Abstract

With vertically slotted hybrid plasmonic waveguides (VSHPWs)-nanocavity system fabricated on the silicon-on-insulator platform, a near-infrared surface plasmon resonances (SPRs)-based refractive index (RI) sensor with extremely high figure of merit FOM = 224.3 and transmission efficiency T = 97.6% is proposed and investigated. Based on the finite element method, effective mode index behaviors together with spectral properties are calculated to analyze and optimize the sensing performance. Within near-infrared region, the wavelength sensitivity (S) and optical resolution (FWHM) can be achieved as S = 1817.5nm/RIU and FWHM = 7.4nm. A mechanism of synergy between propagating SPRs and localized SPRs is also presented for further improving the sensitivity (as high as 2647.5nm/RIU). In addition, the VSHPWs-based RI sensor can be fully realized by CMOS-compatible fabrication technology. In general, the high FOM, S and T achieved by our designed structure may have extensive applications in nanophotonic circuits, environmental monitoring and even pharmaceutical research.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity

Lei Chen, Yumin Liu, Zhongyuan Yu, Dong Wu, Rui Ma, Yang Zhang, and Han Ye
Opt. Express 24(9) 9975-9983 (2016)

Boosting figures of merit of cavity plasmon resonance based refractive index sensing in dielectric-metal core-shell resonators

Zhiqin Li, Ren Sun, Chi Zhang, Mingjie Wan, Ping Gu, Qi Shen, Zhuo Chen, and Zhenling Wang
Opt. Express 24(17) 19895-19904 (2016)

