 121110 (2015).
[Crossref]

Cizmar, T.

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

Compagnini, G.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, and O. M. Maragò, “Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties,” ACS Nano 5(2), 905–913 (2011).
[Crossref] [PubMed]

Crocker, J. C.

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[Crossref]

Crozier, K.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Crozier, K. B.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref] [PubMed]

Demirors, A. F.

A. Jannasch, A. F. Demirors, P. D. J. van Oostrum, A. van Blaaderen, and E. Schaffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

Denti, P.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, and O. M. Maragò, “Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties,” ACS Nano 5(2), 905–913 (2011).
[Crossref] [PubMed]

Dholakia, K.

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

Di Carlo, D.

S. C. Hur, A. J. Mach, and D. Di Carlo, “High-throughput size-based rare cell enrichment using microscale vortices,” Biomicrofluidics 5(2), 022206 (2011).
[Crossref] [PubMed]

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Dong, J.

J. Dong, C. E. Castro, M. C. Boyce, M. J. Lang, and S. Lindquist, “Optical trapping with high forces reveals unexpected behaviors of prion fibrils,” Nat. Struct. Mol. Biol. 17(12), 1422–1430 (2010).
[Crossref] [PubMed]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Erath, J.

J. Kim, J. Erath, A. Rodriguez, and C. Yang, “A high-efficiency microfluidic device for size-selective trapping and sorting,” Lab Chip 14(14), 2480–2490 (2014).
[Crossref] [PubMed]

Erickson, D.

X. Serey, S. Mandal, Y.-F. Chen, and D. Erickson, “DNA transport and delivery in thermal gradients near optofluidic resonators,” Phys. Rev. Lett. 108(4), 048102 (2012).
[Crossref] [PubMed]

D. Erickson, X. Serey, Y.-F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

Fazal, F. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref] [PubMed]

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Foffi, G.

T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi, L. Forró, and S. Jeney, “Resonances arising from hydrodynamic memory in Brownian motion,” Nature 478(7367), 85–88 (2011).
[Crossref] [PubMed]

Forró, L.

T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi, L. Forró, and S. Jeney, “Resonances arising from hydrodynamic memory in Brownian motion,” Nature 478(7367), 85–88 (2011).
[Crossref] [PubMed]

Forties, R. A.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Franosch, T.

T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi, L. Forró, and S. Jeney, “Resonances arising from hydrodynamic memory in Brownian motion,” Nature 478(7367), 85–88 (2011).
[Crossref] [PubMed]

Fukuda, Y.

M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, and T. Matsunaga, “Size-selective microcavity array for rapid and efficient detection of circulating tumor cells,” Anal. Chem. 82(15), 6629–6635 (2010).
[Crossref] [PubMed]

Fulbright, R. M.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Gerelli, E.

L. Milord, E. Gerelli, C. Jamois, A. Harouri, C. Chevalier, P. Viktorovitch, X. Letartre, and T. Benyattou, “Engineering of slow Bloch modes for optical trapping,” Appl. Phys. Lett. 106(12), 121110 (2015).
[Crossref]

Giessen, H.

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Gissibl, T.

Gordon, R.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Grimm, M.

T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi, L. Forró, and S. Jeney, “Resonances arising from hydrodynamic memory in Brownian motion,” Nature 478(7367), 85–88 (2011).
[Crossref] [PubMed]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, and O. M. Maragò, “Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties,” ACS Nano 5(2), 905–913 (2011).
[Crossref] [PubMed]

Guffey, M. J.

Guyot-Sionnest, P.

Halvorsen, K.

Harouri, A.

L. Milord, E. Gerelli, C. Jamois, A. Harouri, C. Chevalier, P. Viktorovitch, X. Letartre, and T. Benyattou, “Engineering of slow Bloch modes for optical trapping,” Appl. Phys. Lett. 106(12), 121110 (2015).
[Crossref]

Hayata, T.

M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, and T. Matsunaga, “Size-selective microcavity array for rapid and efficient detection of circulating tumor cells,” Anal. Chem. 82(15), 6629–6635 (2010).
[Crossref] [PubMed]

Heckenberg, N. R.

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103(9), 093119 (2008).
[Crossref]

Hertz, H. M.

M. Wiklund, S. Nilsson, and H. M. Hertz, “Ultrasonic trapping in capillaries for trace-amount biomedical analysis,” J. Appl. Phys. 90(1), 421–426 (2001).
[Crossref]

Hosokawa, M.

M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, and T. Matsunaga, “Size-selective microcavity array for rapid and efficient detection of circulating tumor cells,” Anal. Chem. 82(15), 6629–6635 (2010).
[Crossref] [PubMed]

Howard, J.

