Abstract

In this letter, we report on quantum light emission from bulk AlInAs grown on InP(111) substrates. We observe indium rich clusters in the bulk Al0.48In0.52As (AlInAs), resulting in quantum dot-like energetic traps for charge carriers, which are confirmed via cross-sectional scanning tunnelling microscopy (XSTM) measurements and 6-band k·p simulations. We observe quantum dot (QD)-like emission signals, which appear as sharp lines in our photoluminescence spectra at near infrared wavelengths around 860 nm, and with linewidths as narrow as 50 μeV. We demonstrate the capability of this new material system to act as an emitter of pure single photons as we extract g(2)-values as low as gcw(2)(0)=0.050.05+0.17 for continuous wave (cw) excitation and gpulsed,corr.(2)=0.24±0.02 for pulsed excitation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Triggered single photon emission up to 77K from ordered array of surface curvature-directed mesa-top GaAs/InGaAs single quantum dots

Jiefei Zhang, Siyuan Lu, Swarnabha Chattaraj, and Anupam Madhukar
Opt. Express 24(26) 29955-29962 (2016)

Deterministic generation of bright single resonance fluorescence photons from a Purcell-enhanced quantum dot-micropillar system

Sebastian Unsleber, Christian Schneider, Sebastian Maier, Yu-Ming He, Stefan Gerhardt, Chao-Yang Lu, Jian-Wei Pan, Martin Kamp, and Sven Höfling
Opt. Express 23(26) 32977-32985 (2015)

Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency

Sebastian Unsleber, Yu-Ming He, Stefan Gerhardt, Sebastian Maier, Chao-Yang Lu, Jian-Wei Pan, Niels Gregersen, Martin Kamp, Christian Schneider, and Sven Höfling
Opt. Express 24(8) 8539-8546 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in International Conference on Computer System and Signal Processing, IEEE, 1984, (1984), pp. 175–179.
  2. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
    [Crossref] [PubMed]
  3. F. Diedrich and H. Walther, “Nonclassical radiation of a single stored ion,” Phys. Rev. Lett. 58, 203–206 (1987).
    [Crossref] [PubMed]
  4. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
    [Crossref]
  5. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
    [Crossref] [PubMed]
  6. T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
    [Crossref] [PubMed]
  7. M. Ikezawa, Y. Sakuma, and Y. Masumoto, “Single photon emission from individual nitrogen pairs in GaP,” Jpn. J. Appl. Phys. 46, L871 (2007).
    [Crossref]
  8. S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
    [Crossref]
  9. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, C. Ming-Cheng, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
    [Crossref] [PubMed]
  10. P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. M. de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
    [Crossref]
  11. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
    [Crossref] [PubMed]
  12. C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
    [Crossref] [PubMed]
  13. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
    [Crossref] [PubMed]
  14. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [Crossref] [PubMed]
  15. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
    [Crossref] [PubMed]
  16. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
    [Crossref]
  17. S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43, 033001 (2010).
    [Crossref]
  18. S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24, 8539–8546 (2016).
    [Crossref] [PubMed]
  19. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
  20. M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
    [Crossref] [PubMed]
  21. M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
    [Crossref] [PubMed]
  22. E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature824 (2002).
  23. T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
    [Crossref]
  24. M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
    [Crossref]
  25. S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron Devices 54, 2137–2142 (2007).
    [Crossref]
  26. C. D. Yerino, P. J. Simmonds, B. Liang, D. Jung, C. Schneider, S. Unsleber, M. Vo, D. L. Huffaker, S. Höfling, M. Kamp, and M. L. Lee, “Strain-driven growth of GaAs (111) quantum dots with low fine structure splitting,” Appl. Phys. Lett. 105, 251901 (2014).
    [Crossref]
  27. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
    [Crossref]
  28. D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4, 3451 (1971).
    [Crossref]
  29. P. Offermans, P. M. Koenraad, J. H. Wolter, K. Pierz, M. Roy, and P. A. Maksym, “Atomic-scale structure and photoluminescence of InAs quantum dots in GaAs and AlAs,” Phys. Rev. B 72, 165332 (2005).
    [Crossref]
  30. A. Lenz, R. Timm, H. Eisele, C. Hennig, S. Becker, R. Sellin, U. Pohl, D. Bimberg, and M. Dähne, “Reversed truncated cone composition distribution of In0.8Ga0.2As quantum dots overgrown by an In0.1Ga0.9As layer in a GaAs matrix,” Appl. Phys. Lett. 81, 5150–5152 (2002).
    [Crossref]
  31. A. Giddings, J. Keizer, M. Hara, G. Hamhuis, H. Yuasa, H. Fukuzawa, and P. Koenraad, “Composition profiling of InAs quantum dots and wetting layers by atom probe tomography and cross-sectional scanning tunneling microscopy,” Phys. Rev. B 83, 205308 (2011).
    [Crossref]
  32. A. Wijnheijmer, J. Garleff, K. Teichmann, M. Wenderoth, S. Loth, and P. Koenraad, “Single Si dopants in GaAs studied by scanning tunneling microscopy and spectroscopy,” Phys. Rev. B 84, 125310 (2011).
    [Crossref]
  33. S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
    [Crossref] [PubMed]
  34. D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Roßbach, M. Jetter, and P. Michler, “Low density movpe grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
    [Crossref] [PubMed]
  35. M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
    [Crossref]
  36. A. V. Uskov, I. Magnusdottir, B. Tromborg, J. Mørk, and R. Lang, “Line broadening caused by coulomb carrier-carrier correlations and dynamics of carrier capture and emission in quantum dots,” Appl. Phys. Lett. 79, 1679–1681 (2001).
    [Crossref]
  37. S. Unsleber, S. Maier, D. P. S. McCutcheon, Y.-M. He, M. Dambach, M. Gschrey, N. Gregersen, J. Mørk, S. Reitzenstein, S. Höfling, C. Schneider, and M. Kamp, “Observation of resonance fluorescence and the mollow triplet from a coherently driven site-controlled quantum dot,” Optica 2, 1072–1077 (2015).
    [Crossref]
  38. P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, and M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89, 035313 (2014).
    [Crossref]
  39. A. Schliwa, M. Winkelnkemper, A. Lochmann, E. Stock, and D. Bimberg, “In(Ga)As/GaAs quantum dots grown on a (111) surface as ideal sources of entangled photon pairs,” Phys. Rev. B 80, 161307 (2009).
    [Crossref]
  40. R. Singh and G. Bester, “Nanowire quantum dots as an ideal source of entangled photon pairs,” Phys. Rev. Lett. 103, 063601 (2009).
    [Crossref] [PubMed]
  41. E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
    [Crossref]
  42. J. Treu, C. Schneider, A. Huggenberger, T. Braun, S. Reitzenstein, S. Höfling, and M. Kamp, “Substrate orientation dependent fine structure splitting of symmetric In(Ga)As/GaAs quantum dots,” Appl. Phys. Lett. 101, 022102 (2012).
    [Crossref]
  43. S. Seidl, B. Gerardot, P. Dalgarno, K. Kowalik, A. Holleitner, P. Petroff, K. Karrai, and R. Warburton, “Statistics of quantum dot exciton fine structure splittings and their polarization orientations,” Physica E 40, 2153–2155 (2008).
    [Crossref]
  44. R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U. W. Pohl, and D. Bimberg, “Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots,” Phys. Rev. Lett. 95, 257402 (2005).
    [Crossref] [PubMed]
  45. K. Kowalik, O. Krebs, A. Lemaitre, S. Laurent, P. Senellart, P. Voisin, and J. Gaj, “Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots,” Appl. Phys. Lett. 86, 1907 (2005).
    [Crossref]
  46. P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. Mason, P. Carson, G. Strouse, S. Buratto, W. Schoenfeld, and P. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229, 399–405 (2002).
    [Crossref]