High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide

Xu Sun, Daoxin Dai, Lars Thylén, and Lech Wosinski
Opt. Express 23(20) 25688-25699 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
  2. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (CRC, 2008).
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  5. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
    [Crossref] [PubMed]
  6. J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement,” Opt. Lett. 36(12), 2312–2314 (2011).
    [Crossref] [PubMed]
  7. L. Chen, T. Zhang, X. Li, and W. Huang, “Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film,” Opt. Express 20(18), 20535–20544 (2012).
    [Crossref] [PubMed]
  8. Z. Zhang and J. Wang, “Long-range hybrid wedge plasmonic waveguide,” Sci. Rep. 4, 6870 (2014).
    [Crossref] [PubMed]
  9. L. Ding, J. Qin, K. Xu, and L. Wang, “Long range hybrid tube-wedge plasmonic waveguide with extreme light confinement and good fabrication error tolerance,” Opt. Express 24(4), 3432–3440 (2016).
    [Crossref] [PubMed]
  10. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
    [Crossref] [PubMed]
  11. E. P. Li and H. S. Chu, Plasmonic Nanoeletronics and Sensing (Cambridge University, 2014).
  12. C. H. Du and Y. P. Chiou, “Vertical directional couplers with ultra-short coupling length based on hybrid plasmonic waveguides,” J. Lightwave Technol. 32(11), 2065–2071 (2014).
    [Crossref]
  13. B. Sun, Y. Wang, Y. Liu, S. Liu, C. Liao, and M. Y. Chen, “Compact device employed a hybrid plasmonic waveguide for polarization-selective splitting,” Opt. Commun. 334, 240–246 (2015).
    [Crossref]
  14. H. Lu, Y. Liu, Z. Yu, C. Ye, and J. Wang, “Hybrid plasmonic waveguides for low-threshold nanolaser applications,” Chin. Opt. Lett. 12(11), 103–106 (2014).
  15. J. Wang, X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmström, L. Wosinski, L. Thylen, and D. Dai, “Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides,” Opt. Express 19(2), 838–847 (2011).
    [Crossref] [PubMed]
  16. B. You, J. Y. Lu, T. A. Liu, and J. L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21(18), 21087–21096 (2013).
    [Crossref] [PubMed]
  17. X. Sun, D. Dai, L. Thylén, and L. Wosinski, “High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide,” Opt. Express 23(20), 25688–25699 (2015).
    [Crossref] [PubMed]
  18. X. Sun, D. Dai, L. Thylén, and L. Wosinski, “Double-slot hybrid plasmonic ring resonator used for optical sensors and modulators,” Photonics 2(4), 1116–1130 (2015).
    [Crossref]
  19. S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288–9294 (2016).
    [Crossref] [PubMed]
  20. X. Lu, L. Zhang, and T. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23(16), 20715–20720 (2015).
    [Crossref] [PubMed]
  21. X. Lu, R. Wan, and T. Zhang, “Metal-dielectric-metal based narrow band absorber for sensing applications,” Opt. Express 23(23), 29842–29847 (2015).
    [Crossref] [PubMed]
  22. Q. Liu, J. S. Kee, and M. K. Park, “A refractive index sensor design based on grating-assisted coupling between a strip waveguide and a slot waveguide,” Opt. Express 21(5), 5897–5909 (2013).
    [Crossref] [PubMed]
  23. Y. Binfeng, H. Guohua, Z. Ruohu, and C. Yiping, “Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating,” Opt. Express 22(23), 28662–28670 (2014).
    [Crossref] [PubMed]
  24. X. Wang and C. K. Madsen, “Highly sensitive compact refractive index sensor based on phase-shifted sidewall Bragg gratings in slot waveguide,” Appl. Opt. 53(1), 96–103 (2014).
    [Crossref] [PubMed]
  25. Y. Chang and T. Yu, “Photonic-quasi-TE-to-hybrid-plasmonic-TM polarization mode converter,” J. Lightwave Technol. 33(20), 4261–4267 (2015).
    [Crossref]
  26. M. S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express 19(9), 8379–8393 (2011).
    [Crossref] [PubMed]
  27. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express 19(14), 12925–12936 (2011).
    [Crossref] [PubMed]
  28. D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
    [Crossref] [PubMed]
  29. M. T. Noghani and M. H. V. Samiei, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8(2), 1155–1168 (2013).
    [Crossref]
  30. L. Chen, Y. Liu, Z. Yu, D. Wu, R. Ma, Y. Zhang, and H. Ye, “Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity,” Opt. Express 24(9), 9975–9983 (2016).
    [Crossref] [PubMed]
  31. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]
  32. T. Wu, Y. Liu, Z. Yu, H. Ye, Y. Peng, C. Shu, C. Yang, W. Zhang, and H. He, “A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity,” Opt. Commun. 339, 1–6 (2015).
    [Crossref]
  33. T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
    [Crossref] [PubMed]
  34. Y. Xie, Y. Huang, W. Zhao, W. Xu, and C. He, “A novel plasmonic sensor based on metal-insulator-metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
    [Crossref]
  35. S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel) 11(2), 1565–1588 (2011).
    [Crossref] [PubMed]
  36. S. Gwo, H. Y. Chen, M. H. Lin, L. Sun, and X. Li, “Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics,” Chem. Soc. Rev. 10, 450 (2016).
    [Crossref] [PubMed]
  37. P. Yang, J. Zheng, Y. Xu, Q. Zhang, and L. Jiang, “Colloidal synthesis and applications of plasmonic metal nanoparticles,” Adv. Mater. 201, 1739 (2016).
    [PubMed]
  38. I. Choi, “Recent advances in nanoplasmonic sensors for environmental detection and monitoring,” J. Nanosci. Nanotechnol. 16(5), 4274–4283 (2016).
    [Crossref] [PubMed]
  39. S. Barizuddin, S. Bok, and S. Gangopadhyay, “Plasmonic sensors for disease detection – a review,” J. Nanomed. Nanotechnol. 7(3), 1000373 (2016).

2016 (7)

L. Ding, J. Qin, K. Xu, and L. Wang, “Long range hybrid tube-wedge plasmonic waveguide with extreme light confinement and good fabrication error tolerance,” Opt. Express 24(4), 3432–3440 (2016).
[Crossref] [PubMed]

S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288–9294 (2016).
[Crossref] [PubMed]

L. Chen, Y. Liu, Z. Yu, D. Wu, R. Ma, Y. Zhang, and H. Ye, “Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity,” Opt. Express 24(9), 9975–9983 (2016).
[Crossref] [PubMed]

S. Gwo, H. Y. Chen, M. H. Lin, L. Sun, and X. Li, “Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics,” Chem. Soc. Rev. 10, 450 (2016).
[Crossref] [PubMed]

P. Yang, J. Zheng, Y. Xu, Q. Zhang, and L. Jiang, “Colloidal synthesis and applications of plasmonic metal nanoparticles,” Adv. Mater. 201, 1739 (2016).
[PubMed]

I. Choi, “Recent advances in nanoplasmonic sensors for environmental detection and monitoring,” J. Nanosci. Nanotechnol. 16(5), 4274–4283 (2016).
[Crossref] [PubMed]

S. Barizuddin, S. Bok, and S. Gangopadhyay, “Plasmonic sensors for disease detection – a review,” J. Nanomed. Nanotechnol. 7(3), 1000373 (2016).