Hu, Y.

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103(9), 093119 (2008).
[Crossref]

Huang, N.

Hur, S. C.

S. C. Hur, A. J. Mach, and D. Di Carlo, “High-throughput size-based rare cell enrichment using microscale vortices,” Biomicrofluidics 5(2), 022206 (2011).
[Crossref] [PubMed]

Iatì, M. A.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, and O. M. Maragò, “Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties,” ACS Nano 5(2), 905–913 (2011).
[Crossref] [PubMed]

Inman, J. T.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Jamois, C.

L. Milord, E. Gerelli, C. Jamois, A. Harouri, C. Chevalier, P. Viktorovitch, X. Letartre, and T. Benyattou, “Engineering of slow Bloch modes for optical trapping,” Appl. Phys. Lett. 106(12), 121110 (2015).
[Crossref]

Jannasch, A.

A. Jannasch, A. F. Demirors, P. D. J. van Oostrum, A. van Blaaderen, and E. Schaffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

A. Jannasch, M. Mahamdeh, and E. Schäffer, “Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise,” Phys. Rev. Lett. 107(22), 228301 (2011).
[Crossref] [PubMed]

V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express 16(18), 13831–13844 (2008).
[Crossref] [PubMed]

Jaquay, E.

Jeney, S.

T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi, L. Forró, and S. Jeney, “Resonances arising from hydrodynamic memory in Brownian motion,” Nature 478(7367), 85–88 (2011).
[Crossref] [PubMed]

Jin, Y.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref] [PubMed]

Jing, P.

P. Jing, J. Wu, and L. Y. Lin, “Patterned optical trapping with two-dimensional photonic crystals,” ACS Photonics 1(5), 398–402 (2014).
[Crossref]

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Juan, M. L.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Kedenburg, S.

Kim, H. Y.

Kim, J.

J. Kim, J. Erath, A. Rodriguez, and C. Yang, “A high-efficiency microfluidic device for size-selective trapping and sorting,” Lab Chip 14(14), 2480–2490 (2014).
[Crossref] [PubMed]

Kratochvil, B. E.

T. Petit, L. Zhang, K. E. Peyer, B. E. Kratochvil, and B. J. Nelson, “Selective trapping and manipulation of microscale objects using mobile microvortices,” Nano Lett. 12(1), 156–160 (2012).
[Crossref] [PubMed]

Kreuzer, M. P.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Lämmerhofer, M.

B. Preinerstorfer, M. Lämmerhofer, and W. Lindner, “Synthesis and application of novel phenylboronate affinity materials based on organic polymer particles for selective trapping of glycoproteins,” J. Sep. Sci. 32(10), 1673–1685 (2009).
[Crossref] [PubMed]

Lang, M. J.

J. Dong, C. E. Castro, M. C. Boyce, M. J. Lang, and S. Lindquist, “Optical trapping with high forces reveals unexpected behaviors of prion fibrils,” Nat. Struct. Mol. Biol. 17(12), 1422–1430 (2010).
[Crossref] [PubMed]

Lerdsuchatawanich, T.

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

Letartre, X.

L. Milord, E. Gerelli, C. Jamois, A. Harouri, C. Chevalier, P. Viktorovitch, X. Letartre, and T. Benyattou, “Engineering of slow Bloch modes for optical trapping,” Appl. Phys. Lett. 106(12), 121110 (2015).
[Crossref]

Lin, C.

Lin, J.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Lin, L. Y.

P. Jing, J. Wu, and L. Y. Lin, “Patterned optical trapping with two-dimensional photonic crystals,” ACS Photonics 1(5), 398–402 (2014).
[Crossref]

Lin, S.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref] [PubMed]

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Lindner, W.

B. Preinerstorfer, M. Lämmerhofer, and W. Lindner, “Synthesis and application of novel phenylboronate affinity materials based on organic polymer particles for selective trapping of glycoproteins,” J. Sep. Sci. 32(10), 1673–1685 (2009).
[Crossref] [PubMed]

Lindquist, S.

J. Dong, C. E. Castro, M. C. Boyce, M. J. Lang, and S. Lindquist, “Optical trapping with high forces reveals unexpected behaviors of prion fibrils,” Nat. Struct. Mol. Biol. 17(12), 1422–1430 (2010).
[Crossref] [PubMed]

Lipson, M.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
[Crossref] [PubMed]

Liu, M.

Livermore, C.

G. Agarwal and C. Livermore, “Chip-based size-selective sorting of biological cells using high frequency acoustic excitation,” Lab Chip 11(13), 2204–2211 (2011).
[Crossref] [PubMed]

Ma, J.