2016 (1)

2015 (6)

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, C. Ming-Cheng, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. M. de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref] [PubMed]

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref] [PubMed]

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

S. Unsleber, S. Maier, D. P. S. McCutcheon, Y.-M. He, M. Dambach, M. Gschrey, N. Gregersen, J. Mørk, S. Reitzenstein, S. Höfling, C. Schneider, and M. Kamp, “Observation of resonance fluorescence and the mollow triplet from a coherently driven site-controlled quantum dot,” Optica 2, 1072–1077 (2015).
[Crossref]

2014 (5)

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, and M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89, 035313 (2014).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

C. D. Yerino, P. J. Simmonds, B. Liang, D. Jung, C. Schneider, S. Unsleber, M. Vo, D. L. Huffaker, S. Höfling, M. Kamp, and M. L. Lee, “Strain-driven growth of GaAs (111) quantum dots with low fine structure splitting,” Appl. Phys. Lett. 105, 251901 (2014).
[Crossref]

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

2012 (3)

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

J. Treu, C. Schneider, A. Huggenberger, T. Braun, S. Reitzenstein, S. Höfling, and M. Kamp, “Substrate orientation dependent fine structure splitting of symmetric In(Ga)As/GaAs quantum dots,” Appl. Phys. Lett. 101, 022102 (2012).
[Crossref]

2011 (2)

A. Giddings, J. Keizer, M. Hara, G. Hamhuis, H. Yuasa, H. Fukuzawa, and P. Koenraad, “Composition profiling of InAs quantum dots and wetting layers by atom probe tomography and cross-sectional scanning tunneling microscopy,” Phys. Rev. B 83, 205308 (2011).
[Crossref]

A. Wijnheijmer, J. Garleff, K. Teichmann, M. Wenderoth, S. Loth, and P. Koenraad, “Single Si dopants in GaAs studied by scanning tunneling microscopy and spectroscopy,” Phys. Rev. B 84, 125310 (2011).
[Crossref]

2010 (4)

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Roßbach, M. Jetter, and P. Michler, “Low density movpe grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43, 033001 (2010).
[Crossref]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[Crossref]

2009 (3)

S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref] [PubMed]

A. Schliwa, M. Winkelnkemper, A. Lochmann, E. Stock, and D. Bimberg, “In(Ga)As/GaAs quantum dots grown on a (111) surface as ideal sources of entangled photon pairs,” Phys. Rev. B 80, 161307 (2009).
[Crossref]

R. Singh and G. Bester, “Nanowire quantum dots as an ideal source of entangled photon pairs,” Phys. Rev. Lett. 103, 063601 (2009).
[Crossref] [PubMed]

2008 (1)

S. Seidl, B. Gerardot, P. Dalgarno, K. Kowalik, A. Holleitner, P. Petroff, K. Karrai, and R. Warburton, “Statistics of quantum dot exciton fine structure splittings and their polarization orientations,” Physica E 40, 2153–2155 (2008).
[Crossref]

2007 (2)

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron Devices 54, 2137–2142 (2007).
[Crossref]

M. Ikezawa, Y. Sakuma, and Y. Masumoto, “Single photon emission from individual nitrogen pairs in GaP,” Jpn. J. Appl. Phys. 46, L871 (2007).
[Crossref]

2005 (3)

P. Offermans, P. M. Koenraad, J. H. Wolter, K. Pierz, M. Roy, and P. A. Maksym, “Atomic-scale structure and photoluminescence of InAs quantum dots in GaAs and AlAs,” Phys. Rev. B 72, 165332 (2005).
[Crossref]

R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U. W. Pohl, and D. Bimberg, “Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots,” Phys. Rev. Lett. 95, 257402 (2005).
[Crossref] [PubMed]

K. Kowalik, O. Krebs, A. Lemaitre, S. Laurent, P. Senellart, P. Voisin, and J. Gaj, “Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots,” Appl. Phys. Lett. 86, 1907 (2005).
[Crossref]

2004 (1)

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

2002 (3)

A. Lenz, R. Timm, H. Eisele, C. Hennig, S. Becker, R. Sellin, U. Pohl, D. Bimberg, and M. Dähne, “Reversed truncated cone composition distribution of In0.8Ga0.2As quantum dots overgrown by an In0.1Ga0.9As layer in a GaAs matrix,” Appl. Phys. Lett. 81, 5150–5152 (2002).
[Crossref]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
[Crossref]

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. Mason, P. Carson, G. Strouse, S. Buratto, W. Schoenfeld, and P. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229, 399–405 (2002).
[Crossref]

2001 (2)

A. V. Uskov, I. Magnusdottir, B. Tromborg, J. Mørk, and R. Lang, “Line broadening caused by coulomb carrier-carrier correlations and dynamics of carrier capture and emission in quantum dots,” Appl. Phys. Lett. 79, 1679–1681 (2001).
[Crossref]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref] [PubMed]

2000 (3)

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000).
[Crossref]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

1999 (1)

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[Crossref]

1998 (1)

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

1992 (1)

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[Crossref] [PubMed]

1987 (1)

F. Diedrich and H. Walther, “Nonclassical radiation of a single stored ion,” Phys. Rev. Lett. 58, 203–206 (1987).
[Crossref] [PubMed]

1971 (1)

D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4, 3451 (1971).
[Crossref]

Akopian, N.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Allain, A. V.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref] [PubMed]

Andlauer, T.

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron Devices 54, 2137–2142 (2007).
[Crossref]

Arcari, M.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Arora, A.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Ates, S.

S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref] [PubMed]

Bakkers, E. P.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Basché, T.

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[Crossref] [PubMed]

Bavinck, M. B.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Bayer, M.

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
[Crossref]

Bazin, M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Beams, R.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref] [PubMed]

Becher, C.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. Mason, P. Carson, G. Strouse, S. Buratto, W. Schoenfeld, and P. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229, 399–405 (2002).
[Crossref]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Becker, S.

A. Lenz, R. Timm, H. Eisele, C. Hennig, S. Becker, R. Sellin, U. Pohl, D. Bimberg, and M. Dähne, “Reversed truncated cone composition distribution of In0.8Ga0.2As quantum dots overgrown by an In0.1Ga0.9As layer in a GaAs matrix,” Appl. Phys. Lett. 81, 5150–5152 (2002).
[Crossref]

Bennett, C.

C. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in International Conference on Computer System and Signal Processing, IEEE, 1984, (1984), pp. 175–179.

Bester, G.

R. Singh and G. Bester, “Nanowire quantum dots as an ideal source of entangled photon pairs,” Phys. Rev. Lett. 103, 063601 (2009).
[Crossref] [PubMed]

Beveratos, A.