2015 (8)

T. Wu, Y. Liu, Z. Yu, H. Ye, Y. Peng, C. Shu, C. Yang, W. Zhang, and H. He, “A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity,” Opt. Commun. 339, 1–6 (2015).
[Crossref]

Y. Chang and T. Yu, “Photonic-quasi-TE-to-hybrid-plasmonic-TM polarization mode converter,” J. Lightwave Technol. 33(20), 4261–4267 (2015).
[Crossref]

X. Lu, L. Zhang, and T. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23(16), 20715–20720 (2015).
[Crossref] [PubMed]

X. Lu, R. Wan, and T. Zhang, “Metal-dielectric-metal based narrow band absorber for sensing applications,” Opt. Express 23(23), 29842–29847 (2015).
[Crossref] [PubMed]

B. Sun, Y. Wang, Y. Liu, S. Liu, C. Liao, and M. Y. Chen, “Compact device employed a hybrid plasmonic waveguide for polarization-selective splitting,” Opt. Commun. 334, 240–246 (2015).
[Crossref]

X. Sun, D. Dai, L. Thylén, and L. Wosinski, “High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide,” Opt. Express 23(20), 25688–25699 (2015).
[Crossref] [PubMed]

X. Sun, D. Dai, L. Thylén, and L. Wosinski, “Double-slot hybrid plasmonic ring resonator used for optical sensors and modulators,” Photonics 2(4), 1116–1130 (2015).
[Crossref]

Y. Xie, Y. Huang, W. Zhao, W. Xu, and C. He, “A novel plasmonic sensor based on metal-insulator-metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

2014 (6)

2013 (3)

2012 (1)

2011 (5)

2010 (3)

2009 (1)

2004 (1)

Almeida, V. R.

Bai, W.

Barizuddin, S.

S. Barizuddin, S. Bok, and S. Gangopadhyay, “Plasmonic sensors for disease detection – a review,” J. Nanomed. Nanotechnol. 7(3), 1000373 (2016).

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barrios, C. A.

Binfeng, Y.

Bok, S.

S. Barizuddin, S. Bok, and S. Gangopadhyay, “Plasmonic sensors for disease detection – a review,” J. Nanomed. Nanotechnol. 7(3), 1000373 (2016).

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cai, L.

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Chang, Y.

Chen, H. Y.

S. Gwo, H. Y. Chen, M. H. Lin, L. Sun, and X. Li, “Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics,” Chem. Soc. Rev. 10, 450 (2016).
[Crossref] [PubMed]

Chen, L.

Chen, M. Y.

B. Sun, Y. Wang, Y. Liu, S. Liu, C. Liao, and M. Y. Chen, “Compact device employed a hybrid plasmonic waveguide for polarization-selective splitting,” Opt. Commun. 334, 240–246 (2015).
[Crossref]

Chiou, Y. P.

Choi, I.

I. Choi, “Recent advances in nanoplasmonic sensors for environmental detection and monitoring,” J. Nanosci. Nanotechnol. 16(5), 4274–4283 (2016).
[Crossref] [PubMed]

Chung, T.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel) 11(2), 1565–1588 (2011).
[Crossref] [PubMed]

Dai, D.

Ding, L.

Du, C. H.

Gangopadhyay, S.

S. Barizuddin, S. Bok, and S. Gangopadhyay, “Plasmonic sensors for disease detection – a review,” J. Nanomed. Nanotechnol. 7(3), 1000373 (2016).

Guan, X.

Guohua, H.

Gwo, S.

S. Gwo, H. Y. Chen, M. H. Lin, L. Sun, and X. Li, “Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics,” Chem. Soc. Rev. 10, 450 (2016).
[Crossref] [PubMed]

Han, Z.

He, C.

Y. Xie, Y. Huang, W. Zhao, W. Xu, and C. He, “A novel plasmonic sensor based on metal-insulator-metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

He, H.

T. Wu, Y. Liu, Z. Yu, H. Ye, Y. Peng, C. Shu, C. Yang, W. Zhang, and H. He, “A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity,” Opt. Commun. 339, 1–6 (2015).
[Crossref]

He, S.

He, Y.

Holmström, P.

Huang, W.

Huang, Y.