Mach, A. J.

S. C. Hur, A. J. Mach, and D. Di Carlo, “High-throughput size-based rare cell enrichment using microscale vortices,” Biomicrofluidics 5(2), 022206 (2011).
[Crossref] [PubMed]

Mahamdeh, M.

A. Jannasch, M. Mahamdeh, and E. Schäffer, “Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise,” Phys. Rev. Lett. 107(22), 228301 (2011).
[Crossref] [PubMed]

Mandal, S.

X. Serey, S. Mandal, Y.-F. Chen, and D. Erickson, “DNA transport and delivery in thermal gradients near optofluidic resonators,” Phys. Rev. Lett. 108(4), 048102 (2012).
[Crossref] [PubMed]

D. Erickson, X. Serey, Y.-F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, and O. M. Maragò, “Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties,” ACS Nano 5(2), 905–913 (2011).
[Crossref] [PubMed]

Martínez, L. J.

Matsunaga, T.

M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, and T. Matsunaga, “Size-selective microcavity array for rapid and efficient detection of circulating tumor cells,” Anal. Chem. 82(15), 6629–6635 (2010).
[Crossref] [PubMed]

Mejia, C. A.

E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett. 13(5), 2290–2294 (2013).
[Crossref] [PubMed]

Meneghetti, M.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, and O. M. Maragò, “Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties,” ACS Nano 5(2), 905–913 (2011).
[Crossref] [PubMed]

Messina, E.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, and O. M. Maragò, “Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties,” ACS Nano 5(2), 905–913 (2011).
[Crossref] [PubMed]

Milord, L.

L. Milord, E. Gerelli, C. Jamois, A. Harouri, C. Chevalier, P. Viktorovitch, X. Letartre, and T. Benyattou, “Engineering of slow Bloch modes for optical trapping,” Appl. Phys. Lett. 106(12), 121110 (2015).
[Crossref]

Mor, F. M.

T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi, L. Forró, and S. Jeney, “Resonances arising from hydrodynamic memory in Brownian motion,” Nature 478(7367), 85–88 (2011).
[Crossref] [PubMed]

Neild, A.

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
[Crossref] [PubMed]

Nelson, B. J.

T. Petit, L. Zhang, K. E. Peyer, B. E. Kratochvil, and B. J. Nelson, “Selective trapping and manipulation of microscale objects using mobile microvortices,” Nano Lett. 12(1), 156–160 (2012).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Nieminen, T. A.

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103(9), 093119 (2008).
[Crossref]

Nilsson, S.

M. Wiklund, S. Nilsson, and H. M. Hertz, “Ultrasonic trapping in capillaries for trace-amount biomedical analysis,” J. Appl. Phys. 90(1), 421–426 (2001).
[Crossref]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Pang, Y.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Parthasarathy, R.

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012).
[Crossref] [PubMed]

Pelton, M.

Pesic, J.

Petit, T.

T. Petit, L. Zhang, K. E. Peyer, B. E. Kratochvil, and B. J. Nelson, “Selective trapping and manipulation of microscale objects using mobile microvortices,” Nano Lett. 12(1), 156–160 (2012).
[Crossref] [PubMed]

Peyer, K. E.

T. Petit, L. Zhang, K. E. Peyer, B. E. Kratochvil, and B. J. Nelson, “Selective trapping and manipulation of microscale objects using mobile microvortices,” Nano Lett. 12(1), 156–160 (2012).
[Crossref] [PubMed]

Povinelli, M. L.

Preinerstorfer, B.

B. Preinerstorfer, M. Lämmerhofer, and W. Lindner, “Synthesis and application of novel phenylboronate affinity materials based on organic polymer particles for selective trapping of glycoproteins,” J. Sep. Sci. 32(10), 1673–1685 (2009).
[Crossref] [PubMed]

Quidant, R.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Rahmani, A.

P. C. Chaumet and A. Rahmani, “Optical tweezers: dressed for success,” Nat. Nanotechnol. 9(4), 252–253 (2014).
[Crossref] [PubMed]

Ramos-García, R.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[Crossref]

Renger, J.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Ricárdez-Vargas, I.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Rodriguez, A.

J. Kim, J. Erath, A. Rodriguez, and C. Yang, “A high-efficiency microfluidic device for size-selective trapping and sorting,” Lab Chip 14(14), 2480–2490 (2014).
[Crossref] [PubMed]

Rodríguez-Montero, P.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[Crossref]

Rogers, P.

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103(9), 093119 (2008).
[Crossref]

Saija, R.