Bimberg, D.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[Crossref]

A. Schliwa, M. Winkelnkemper, A. Lochmann, E. Stock, and D. Bimberg, “In(Ga)As/GaAs quantum dots grown on a (111) surface as ideal sources of entangled photon pairs,” Phys. Rev. B 80, 161307 (2009).
[Crossref]

R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U. W. Pohl, and D. Bimberg, “Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots,” Phys. Rev. Lett. 95, 257402 (2005).
[Crossref] [PubMed]

A. Lenz, R. Timm, H. Eisele, C. Hennig, S. Becker, R. Sellin, U. Pohl, D. Bimberg, and M. Dähne, “Reversed truncated cone composition distribution of In0.8Ga0.2As quantum dots overgrown by an In0.1Ga0.9As layer in a GaAs matrix,” Appl. Phys. Lett. 81, 5150–5152 (2002).
[Crossref]

D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4, 3451 (1971).
[Crossref]

Birner, S.

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron Devices 54, 2137–2142 (2007).
[Crossref]

Bleuse, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Brassard, G.

C. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in International Conference on Computer System and Signal Processing, IEEE, 1984, (1984), pp. 175–179.

Bratschitsch, R.

Braun, T.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

J. Treu, C. Schneider, A. Huggenberger, T. Braun, S. Reitzenstein, S. Höfling, and M. Kamp, “Substrate orientation dependent fine structure splitting of symmetric In(Ga)As/GaAs quantum dots,” Appl. Phys. Lett. 101, 022102 (2012).
[Crossref]

Brouri, R.

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Bulgarini, G.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Buratto, S.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. Mason, P. Carson, G. Strouse, S. Buratto, W. Schoenfeld, and P. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229, 399–405 (2002).
[Crossref]

Buscema, M.

Carson, P.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. Mason, P. Carson, G. Strouse, S. Buratto, W. Schoenfeld, and P. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229, 399–405 (2002).
[Crossref]

Castellanos-Gomez, A.

Castelletto, S.

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Chakraborty, C.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref] [PubMed]

Cherkez, V.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Clark, G.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, C. Ming-Cheng, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Claudon, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Dähne, M.

A. Lenz, R. Timm, H. Eisele, C. Hennig, S. Becker, R. Sellin, U. Pohl, D. Bimberg, and M. Dähne, “Reversed truncated cone composition distribution of In0.8Ga0.2As quantum dots overgrown by an In0.1Ga0.9As layer in a GaAs matrix,” Appl. Phys. Lett. 81, 5150–5152 (2002).
[Crossref]

Dale, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref] [PubMed]

Dalgarno, P.

S. Seidl, B. Gerardot, P. Dalgarno, K. Kowalik, A. Holleitner, P. Petroff, K. Karrai, and R. Warburton, “Statistics of quantum dot exciton fine structure splittings and their polarization orientations,” Physica E 40, 2153–2155 (2008).
[Crossref]

Dambach, M.

de Vasconcellos, S. M.

Diedrich, F.

F. Diedrich and H. Walther, “Nonclassical radiation of a single stored ion,” Phys. Rev. Lett. 58, 203–206 (1987).
[Crossref] [PubMed]

Ding, X.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, C. Ming-Cheng, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Dmitriev, D. V.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[Crossref]

Eichfelder, M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Roßbach, M. Jetter, and P. Michler, “Low density movpe grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Eisele, H.

A. Lenz, R. Timm, H. Eisele, C. Hennig, S. Becker, R. Sellin, U. Pohl, D. Bimberg, and M. Dähne, “Reversed truncated cone composition distribution of In0.8Ga0.2As quantum dots overgrown by an In0.1Ga0.9As layer in a GaAs matrix,” Appl. Phys. Lett. 81, 5150–5152 (2002).
[Crossref]

Fattal, D.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature824 (2002).

Feke, G. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[Crossref]

Fischer, J.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Forchel, A.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43, 033001 (2010).
[Crossref]

S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref] [PubMed]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
[Crossref]

Frick, S.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Fukuzawa, H.

A. Giddings, J. Keizer, M. Hara, G. Hamhuis, H. Yuasa, H. Fukuzawa, and P. Koenraad, “Composition profiling of InAs quantum dots and wetting layers by atom probe tomography and cross-sectional scanning tunneling microscopy,” Phys. Rev. B 83, 205308 (2011).
[Crossref]

Fürst, M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

Gaj, J.

K. Kowalik, O. Krebs, A. Lemaitre, S. Laurent, P. Senellart, P. Voisin, and J. Gaj, “Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots,” Appl. Phys. Lett. 86, 1907 (2005).
[Crossref]

Gali, A.

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Garleff, J.

A. Wijnheijmer, J. Garleff, K. Teichmann, M. Wenderoth, S. Loth, and P. Koenraad, “Single Si dopants in GaAs studied by scanning tunneling microscopy and spectroscopy,” Phys. Rev. B 84, 125310 (2011).
[Crossref]

Gayral, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Gerard, J.-M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Gérard, J. M.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Gerardot, B.

S. Seidl, B. Gerardot, P. Dalgarno, K. Kowalik, A. Holleitner, P. Petroff, K. Karrai, and R. Warburton, “Statistics of quantum dot exciton fine structure splittings and their polarization orientations,” Physica E 40, 2153–2155 (2008).
[Crossref]

Gerhardt, S.

Ghislain, L. P.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[Crossref]

Giddings, A.

A. Giddings, J. Keizer, M. Hara, G. Hamhuis, H. Yuasa, H. Fukuzawa, and P. Koenraad, “Composition profiling of InAs quantum dots and wetting layers by atom probe tomography and cross-sectional scanning tunneling microscopy,” Phys. Rev. B 83, 205308 (2011).
[Crossref]

Gold, P.

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, and M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89, 035313 (2014).
[Crossref]

Goodfellow, K. M.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref] [PubMed]

Grangier, P.

Gregersen, N.

Grobe, E.

D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4, 3451 (1971).
[Crossref]

Grober, R. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[Crossref]

Gschrey, M.

Hafenbrak, R.

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Roßbach, M. Jetter, and P. Michler, “Low density movpe grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Haisler, V. A.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[Crossref]

Hamhuis, G.

A. Giddings, J. Keizer, M. Hara, G. Hamhuis, H. Yuasa, H. Fukuzawa, and P. Koenraad, “Composition profiling of InAs quantum dots and wetting layers by atom probe tomography and cross-sectional scanning tunneling microscopy,” Phys. Rev. B 83, 205308 (2011).
[Crossref]

Hara, M.

A. Giddings, J. Keizer, M. Hara, G. Hamhuis, H. Yuasa, H. Fukuzawa, and P. Koenraad, “Composition profiling of InAs quantum dots and wetting layers by atom probe tomography and cross-sectional scanning tunneling microscopy,” Phys. Rev. B 83, 205308 (2011).
[Crossref]

Hargart, F.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

He, Y.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, C. Ming-Cheng, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

He, Y.-M.

Heindel, T.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

Heldmaier, M.

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Roßbach, M. Jetter, and P. Michler, “Low density movpe grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Hennig, C.

A. Lenz, R. Timm, H. Eisele, C. Hennig, S. Becker, R. Sellin, U. Pohl, D. Bimberg, and M. Dähne, “Reversed truncated cone composition distribution of In0.8Ga0.2As quantum dots overgrown by an In0.1Ga0.9As layer in a GaAs matrix,” Appl. Phys. Lett. 81, 5150–5152 (2002).
[Crossref]

Hocevar, M.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Höfling, S.