Y. Xie, Y. Huang, W. Zhao, W. Xu, and C. He, “A novel plasmonic sensor based on metal-insulator-metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

Jiang, L.

P. Yang, J. Zheng, Y. Xu, Q. Zhang, and L. Jiang, “Colloidal synthesis and applications of plasmonic metal nanoparticles,” Adv. Mater. 201, 1739 (2016).
[PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kee, J. S.

Kwon, M. S.

Lee, B.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel) 11(2), 1565–1588 (2011).
[Crossref] [PubMed]

Li, X.

S. Gwo, H. Y. Chen, M. H. Lin, L. Sun, and X. Li, “Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics,” Chem. Soc. Rev. 10, 450 (2016).
[Crossref] [PubMed]

L. Chen, T. Zhang, X. Li, and W. Huang, “Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film,” Opt. Express 20(18), 20535–20544 (2012).
[Crossref] [PubMed]

Liao, C.

B. Sun, Y. Wang, Y. Liu, S. Liu, C. Liao, and M. Y. Chen, “Compact device employed a hybrid plasmonic waveguide for polarization-selective splitting,” Opt. Commun. 334, 240–246 (2015).
[Crossref]

Lin, M. H.

S. Gwo, H. Y. Chen, M. H. Lin, L. Sun, and X. Li, “Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics,” Chem. Soc. Rev. 10, 450 (2016).
[Crossref] [PubMed]

Lipson, M.

Liu, Q.

Liu, S.

B. Sun, Y. Wang, Y. Liu, S. Liu, C. Liao, and M. Y. Chen, “Compact device employed a hybrid plasmonic waveguide for polarization-selective splitting,” Opt. Commun. 334, 240–246 (2015).
[Crossref]

Liu, T. A.

Liu, Y.

L. Chen, Y. Liu, Z. Yu, D. Wu, R. Ma, Y. Zhang, and H. Ye, “Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity,” Opt. Express 24(9), 9975–9983 (2016).
[Crossref] [PubMed]

T. Wu, Y. Liu, Z. Yu, H. Ye, Y. Peng, C. Shu, C. Yang, W. Zhang, and H. He, “A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity,” Opt. Commun. 339, 1–6 (2015).
[Crossref]

B. Sun, Y. Wang, Y. Liu, S. Liu, C. Liao, and M. Y. Chen, “Compact device employed a hybrid plasmonic waveguide for polarization-selective splitting,” Opt. Commun. 334, 240–246 (2015).
[Crossref]

H. Lu, Y. Liu, Z. Yu, C. Ye, and J. Wang, “Hybrid plasmonic waveguides for low-threshold nanolaser applications,” Chin. Opt. Lett. 12(11), 103–106 (2014).

T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
[Crossref] [PubMed]

Lu, H.

H. Lu, Y. Liu, Z. Yu, C. Ye, and J. Wang, “Hybrid plasmonic waveguides for low-threshold nanolaser applications,” Chin. Opt. Lett. 12(11), 103–106 (2014).

Lu, J. Y.

Lu, X.

Luo, S.

Ma, R.

Madsen, C. K.

Noghani, M. T.

M. T. Noghani and M. H. V. Samiei, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8(2), 1155–1168 (2013).
[Crossref]

Park, M. K.

Peng, J. L.

Peng, Y.

T. Wu, Y. Liu, Z. Yu, H. Ye, Y. Peng, C. Shu, C. Yang, W. Zhang, and H. He, “A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity,” Opt. Commun. 339, 1–6 (2015).
[Crossref]

T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
[Crossref] [PubMed]

Qin, J.

Roh, S.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel) 11(2), 1565–1588 (2011).
[Crossref] [PubMed]

Ruohu, Z.

Samiei, M. H. V.

M. T. Noghani and M. H. V. Samiei, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8(2), 1155–1168 (2013).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Shi, Y.

Shu, C.

T. Wu, Y. Liu, Z. Yu, H. Ye, Y. Peng, C. Shu, C. Yang, W. Zhang, and H. He, “A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity,” Opt. Commun. 339, 1–6 (2015).
[Crossref]

T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
[Crossref] [PubMed]

Song, G.

Sun, B.

B. Sun, Y. Wang, Y. Liu, S. Liu, C. Liao, and M. Y. Chen, “Compact device employed a hybrid plasmonic waveguide for polarization-selective splitting,” Opt. Commun. 334, 240–246 (2015).
[Crossref]

Sun, L.