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, and O. M. Maragò, “Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties,” ACS Nano 5(2), 905–913 (2011).
[Crossref] [PubMed]

Saraf, S. N.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Schaffer, E.

A. Jannasch, A. F. Demirors, P. D. J. van Oostrum, A. van Blaaderen, and E. Schaffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

Schäffer, E.

A. Jannasch, M. Mahamdeh, and E. Schäffer, “Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise,” Phys. Rev. Lett. 107(22), 228301 (2011).
[Crossref] [PubMed]

V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express 16(18), 13831–13844 (2008).
[Crossref] [PubMed]

Scherer, N. F.

Schonbrun, E.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Serey, X.

X. Serey, S. Mandal, Y.-F. Chen, and D. Erickson, “DNA transport and delivery in thermal gradients near optofluidic resonators,” Phys. Rev. Lett. 108(4), 048102 (2012).
[Crossref] [PubMed]

D. Erickson, X. Serey, Y.-F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

Smith, G.

Soltani, M.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Tanaka, T.

M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, and T. Matsunaga, “Size-selective microcavity array for rapid and efficient detection of circulating tumor cells,” Anal. Chem. 82(15), 6629–6635 (2010).
[Crossref] [PubMed]

Toussaint, K. C.

van Blaaderen, A.

A. Jannasch, A. F. Demirors, P. D. J. van Oostrum, A. van Blaaderen, and E. Schaffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express 16(18), 13831–13844 (2008).
[Crossref] [PubMed]

van Kats, C. M.

van Oostrum, P. D. J.

A. Jannasch, A. F. Demirors, P. D. J. van Oostrum, A. van Blaaderen, and E. Schaffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

Vieweg, M.

Viktorovitch, P.

L. Milord, E. Gerelli, C. Jamois, A. Harouri, C. Chevalier, P. Viktorovitch, X. Letartre, and T. Benyattou, “Engineering of slow Bloch modes for optical trapping,” Appl. Phys. Lett. 106(12), 121110 (2015).
[Crossref]

Volke-Sepúlveda, K.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[Crossref]

Volpe, G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Wang, M. D.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Wiklund, M.

M. Wiklund, S. Nilsson, and H. M. Hertz, “Ultrasonic trapping in capillaries for trace-amount biomedical analysis,” J. Appl. Phys. 90(1), 421–426 (2001).
[Crossref]

Wong, W. P.

Wu, J.

P. Jing, J. Wu, and L. Y. Lin, “Patterned optical trapping with two-dimensional photonic crystals,” ACS Photonics 1(5), 398–402 (2014).
[Crossref]

Xu, Q.

Yang, A. H. J.

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

Yang, C.

J. Kim, J. Erath, A. Rodriguez, and C. Yang, “A high-efficiency microfluidic device for size-selective trapping and sorting,” Lab Chip 14(14), 2480–2490 (2014).
[Crossref] [PubMed]

Yoshino, T.

M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, and T. Matsunaga, “Size-selective microcavity array for rapid and efficient detection of circulating tumor cells,” Anal. Chem. 82(15), 6629–6635 (2010).
[Crossref] [PubMed]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Zhang, L.

T. Petit, L. Zhang, K. E. Peyer, B. E. Kratochvil, and B. J. Nelson, “Selective trapping and manipulation of microscale objects using mobile microvortices,” Nano Lett. 12(1), 156–160 (2012).
[Crossref] [PubMed]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Zhu, W.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref] [PubMed]

ACS Nano (1)

E. Messina, E. Cavallaro, A. Cacciola, M. A. Iatì, P. G. Gucciardi, F. Borghese, P. Denti, R. Saija, G. Compagnini, M. Meneghetti, V. Amendola, and O. M. Maragò, “Plasmon-Enhanced Optical Trapping of Gold Nanoaggregates with Selected Optical Properties,” ACS Nano 5(2), 905–913 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

P. Jing, J. Wu, and L. Y. Lin, “Patterned optical trapping with two-dimensional photonic crystals,” ACS Photonics 1(5), 398–402 (2014).
[Crossref]

Anal. Chem. (1)

M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, and T. Matsunaga, “Size-selective microcavity array for rapid and efficient detection of circulating tumor cells,” Anal. Chem. 82(15), 6629–6635 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006).
[Crossref]

L. Milord, E. Gerelli, C. Jamois, A. Harouri, C. Chevalier, P. Viktorovitch, X. Letartre, and T. Benyattou, “Engineering of slow Bloch modes for optical trapping,” Appl. Phys. Lett. 106(12), 121110 (2015).
[Crossref]

Biomicrofluidics (1)