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24, 8539–8546 (2016).
[Crossref] [PubMed]

S. Unsleber, S. Maier, D. P. S. McCutcheon, Y.-M. He, M. Dambach, M. Gschrey, N. Gregersen, J. Mørk, S. Reitzenstein, S. Höfling, C. Schneider, and M. Kamp, “Observation of resonance fluorescence and the mollow triplet from a coherently driven site-controlled quantum dot,” Optica 2, 1072–1077 (2015).
[Crossref]

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, and M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89, 035313 (2014).
[Crossref]

C. D. Yerino, P. J. Simmonds, B. Liang, D. Jung, C. Schneider, S. Unsleber, M. Vo, D. L. Huffaker, S. Höfling, M. Kamp, and M. L. Lee, “Strain-driven growth of GaAs (111) quantum dots with low fine structure splitting,” Appl. Phys. Lett. 105, 251901 (2014).
[Crossref]

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

J. Treu, C. Schneider, A. Huggenberger, T. Braun, S. Reitzenstein, S. Höfling, and M. Kamp, “Substrate orientation dependent fine structure splitting of symmetric In(Ga)As/GaAs quantum dots,” Appl. Phys. Lett. 101, 022102 (2012).
[Crossref]

Holleitner, A.

S. Seidl, B. Gerardot, P. Dalgarno, K. Kowalik, A. Holleitner, P. Petroff, K. Karrai, and R. Warburton, “Statistics of quantum dot exciton fine structure splittings and their polarization orientations,” Physica E 40, 2153–2155 (2008).
[Crossref]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Huffaker, D. L.

C. D. Yerino, P. J. Simmonds, B. Liang, D. Jung, C. Schneider, S. Unsleber, M. Vo, D. L. Huffaker, S. Höfling, M. Kamp, and M. L. Lee, “Strain-driven growth of GaAs (111) quantum dots with low fine structure splitting,” Appl. Phys. Lett. 105, 251901 (2014).
[Crossref]

Huggenberger, A.

J. Treu, C. Schneider, A. Huggenberger, T. Braun, S. Reitzenstein, S. Höfling, and M. Kamp, “Substrate orientation dependent fine structure splitting of symmetric In(Ga)As/GaAs quantum dots,” Appl. Phys. Lett. 101, 022102 (2012).
[Crossref]

Ikezawa, M.

M. Ikezawa, Y. Sakuma, and Y. Masumoto, “Single photon emission from individual nitrogen pairs in GaP,” Jpn. J. Appl. Phys. 46, L871 (2007).
[Crossref]

Imamoglu, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref] [PubMed]

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. Mason, P. Carson, G. Strouse, S. Buratto, W. Schoenfeld, and P. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229, 399–405 (2002).
[Crossref]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Inoue, K.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature824 (2002).

Ivády, V.

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Jaffrennou, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Javadi, A.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Jetter, M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Roßbach, M. Jetter, and P. Michler, “Low density movpe grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Johnson, B.

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Jöns, K. D.

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Roßbach, M. Jetter, and P. Michler, “Low density movpe grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Jung, D.

C. D. Yerino, P. J. Simmonds, B. Liang, D. Jung, C. Schneider, S. Unsleber, M. Vo, D. L. Huffaker, S. Höfling, M. Kamp, and M. L. Lee, “Strain-driven growth of GaAs (111) quantum dots with low fine structure splitting,” Appl. Phys. Lett. 105, 251901 (2014).
[Crossref]

Kamp, M.

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24, 8539–8546 (2016).
[Crossref] [PubMed]

S. Unsleber, S. Maier, D. P. S. McCutcheon, Y.-M. He, M. Dambach, M. Gschrey, N. Gregersen, J. Mørk, S. Reitzenstein, S. Höfling, C. Schneider, and M. Kamp, “Observation of resonance fluorescence and the mollow triplet from a coherently driven site-controlled quantum dot,” Optica 2, 1072–1077 (2015).
[Crossref]

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

C. D. Yerino, P. J. Simmonds, B. Liang, D. Jung, C. Schneider, S. Unsleber, M. Vo, D. L. Huffaker, S. Höfling, M. Kamp, and M. L. Lee, “Strain-driven growth of GaAs (111) quantum dots with low fine structure splitting,” Appl. Phys. Lett. 105, 251901 (2014).
[Crossref]

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, and M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89, 035313 (2014).
[Crossref]

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

J. Treu, C. Schneider, A. Huggenberger, T. Braun, S. Reitzenstein, S. Höfling, and M. Kamp, “Substrate orientation dependent fine structure splitting of symmetric In(Ga)As/GaAs quantum dots,” Appl. Phys. Lett. 101, 022102 (2012).
[Crossref]

Karrai, K.

S. Seidl, B. Gerardot, P. Dalgarno, K. Kowalik, A. Holleitner, P. Petroff, K. Karrai, and R. Warburton, “Statistics of quantum dot exciton fine structure splittings and their polarization orientations,” Physica E 40, 2153–2155 (2008).
[Crossref]

Keizer, J.

A. Giddings, J. Keizer, M. Hara, G. Hamhuis, H. Yuasa, H. Fukuzawa, and P. Koenraad, “Composition profiling of InAs quantum dots and wetting layers by atom probe tomography and cross-sectional scanning tunneling microscopy,” Phys. Rev. B 83, 205308 (2011).
[Crossref]

Kern, J.

Kessler, C. A.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

Kimble, H. J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Kinnischtzke, L.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref] [PubMed]

Kiraz, A.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. Mason, P. Carson, G. Strouse, S. Buratto, W. Schoenfeld, and P. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229, 399–405 (2002).
[Crossref]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Kis, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref] [PubMed]

Koenraad, P.

A. Giddings, J. Keizer, M. Hara, G. Hamhuis, H. Yuasa, H. Fukuzawa, and P. Koenraad, “Composition profiling of InAs quantum dots and wetting layers by atom probe tomography and cross-sectional scanning tunneling microscopy,” Phys. Rev. B 83, 205308 (2011).
[Crossref]

A. Wijnheijmer, J. Garleff, K. Teichmann, M. Wenderoth, S. Loth, and P. Koenraad, “Single Si dopants in GaAs studied by scanning tunneling microscopy and spectroscopy,” Phys. Rev. B 84, 125310 (2011).
[Crossref]

Koenraad, P. M.

P. Offermans, P. M. Koenraad, J. H. Wolter, K. Pierz, M. Roy, and P. A. Maksym, “Atomic-scale structure and photoluminescence of InAs quantum dots in GaAs and AlAs,” Phys. Rev. B 72, 165332 (2005).
[Crossref]

Koperski, M.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Kossacki, P.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Kouwenhoven, L. P.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Kowalik, K.

S. Seidl, B. Gerardot, P. Dalgarno, K. Kowalik, A. Holleitner, P. Petroff, K. Karrai, and R. Warburton, “Statistics of quantum dot exciton fine structure splittings and their polarization orientations,” Physica E 40, 2153–2155 (2008).
[Crossref]

K. Kowalik, O. Krebs, A. Lemaitre, S. Laurent, P. Senellart, P. Voisin, and J. Gaj, “Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots,” Appl. Phys. Lett. 86, 1907 (2005).
[Crossref]

Krebs, O.