S. Gwo, H. Y. Chen, M. H. Lin, L. Sun, and X. Li, “Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics,” Chem. Soc. Rev. 10, 450 (2016).
[Crossref] [PubMed]

Sun, X.

X. Sun, D. Dai, L. Thylén, and L. Wosinski, “High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide,” Opt. Express 23(20), 25688–25699 (2015).
[Crossref] [PubMed]

X. Sun, D. Dai, L. Thylén, and L. Wosinski, “Double-slot hybrid plasmonic ring resonator used for optical sensors and modulators,” Photonics 2(4), 1116–1130 (2015).
[Crossref]

Thylen, L.

Thylén, L.

X. Sun, D. Dai, L. Thylén, and L. Wosinski, “High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide,” Opt. Express 23(20), 25688–25699 (2015).
[Crossref] [PubMed]

X. Sun, D. Dai, L. Thylén, and L. Wosinski, “Double-slot hybrid plasmonic ring resonator used for optical sensors and modulators,” Photonics 2(4), 1116–1130 (2015).
[Crossref]

Van, V.

Wan, R.

Wang, J.

H. Lu, Y. Liu, Z. Yu, C. Ye, and J. Wang, “Hybrid plasmonic waveguides for low-threshold nanolaser applications,” Chin. Opt. Lett. 12(11), 103–106 (2014).

Z. Zhang and J. Wang, “Long-range hybrid wedge plasmonic waveguide,” Sci. Rep. 4, 6870 (2014).
[Crossref] [PubMed]

J. Wang, X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmström, L. Wosinski, L. Thylen, and D. Dai, “Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides,” Opt. Express 19(2), 838–847 (2011).
[Crossref] [PubMed]

Wang, L.

Wang, X.

Wang, Y.

B. Sun, Y. Wang, Y. Liu, S. Liu, C. Liao, and M. Y. Chen, “Compact device employed a hybrid plasmonic waveguide for polarization-selective splitting,” Opt. Commun. 334, 240–246 (2015).
[Crossref]

Wang, Z.

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wosinski, L.

Wu, D.

Wu, M.

Wu, T.

T. Wu, Y. Liu, Z. Yu, H. Ye, Y. Peng, C. Shu, C. Yang, W. Zhang, and H. He, “A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity,” Opt. Commun. 339, 1–6 (2015).
[Crossref]

T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
[Crossref] [PubMed]

Xie, Y.

Y. Xie, Y. Huang, W. Zhao, W. Xu, and C. He, “A novel plasmonic sensor based on metal-insulator-metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

Xu, K.

Xu, Q.

Xu, W.

Y. Xie, Y. Huang, W. Zhao, W. Xu, and C. He, “A novel plasmonic sensor based on metal-insulator-metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

Xu, Y.

P. Yang, J. Zheng, Y. Xu, Q. Zhang, and L. Jiang, “Colloidal synthesis and applications of plasmonic metal nanoparticles,” Adv. Mater. 201, 1739 (2016).
[PubMed]

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement,” Opt. Lett. 36(12), 2312–2314 (2011).
[Crossref] [PubMed]

Yang, C.

T. Wu, Y. Liu, Z. Yu, H. Ye, Y. Peng, C. Shu, C. Yang, W. Zhang, and H. He, “A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity,” Opt. Commun. 339, 1–6 (2015).
[Crossref]

Yang, P.

P. Yang, J. Zheng, Y. Xu, Q. Zhang, and L. Jiang, “Colloidal synthesis and applications of plasmonic metal nanoparticles,” Adv. Mater. 201, 1739 (2016).
[PubMed]

Ye, C.

H. Lu, Y. Liu, Z. Yu, C. Ye, and J. Wang, “Hybrid plasmonic waveguides for low-threshold nanolaser applications,” Chin. Opt. Lett. 12(11), 103–106 (2014).

Ye, H.

Yiping, C.

You, B.

Yu, T.

Yu, Z.

L. Chen, Y. Liu, Z. Yu, D. Wu, R. Ma, Y. Zhang, and H. Ye, “Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity,” Opt. Express 24(9), 9975–9983 (2016).
[Crossref] [PubMed]

T. Wu, Y. Liu, Z. Yu, H. Ye, Y. Peng, C. Shu, C. Yang, W. Zhang, and H. He, “A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity,” Opt. Commun. 339, 1–6 (2015).
[Crossref]

T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
[Crossref] [PubMed]

H. Lu, Y. Liu, Z. Yu, C. Ye, and J. Wang, “Hybrid plasmonic waveguides for low-threshold nanolaser applications,” Chin. Opt. Lett. 12(11), 103–106 (2014).