S. C. Hur, A. J. Mach, and D. Di Carlo, “High-throughput size-based rare cell enrichment using microscale vortices,” Biomicrofluidics 5(2), 022206 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (2)

M. Wiklund, S. Nilsson, and H. M. Hertz, “Ultrasonic trapping in capillaries for trace-amount biomedical analysis,” J. Appl. Phys. 90(1), 421–426 (2001).
[Crossref]

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103(9), 093119 (2008).
[Crossref]

J. Colloid Interface Sci. (1)

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[Crossref]

J. Sep. Sci. (1)

B. Preinerstorfer, M. Lämmerhofer, and W. Lindner, “Synthesis and application of novel phenylboronate affinity materials based on organic polymer particles for selective trapping of glycoproteins,” J. Sep. Sci. 32(10), 1673–1685 (2009).
[Crossref] [PubMed]

Lab Chip (4)

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
[Crossref] [PubMed]

G. Agarwal and C. Livermore, “Chip-based size-selective sorting of biological cells using high frequency acoustic excitation,” Lab Chip 11(13), 2204–2211 (2011).
[Crossref] [PubMed]

J. Kim, J. Erath, A. Rodriguez, and C. Yang, “A high-efficiency microfluidic device for size-selective trapping and sorting,” Lab Chip 14(14), 2480–2490 (2014).
[Crossref] [PubMed]

D. Erickson, X. Serey, Y.-F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

Nano Lett. (6)

E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett. 13(5), 2290–2294 (2013).
[Crossref] [PubMed]

T. Petit, L. Zhang, K. E. Peyer, B. E. Kratochvil, and B. J. Nelson, “Selective trapping and manipulation of microscale objects using mobile microvortices,” Nano Lett. 12(1), 156–160 (2012).
[Crossref] [PubMed]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref] [PubMed]

Nat. Methods (1)

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (4)

P. C. Chaumet and A. Rahmani, “Optical tweezers: dressed for success,” Nat. Nanotechnol. 9(4), 252–253 (2014).
[Crossref] [PubMed]

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Nat. Photonics (6)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

A. Jannasch, A. F. Demirors, P. D. J. van Oostrum, A. van Blaaderen, and E. Schaffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref] [PubMed]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Nat. Phys. (2)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Nat. Struct. Mol. Biol. (1)

J. Dong, C. E. Castro, M. C. Boyce, M. J. Lang, and S. Lindquist, “Optical trapping with high forces reveals unexpected behaviors of prion fibrils,” Nat. Struct. Mol. Biol. 17(12), 1422–1430 (2010).
[Crossref] [PubMed]

Nature (2)

T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi, L. Forró, and S. Jeney, “Resonances arising from hydrodynamic memory in Brownian motion,” Nature 478(7367), 85–88 (2011).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. Lett. (2)

X. Serey, S. Mandal, Y.-F. Chen, and D. Erickson, “DNA transport and delivery in thermal gradients near optofluidic resonators,” Phys. Rev. Lett. 108(4), 048102 (2012).
[Crossref] [PubMed]

A. Jannasch, M. Mahamdeh, and E. Schäffer, “Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise,” Phys. Rev. Lett. 107(22), 228301 (2011).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Other (1)

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of optical trapping using a slot-graphite photonic crystal. Incident light from below excites a guided-resonance mode of the photonic-crystal slab, giving rise to optical forces on nanoparticles in colloidal solution.

Fig. 2
Fig. 2

Slot-graphite photonic crystal device. (a) Mode profile (|E|2) on resonance for y-polarized incident light. The circles represent the positions of the holes, and rectangles represent the positions of slots. b) SEM image of the device used in the experiment. The scale bar represents 1 µm. (c) Measured transmission spectrum of the device.

Fig. 3
Fig. 3

Trap stiffness for incident y-polarized light. (a) Histogram of stiffness values in the direction perpendicular to the polarization of the incident light. (b) Stiffness in the direction parallel to the incident polarization.

Fig. 4
Fig. 4

Trapping in slot-graphite lattice. Assembly of (a) 520nm polystyrene particles (b) 300nm gold nanoparticles.

Fig. 5
Fig. 5

Instantaneous number of trapped particles for a colloidal solution containing equal concentrations of (a) 380nm or 520nm polystyrene alone. (b) 380nm and 520nm polystyrene particles together.

Fig. 6
Fig. 6

(a) Cross sectional view of the sinking of a nanoparticle into the slot. P is the lowest point of the particle. (b) Distance from the surface of the photonic crystal to the bottom of the particle (point P) as the particle moves along the y direction for two different particle diameters. (c) Optical potential experienced by the particles at the corresponding positions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔU= 0 r F z ( r )·dr,

Metrics