K. Kowalik, O. Krebs, A. Lemaitre, S. Laurent, P. Senellart, P. Voisin, and J. Gaj, “Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots,” Appl. Phys. Lett. 86, 1907 (2005).
[Crossref]

Kubis, T.

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron Devices 54, 2137–2142 (2007).
[Crossref]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Kuzmich, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Lalanne, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Lang, R.

A. V. Uskov, I. Magnusdottir, B. Tromborg, J. Mørk, and R. Lang, “Line broadening caused by coulomb carrier-carrier correlations and dynamics of carrier capture and emission in quantum dots,” Appl. Phys. Lett. 79, 1679–1681 (2001).
[Crossref]

Laurent, S.

K. Kowalik, O. Krebs, A. Lemaitre, S. Laurent, P. Senellart, P. Voisin, and J. Gaj, “Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots,” Appl. Phys. Lett. 86, 1907 (2005).
[Crossref]

Lee, E. H.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Lee, M. L.

C. D. Yerino, P. J. Simmonds, B. Liang, D. Jung, C. Schneider, S. Unsleber, M. Vo, D. L. Huffaker, S. Höfling, M. Kamp, and M. L. Lee, “Strain-driven growth of GaAs (111) quantum dots with low fine structure splitting,” Appl. Phys. Lett. 105, 251901 (2014).
[Crossref]

Legrand, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Lemaitre, A.

K. Kowalik, O. Krebs, A. Lemaitre, S. Laurent, P. Senellart, P. Voisin, and J. Gaj, “Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots,” Appl. Phys. Lett. 86, 1907 (2005).
[Crossref]

Lembke, D. S.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref] [PubMed]

Lenz, A.

A. Lenz, R. Timm, H. Eisele, C. Hennig, S. Becker, R. Sellin, U. Pohl, D. Bimberg, and M. Dähne, “Reversed truncated cone composition distribution of In0.8Ga0.2As quantum dots overgrown by an In0.1Ga0.9As layer in a GaAs matrix,” Appl. Phys. Lett. 81, 5150–5152 (2002).
[Crossref]

Lermer, M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

Liang, B.

C. D. Yerino, P. J. Simmonds, B. Liang, D. Jung, C. Schneider, S. Unsleber, M. Vo, D. L. Huffaker, S. Höfling, M. Kamp, and M. L. Lee, “Strain-driven growth of GaAs (111) quantum dots with low fine structure splitting,” Appl. Phys. Lett. 105, 251901 (2014).
[Crossref]

Lindskov Hansen, S.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Liu, J.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Lochmann, A.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[Crossref]

A. Schliwa, M. Winkelnkemper, A. Lochmann, E. Stock, and D. Bimberg, “In(Ga)As/GaAs quantum dots grown on a (111) surface as ideal sources of entangled photon pairs,” Phys. Rev. B 80, 161307 (2009).
[Crossref]

Lodahl, P.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Löffler, A.

S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref] [PubMed]

Loth, S.

A. Wijnheijmer, J. Garleff, K. Teichmann, M. Wenderoth, S. Loth, and P. Koenraad, “Single Si dopants in GaAs studied by scanning tunneling microscopy and spectroscopy,” Phys. Rev. B 84, 125310 (2011).
[Crossref]

Lu, C.-Y.

Magnusdottir, I.

A. V. Uskov, I. Magnusdottir, B. Tromborg, J. Mørk, and R. Lang, “Line broadening caused by coulomb carrier-carrier correlations and dynamics of carrier capture and emission in quantum dots,” Appl. Phys. Lett. 79, 1679–1681 (2001).
[Crossref]

Mahmoodian, S.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Maier, S.

Maksym, P. A.

P. Offermans, P. M. Koenraad, J. H. Wolter, K. Pierz, M. Roy, and P. A. Maksym, “Atomic-scale structure and photoluminescence of InAs quantum dots in GaAs and AlAs,” Phys. Rev. B 72, 165332 (2005).
[Crossref]

Malik, N. S.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Mallet, P.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Marcus, J.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Mason, M.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. Mason, P. Carson, G. Strouse, S. Buratto, W. Schoenfeld, and P. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229, 399–405 (2002).
[Crossref]

Masumoto, Y.

M. Ikezawa, Y. Sakuma, and Y. Masumoto, “Single photon emission from individual nitrogen pairs in GaP,” Jpn. J. Appl. Phys. 46, L871 (2007).
[Crossref]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

McCutcheon, D. P. S.

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Michler, P.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Roßbach, M. Jetter, and P. Michler, “Low density movpe grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref] [PubMed]

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. Mason, P. Carson, G. Strouse, S. Buratto, W. Schoenfeld, and P. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229, 399–405 (2002).
[Crossref]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Miller, R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Ming-Cheng, C.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, C. Ming-Cheng, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Moerner, W. E.

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[Crossref] [PubMed]

Mørk, J.

S. Unsleber, S. Maier, D. P. S. McCutcheon, Y.-M. He, M. Dambach, M. Gschrey, N. Gregersen, J. Mørk, S. Reitzenstein, S. Höfling, C. Schneider, and M. Kamp, “Observation of resonance fluorescence and the mollow triplet from a coherently driven site-controlled quantum dot,” Optica 2, 1072–1077 (2015).
[Crossref]

A. V. Uskov, I. Magnusdottir, B. Tromborg, J. Mørk, and R. Lang, “Line broadening caused by coulomb carrier-carrier correlations and dynamics of carrier capture and emission in quantum dots,” Appl. Phys. Lett. 79, 1679–1681 (2001).
[Crossref]

Moshchenko, S. A.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[Crossref]

Nauerth, S.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

Nogajewski, K.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Offermans, P.

P. Offermans, P. M. Koenraad, J. H. Wolter, K. Pierz, M. Roy, and P. A. Maksym, “Atomic-scale structure and photoluminescence of InAs quantum dots in GaAs and AlAs,” Phys. Rev. B 72, 165332 (2005).
[Crossref]

Ohshima, T.

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Orrit, M.

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[Crossref] [PubMed]

Ostapenko, I.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[Crossref]

Pan, J.-W.

Pelton, M.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref] [PubMed]

Petroff, P.

S. Seidl, B. Gerardot, P. Dalgarno, K. Kowalik, A. Holleitner, P. Petroff, K. Karrai, and R. Warburton, “Statistics of quantum dot exciton fine structure splittings and their polarization orientations,” Physica E 40, 2153–2155 (2008).
[Crossref]

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. Mason, P. Carson, G. Strouse, S. Buratto, W. Schoenfeld, and P. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229, 399–405 (2002).
[Crossref]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Pierz, K.

P. Offermans, P. M. Koenraad, J. H. Wolter, K. Pierz, M. Roy, and P. A. Maksym, “Atomic-scale structure and photoluminescence of InAs quantum dots in GaAs and AlAs,” Phys. Rev. B 72, 165332 (2005).
[Crossref]

Pohl, U.

A. Lenz, R. Timm, H. Eisele, C. Hennig, S. Becker, R. Sellin, U. Pohl, D. Bimberg, and M. Dähne, “Reversed truncated cone composition distribution of In0.8Ga0.2As quantum dots overgrown by an In0.1Ga0.9As layer in a GaAs matrix,” Appl. Phys. Lett. 81, 5150–5152 (2002).
[Crossref]

Pohl, U. W.