Zhang, J.

Zhang, L.

Zhang, Q.

P. Yang, J. Zheng, Y. Xu, Q. Zhang, and L. Jiang, “Colloidal synthesis and applications of plasmonic metal nanoparticles,” Adv. Mater. 201, 1739 (2016).
[PubMed]

Zhang, T.

Zhang, W.

T. Wu, Y. Liu, Z. Yu, H. Ye, Y. Peng, C. Shu, C. Yang, W. Zhang, and H. He, “A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity,” Opt. Commun. 339, 1–6 (2015).
[Crossref]

Zhang, Y.

Zhang, Z.

Z. Zhang and J. Wang, “Long-range hybrid wedge plasmonic waveguide,” Sci. Rep. 4, 6870 (2014).
[Crossref] [PubMed]

Zhao, J.

Zhao, W.

Y. Xie, Y. Huang, W. Zhao, W. Xu, and C. He, “A novel plasmonic sensor based on metal-insulator-metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

Zheng, J.

P. Yang, J. Zheng, Y. Xu, Q. Zhang, and L. Jiang, “Colloidal synthesis and applications of plasmonic metal nanoparticles,” Adv. Mater. 201, 1739 (2016).
[PubMed]

Zuo, D.

Adv. Mater. (1)

P. Yang, J. Zheng, Y. Xu, Q. Zhang, and L. Jiang, “Colloidal synthesis and applications of plasmonic metal nanoparticles,” Adv. Mater. 201, 1739 (2016).
[PubMed]

Appl. Opt. (1)

Chem. Soc. Rev. (1)

S. Gwo, H. Y. Chen, M. H. Lin, L. Sun, and X. Li, “Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics,” Chem. Soc. Rev. 10, 450 (2016).
[Crossref] [PubMed]

Chin. Opt. Lett. (1)

H. Lu, Y. Liu, Z. Yu, C. Ye, and J. Wang, “Hybrid plasmonic waveguides for low-threshold nanolaser applications,” Chin. Opt. Lett. 12(11), 103–106 (2014).

IEEE Photonics J. (1)

Y. Xie, Y. Huang, W. Zhao, W. Xu, and C. He, “A novel plasmonic sensor based on metal-insulator-metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

J. Lightwave Technol. (2)

J. Nanomed. Nanotechnol. (1)

S. Barizuddin, S. Bok, and S. Gangopadhyay, “Plasmonic sensors for disease detection – a review,” J. Nanomed. Nanotechnol. 7(3), 1000373 (2016).

J. Nanosci. Nanotechnol. (1)

I. Choi, “Recent advances in nanoplasmonic sensors for environmental detection and monitoring,” J. Nanosci. Nanotechnol. 16(5), 4274–4283 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Opt. Commun. (2)

T. Wu, Y. Liu, Z. Yu, H. Ye, Y. Peng, C. Shu, C. Yang, W. Zhang, and H. He, “A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity,” Opt. Commun. 339, 1–6 (2015).
[Crossref]

B. Sun, Y. Wang, Y. Liu, S. Liu, C. Liao, and M. Y. Chen, “Compact device employed a hybrid plasmonic waveguide for polarization-selective splitting,” Opt. Commun. 334, 240–246 (2015).
[Crossref]

Opt. Express (17)

L. Chen, Y. Liu, Z. Yu, D. Wu, R. Ma, Y. Zhang, and H. Ye, “Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity,” Opt. Express 24(9), 9975–9983 (2016).
[Crossref] [PubMed]

M. S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express 19(9), 8379–8393 (2011).
[Crossref] [PubMed]

D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express 19(14), 12925–12936 (2011).
[Crossref] [PubMed]

D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
[Crossref] [PubMed]

T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
[Crossref] [PubMed]

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
[Crossref] [PubMed]

L. Chen, T. Zhang, X. Li, and W. Huang, “Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film,” Opt. Express 20(18), 20535–20544 (2012).
[Crossref] [PubMed]

L. Ding, J. Qin, K. Xu, and L. Wang, “Long range hybrid tube-wedge plasmonic waveguide with extreme light confinement and good fabrication error tolerance,” Opt. Express 24(4), 3432–3440 (2016).
[Crossref] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[Crossref] [PubMed]