R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U. W. Pohl, and D. Bimberg, “Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots,” Phys. Rev. Lett. 95, 257402 (2005).
[Crossref] [PubMed]

Poizat, J.-P.

Potemski, M.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Pötschke, K.

R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U. W. Pohl, and D. Bimberg, “Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots,” Phys. Rev. Lett. 95, 257402 (2005).
[Crossref] [PubMed]

Rau, M.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

Reimer, M. E.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Reitzenstein, S.

S. Unsleber, S. Maier, D. P. S. McCutcheon, Y.-M. He, M. Dambach, M. Gschrey, N. Gregersen, J. Mørk, S. Reitzenstein, S. Höfling, C. Schneider, and M. Kamp, “Observation of resonance fluorescence and the mollow triplet from a coherently driven site-controlled quantum dot,” Optica 2, 1072–1077 (2015).
[Crossref]

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, and M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89, 035313 (2014).
[Crossref]

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

J. Treu, C. Schneider, A. Huggenberger, T. Braun, S. Reitzenstein, S. Höfling, and M. Kamp, “Substrate orientation dependent fine structure splitting of symmetric In(Ga)As/GaAs quantum dots,” Appl. Phys. Lett. 101, 022102 (2012).
[Crossref]

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43, 033001 (2010).
[Crossref]

S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref] [PubMed]

Richter, D.

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Roßbach, M. Jetter, and P. Michler, “Low density movpe grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Rodt, S.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[Crossref]

R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U. W. Pohl, and D. Bimberg, “Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots,” Phys. Rev. Lett. 95, 257402 (2005).
[Crossref] [PubMed]

Roßbach, R.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Roßbach, M. Jetter, and P. Michler, “Low density movpe grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Roy, M.

P. Offermans, P. M. Koenraad, J. H. Wolter, K. Pierz, M. Roy, and P. A. Maksym, “Atomic-scale structure and photoluminescence of InAs quantum dots in GaAs and AlAs,” Phys. Rev. B 72, 165332 (2005).
[Crossref]

Sabathil, M.

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron Devices 54, 2137–2142 (2007).
[Crossref]

Sakuma, Y.

M. Ikezawa, Y. Sakuma, and Y. Masumoto, “Single photon emission from individual nitrogen pairs in GaP,” Jpn. J. Appl. Phys. 46, L871 (2007).
[Crossref]

Santori, C.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref] [PubMed]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature824 (2002).

Sauvan, C.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Schaibley, J. R.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, C. Ming-Cheng, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Schliwa, A.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[Crossref]

A. Schliwa, M. Winkelnkemper, A. Lochmann, E. Stock, and D. Bimberg, “In(Ga)As/GaAs quantum dots grown on a (111) surface as ideal sources of entangled photon pairs,” Phys. Rev. B 80, 161307 (2009).
[Crossref]

R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U. W. Pohl, and D. Bimberg, “Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots,” Phys. Rev. Lett. 95, 257402 (2005).
[Crossref] [PubMed]

Schmidt, R.

Schneider, C.

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24, 8539–8546 (2016).
[Crossref] [PubMed]

S. Unsleber, S. Maier, D. P. S. McCutcheon, Y.-M. He, M. Dambach, M. Gschrey, N. Gregersen, J. Mørk, S. Reitzenstein, S. Höfling, C. Schneider, and M. Kamp, “Observation of resonance fluorescence and the mollow triplet from a coherently driven site-controlled quantum dot,” Optica 2, 1072–1077 (2015).
[Crossref]

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, and M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89, 035313 (2014).
[Crossref]

C. D. Yerino, P. J. Simmonds, B. Liang, D. Jung, C. Schneider, S. Unsleber, M. Vo, D. L. Huffaker, S. Höfling, M. Kamp, and M. L. Lee, “Strain-driven growth of GaAs (111) quantum dots with low fine structure splitting,” Appl. Phys. Lett. 105, 251901 (2014).
[Crossref]

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

J. Treu, C. Schneider, A. Huggenberger, T. Braun, S. Reitzenstein, S. Höfling, and M. Kamp, “Substrate orientation dependent fine structure splitting of symmetric In(Ga)As/GaAs quantum dots,” Appl. Phys. Lett. 101, 022102 (2012).
[Crossref]

Schneider, R.

Schoenfeld, W.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. Mason, P. Carson, G. Strouse, S. Buratto, W. Schoenfeld, and P. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229, 399–405 (2002).
[Crossref]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Schulz, W.-M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Roßbach, M. Jetter, and P. Michler, “Low density movpe grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Seguin, R.

R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U. W. Pohl, and D. Bimberg, “Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots,” Phys. Rev. Lett. 95, 257402 (2005).
[Crossref] [PubMed]

Seidl, S.

S. Seidl, B. Gerardot, P. Dalgarno, K. Kowalik, A. Holleitner, P. Petroff, K. Karrai, and R. Warburton, “Statistics of quantum dot exciton fine structure splittings and their polarization orientations,” Physica E 40, 2153–2155 (2008).
[Crossref]

Sellin, R.

A. Lenz, R. Timm, H. Eisele, C. Hennig, S. Becker, R. Sellin, U. Pohl, D. Bimberg, and M. Dähne, “Reversed truncated cone composition distribution of In0.8Ga0.2As quantum dots overgrown by an In0.1Ga0.9As layer in a GaAs matrix,” Appl. Phys. Lett. 81, 5150–5152 (2002).
[Crossref]

Senellart, P.

K. Kowalik, O. Krebs, A. Lemaitre, S. Laurent, P. Senellart, P. Voisin, and J. Gaj, “Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots,” Appl. Phys. Lett. 86, 1907 (2005).
[Crossref]

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Sidler, M.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref] [PubMed]

Simmonds, P. J.

C. D. Yerino, P. J. Simmonds, B. Liang, D. Jung, C. Schneider, S. Unsleber, M. Vo, D. L. Huffaker, S. Höfling, M. Kamp, and M. L. Lee, “Strain-driven growth of GaAs (111) quantum dots with low fine structure splitting,” Appl. Phys. Lett. 105, 251901 (2014).
[Crossref]

Singh, R.

R. Singh and G. Bester, “Nanowire quantum dots as an ideal source of entangled photon pairs,” Phys. Rev. Lett. 103, 063601 (2009).
[Crossref] [PubMed]

Söllner, I.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Solomon, G.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref] [PubMed]

Solomon, G. S.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature824 (2002).

Sondergeld, M.

D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4, 3451 (1971).
[Crossref]

Song, J. D.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Srivastava, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref] [PubMed]

Stavrias, N.

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Steele, G. A.

Stobbe, S.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Stock, E.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[Crossref]

A. Schliwa, M. Winkelnkemper, A. Lochmann, E. Stock, and D. Bimberg, “In(Ga)As/GaAs quantum dots grown on a (111) surface as ideal sources of entangled photon pairs,” Phys. Rev. B 80, 161307 (2009).
[Crossref]

Strouse, G.

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. Mason, P. Carson, G. Strouse, S. Buratto, W. Schoenfeld, and P. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229, 399–405 (2002).
[Crossref]

Talon, H.

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[Crossref] [PubMed]

Teichmann, K.

A. Wijnheijmer, J. Garleff, K. Teichmann, M. Wenderoth, S. Loth, and P. Koenraad, “Single Si dopants in GaAs studied by scanning tunneling microscopy and spectroscopy,” Phys. Rev. B 84, 125310 (2011).
[Crossref]

Thierry-Mieg, V.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Thoma, A.

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, and M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89, 035313 (2014).
[Crossref]

Thyrrestrup, H.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Timm, R.

A. Lenz, R. Timm, H. Eisele, C. Hennig, S. Becker, R. Sellin, U. Pohl, D. Bimberg, and M. Dähne, “Reversed truncated cone composition distribution of In0.8Ga0.2As quantum dots overgrown by an In0.1Ga0.9As layer in a GaAs matrix,” Appl. Phys. Lett. 81, 5150–5152 (2002).
[Crossref]

Töfflinger, J. A.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[Crossref]

Tonndorf, P.

Toropov, A. I.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[Crossref]

Trellakis, A.

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron Devices 54, 2137–2142 (2007).
[Crossref]

Treu, J.

J. Treu, C. Schneider, A. Huggenberger, T. Braun, S. Reitzenstein, S. Höfling, and M. Kamp, “Substrate orientation dependent fine structure splitting of symmetric In(Ga)As/GaAs quantum dots,” Appl. Phys. Lett. 101, 022102 (2012).
[Crossref]

Tromborg, B.

A. V. Uskov, I. Magnusdottir, B. Tromborg, J. Mørk, and R. Lang, “Line broadening caused by coulomb carrier-carrier correlations and dynamics of carrier capture and emission in quantum dots,” Appl. Phys. Lett. 79, 1679–1681 (2001).
[Crossref]

Ulrich, S. M.

S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref] [PubMed]

Umeda, T.

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Unsleber, S.

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24, 8539–8546 (2016).
[Crossref] [PubMed]

S. Unsleber, S. Maier, D. P. S. McCutcheon, Y.-M. He, M. Dambach, M. Gschrey, N. Gregersen, J. Mørk, S. Reitzenstein, S. Höfling, C. Schneider, and M. Kamp, “Observation of resonance fluorescence and the mollow triplet from a coherently driven site-controlled quantum dot,” Optica 2, 1072–1077 (2015).
[Crossref]

C. D. Yerino, P. J. Simmonds, B. Liang, D. Jung, C. Schneider, S. Unsleber, M. Vo, D. L. Huffaker, S. Höfling, M. Kamp, and M. L. Lee, “Strain-driven growth of GaAs (111) quantum dots with low fine structure splitting,” Appl. Phys. Lett. 105, 251901 (2014).
[Crossref]

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Uskov, A. V.

A. V. Uskov, I. Magnusdottir, B. Tromborg, J. Mørk, and R. Lang, “Line broadening caused by coulomb carrier-carrier correlations and dynamics of carrier capture and emission in quantum dots,” Appl. Phys. Lett. 79, 1679–1681 (2001).
[Crossref]

Vamivakas, A. N.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref] [PubMed]

van der Zant, H. S. J.

Verheijen, M. A.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Vest, G.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Veuillen, J.-Y.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Vo, M.

C. D. Yerino, P. J. Simmonds, B. Liang, D. Jung, C. Schneider, S. Unsleber, M. Vo, D. L. Huffaker, S. Höfling, M. Kamp, and M. L. Lee, “Strain-driven growth of GaAs (111) quantum dots with low fine structure splitting,” Appl. Phys. Lett. 105, 251901 (2014).
[Crossref]

Vogl, P.

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron Devices 54, 2137–2142 (2007).
[Crossref]

Voisin, P.

K. Kowalik, O. Krebs, A. Lemaitre, S. Laurent, P. Senellart, P. Voisin, and J. Gaj, “Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots,” Appl. Phys. Lett. 86, 1907 (2005).
[Crossref]

Vuckovic, J.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature824 (2002).

Waks, E.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature824 (2002).

Walther, H.

F. Diedrich and H. Walther, “Nonclassical radiation of a single stored ion,” Phys. Rev. Lett. 58, 203–206 (1987).
[Crossref] [PubMed]

Warburton, R.

S. Seidl, B. Gerardot, P. Dalgarno, K. Kowalik, A. Holleitner, P. Petroff, K. Karrai, and R. Warburton, “Statistics of quantum dot exciton fine structure splittings and their polarization orientations,” Physica E 40, 2153–2155 (2008).
[Crossref]

Warming, T.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[Crossref]

Wei, Y.-J.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, C. Ming-Cheng, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Weier, H.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

Weinfurter, H.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Wenderoth, M.

A. Wijnheijmer, J. Garleff, K. Teichmann, M. Wenderoth, S. Loth, and P. Koenraad, “Single Si dopants in GaAs studied by scanning tunneling microscopy and spectroscopy,” Phys. Rev. B 84, 125310 (2011).
[Crossref]

Wijnheijmer, A.

A. Wijnheijmer, J. Garleff, K. Teichmann, M. Wenderoth, S. Loth, and P. Koenraad, “Single Si dopants in GaAs studied by scanning tunneling microscopy and spectroscopy,” Phys. Rev. B 84, 125310 (2011).
[Crossref]

Winkelnkemper, M.

A. Schliwa, M. Winkelnkemper, A. Lochmann, E. Stock, and D. Bimberg, “In(Ga)As/GaAs quantum dots grown on a (111) surface as ideal sources of entangled photon pairs,” Phys. Rev. B 80, 161307 (2009).
[Crossref]

Wolter, J. H.

P. Offermans, P. M. Koenraad, J. H. Wolter, K. Pierz, M. Roy, and P. A. Maksym, “Atomic-scale structure and photoluminescence of InAs quantum dots in GaAs and AlAs,” Phys. Rev. B 72, 165332 (2005).
[Crossref]

Wu, Q.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[Crossref]

Xu, X.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, C. Ming-Cheng, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Yamamoto, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref] [PubMed]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature824 (2002).

Yao, W.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, C. Ming-Cheng, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Yerino, C. D.

C. D. Yerino, P. J. Simmonds, B. Liang, D. Jung, C. Schneider, S. Unsleber, M. Vo, D. L. Huffaker, S. Höfling, M. Kamp, and M. L. Lee, “Strain-driven growth of GaAs (111) quantum dots with low fine structure splitting,” Appl. Phys. Lett. 105, 251901 (2014).
[Crossref]

Yuasa, H.

A. Giddings, J. Keizer, M. Hara, G. Hamhuis, H. Yuasa, H. Fukuzawa, and P. Koenraad, “Composition profiling of InAs quantum dots and wetting layers by atom probe tomography and cross-sectional scanning tunneling microscopy,” Phys. Rev. B 83, 205308 (2011).
[Crossref]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Zhang, Q.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, C. Ming-Cheng, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

Zibold, T.