J. Wang, X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmström, L. Wosinski, L. Thylen, and D. Dai, “Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides,” Opt. Express 19(2), 838–847 (2011).
[Crossref] [PubMed]

B. You, J. Y. Lu, T. A. Liu, and J. L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21(18), 21087–21096 (2013).
[Crossref] [PubMed]

X. Sun, D. Dai, L. Thylén, and L. Wosinski, “High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide,” Opt. Express 23(20), 25688–25699 (2015).
[Crossref] [PubMed]

S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288–9294 (2016).
[Crossref] [PubMed]

X. Lu, L. Zhang, and T. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23(16), 20715–20720 (2015).
[Crossref] [PubMed]

X. Lu, R. Wan, and T. Zhang, “Metal-dielectric-metal based narrow band absorber for sensing applications,” Opt. Express 23(23), 29842–29847 (2015).
[Crossref] [PubMed]

Q. Liu, J. S. Kee, and M. K. Park, “A refractive index sensor design based on grating-assisted coupling between a strip waveguide and a slot waveguide,” Opt. Express 21(5), 5897–5909 (2013).
[Crossref] [PubMed]

Y. Binfeng, H. Guohua, Z. Ruohu, and C. Yiping, “Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating,” Opt. Express 22(23), 28662–28670 (2014).
[Crossref] [PubMed]

Opt. Lett. (2)

Photonics (1)

X. Sun, D. Dai, L. Thylén, and L. Wosinski, “Double-slot hybrid plasmonic ring resonator used for optical sensors and modulators,” Photonics 2(4), 1116–1130 (2015).
[Crossref]

Plasmonics (1)

M. T. Noghani and M. H. V. Samiei, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8(2), 1155–1168 (2013).
[Crossref]

Sci. Rep. (1)

Z. Zhang and J. Wang, “Long-range hybrid wedge plasmonic waveguide,” Sci. Rep. 4, 6870 (2014).
[Crossref] [PubMed]

Sensors (Basel) (1)

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel) 11(2), 1565–1588 (2011).
[Crossref] [PubMed]

Other (4)

E. P. Li and H. S. Chu, Plasmonic Nanoeletronics and Sensing (Cambridge University, 2014).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (CRC, 2008).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Left) Cross-sectional view of the HSHPW structure. (Right) CMOS-compatible fabrication technology a-d in terms of the practical procedure.

Fig. 2
Fig. 2

(a)-(f) Field evolution of the SPP modes from hybrid mode H to pure photonic mode S. Values of hslot are marked in the yellow blocks.

Fig. 3
Fig. 3

Real part of neff varies as a function of (a) wrib and (b)-(c) hslot, for varying (a) hslot (b) hm and (c) wrib. (d) Pnorm varies as a function of wrib for different hslot.

Fig. 4
Fig. 4

(a) Cross-sectional and (b) three dimensional views of the proposed RI sensor. (c) Effective mode index behavior of the VSHPW with different wslot for varying hrib. (d) Linear relationship between neff of the cavity and n0 of the material under detection, for several random incident wavelength λ0 (For clarity, small vertical displacements are made and labeled on the right side of each curve).

Fig. 5
Fig. 5

(a) The dependence of transmission efficiency T on λ0 for different metal gap width d. (b) Spectral shifts caused by RI change as n0 increases from 1.0 to 1.4, for varying wslot (d = 30nm).

Fig. 6
Fig. 6

Normalized Enorm and power flux density (x-component) distributions of the (a) first-order (b) second-order (c) third-order resonant SPP modes and (d) non-resonant SPP modes.

Fig. 7
Fig. 7

(a) Linear relationship between λm and n0 for different wslot. (b) Linear relationship between λm of mode 1 and cavity length lc (n0 = 1.0).

Fig. 8
Fig. 8

(a) Perspective view of the proposed RI sensor with a modified cavity. Top view of the Enorm distributions of the (b) first-order (c) second-order (d) third-order resonant SPP modes in cavity. (e) Spectral shifts in the transmission spectrum for lc = 450nm and r = 45nm. (f) Linear relationship between λm of mode 1 and n0 of material under detection.

Fig. 9
Fig. 9

(Left) Schematic views for the fabrication process. (Right) From a to e, the detailed manufacture and preparation approaches are listed according to actual operation.

Tables (1)

Tables Icon

Table 1 Sensing Performance of the Proposed Plasmonic RI Sensor

Metrics