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron Devices 54, 2137–2142 (2007).
[Crossref]

Zwiller, V.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

C. D. Yerino, P. J. Simmonds, B. Liang, D. Jung, C. Schneider, S. Unsleber, M. Vo, D. L. Huffaker, S. Höfling, M. Kamp, and M. L. Lee, “Strain-driven growth of GaAs (111) quantum dots with low fine structure splitting,” Appl. Phys. Lett. 105, 251901 (2014).
[Crossref]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[Crossref]

A. Lenz, R. Timm, H. Eisele, C. Hennig, S. Becker, R. Sellin, U. Pohl, D. Bimberg, and M. Dähne, “Reversed truncated cone composition distribution of In0.8Ga0.2As quantum dots overgrown by an In0.1Ga0.9As layer in a GaAs matrix,” Appl. Phys. Lett. 81, 5150–5152 (2002).
[Crossref]

A. V. Uskov, I. Magnusdottir, B. Tromborg, J. Mørk, and R. Lang, “Line broadening caused by coulomb carrier-carrier correlations and dynamics of carrier capture and emission in quantum dots,” Appl. Phys. Lett. 79, 1679–1681 (2001).
[Crossref]

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[Crossref]

J. Treu, C. Schneider, A. Huggenberger, T. Braun, S. Reitzenstein, S. Höfling, and M. Kamp, “Substrate orientation dependent fine structure splitting of symmetric In(Ga)As/GaAs quantum dots,” Appl. Phys. Lett. 101, 022102 (2012).
[Crossref]

K. Kowalik, O. Krebs, A. Lemaitre, S. Laurent, P. Senellart, P. Voisin, and J. Gaj, “Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots,” Appl. Phys. Lett. 86, 1907 (2005).
[Crossref]

IEEE Trans. Electron Devices (1)

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: general purpose 3-D simulations,” IEEE Trans. Electron Devices 54, 2137–2142 (2007).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43, 033001 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Ikezawa, Y. Sakuma, and Y. Masumoto, “Single photon emission from individual nitrogen pairs in GaP,” Jpn. J. Appl. Phys. 46, L871 (2007).
[Crossref]

Nanotechnology (1)

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Roßbach, M. Jetter, and P. Michler, “Low density movpe grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Nat. Nanotechnol. (4)

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, C. Ming-Cheng, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref] [PubMed]

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref] [PubMed]

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref] [PubMed]

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

New J. Phys. (2)

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources–a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optica (2)

Phys. Rev. B (7)

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, and M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89, 035313 (2014).
[Crossref]

A. Schliwa, M. Winkelnkemper, A. Lochmann, E. Stock, and D. Bimberg, “In(Ga)As/GaAs quantum dots grown on a (111) surface as ideal sources of entangled photon pairs,” Phys. Rev. B 80, 161307 (2009).
[Crossref]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
[Crossref]

A. Giddings, J. Keizer, M. Hara, G. Hamhuis, H. Yuasa, H. Fukuzawa, and P. Koenraad, “Composition profiling of InAs quantum dots and wetting layers by atom probe tomography and cross-sectional scanning tunneling microscopy,” Phys. Rev. B 83, 205308 (2011).
[Crossref]

A. Wijnheijmer, J. Garleff, K. Teichmann, M. Wenderoth, S. Loth, and P. Koenraad, “Single Si dopants in GaAs studied by scanning tunneling microscopy and spectroscopy,” Phys. Rev. B 84, 125310 (2011).
[Crossref]

D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4, 3451 (1971).
[Crossref]

P. Offermans, P. M. Koenraad, J. H. Wolter, K. Pierz, M. Roy, and P. A. Maksym, “Atomic-scale structure and photoluminescence of InAs quantum dots in GaAs and AlAs,” Phys. Rev. B 72, 165332 (2005).
[Crossref]

Phys. Rev. Lett. (9)

F. Diedrich and H. Walther, “Nonclassical radiation of a single stored ion,” Phys. Rev. Lett. 58, 203–206 (1987).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity,” Phys. Rev. Lett. 103, 167402 (2009).
[Crossref] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992).
[Crossref] [PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[Crossref] [PubMed]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

R. Singh and G. Bester, “Nanowire quantum dots as an ideal source of entangled photon pairs,” Phys. Rev. Lett. 103, 063601 (2009).
[Crossref] [PubMed]

R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U. W. Pohl, and D. Bimberg, “Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots,” Phys. Rev. Lett. 95, 257402 (2005).
[Crossref] [PubMed]

Phys. Status Solidi B (1)

P. Michler, A. Imamoglu, A. Kiraz, C. Becher, M. Mason, P. Carson, G. Strouse, S. Buratto, W. Schoenfeld, and P. Petroff, “Nonclassical radiation from a single quantum dot,” Phys. Status Solidi B 229, 399–405 (2002).
[Crossref]

Physica E (1)

S. Seidl, B. Gerardot, P. Dalgarno, K. Kowalik, A. Holleitner, P. Petroff, K. Karrai, and R. Warburton, “Statistics of quantum dot exciton fine structure splittings and their polarization orientations,” Physica E 40, 2153–2155 (2008).
[Crossref]

Science (2)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Other (2)

C. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in International Conference on Computer System and Signal Processing, IEEE, 1984, (1984), pp. 175–179.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature824 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) μPL spectrum of a sample with a 200 nm thick AlInAs layer which is grown on InP(111). The spectra breaks up into an ensemble of discrete emitter lines, similar to a QD-ensemble. The inset shows a reference sample with AlInAs grown on InP(001) demonstrating the absence of any discrete emission features. (b) Temperature dependent emission intensity of a selected, spectrally isolated AlInAs-cluster line. The fit (see Eq. (1)) reveals two decay channels with activation energies of E1 = 34±4 meV and E2 = 5±1 meV.

Fig. 2
Fig. 2

(a) High resolution filled-state XSTM image of AlInAs grown on (111)InP, which is taken at a voltage between sample and tip of US = −2.6 V and a tunnelling current of IT = 30 pA. In-rich regions appear bright and Al-rich areas dark. An adsorbent (A) on the surface is highlighted as an example. (b) Height distribution of the region marked in (a) with a white rectangle. The green line is a fit of the height distribution by two Gaussians (red). In the inset all heights below the half-width height of the smaller Gaussian, which is indicated by a dashed blue line, are clipped.

Fig. 3
Fig. 3

(a) Simulated band structure of a 16 nm diameter cluster with an In content of 60 %. The result is a confined state for both electron and hole, with confinement energies of approximately 60 meV and 20 meV. The resulting energy gap between the two confined states is simulated to be 1.45 eV, which fits very well to the μPL-data and the In-rich clusters seen in XSTM. (b) Energy difference between the two confined states as a function of the In-content for three different cluster sizes.

Fig. 4
Fig. 4

(a) Statistic of the linewidth distribution. We extract a median linewidth of 137 μeV for the AlInAs-cluster emission lines. (b) Summary of the excitonic FSS. A median FSS of FSSMedian = 28.5 μeV is extracted from the analysis of 52 emission lines.

Fig. 5
Fig. 5

(a) CW pumped autocorrelation of the emission line shown in the inset. The dip around τ ≈ 0 ns reaches down well below 0.5 which demonstrates the single photon emission properties. Fitting the normalized coincidences with Eq. (3) we obtain a deconvoluted g(2)(0)-value of g cw ( 2 ) = 0.05 0.05 + 0.17. (b) Pulsed autocorrelation histogram of the AlInAs-cluster emission line shown in the inset. Dividing the area of the central peak through the average area of the surrounding peaks and correction for spectral background emission, we obtain g pulsed , corr . ( 2 ) = 0.24 ± 0.02.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( T ) = I 0 * ( 1 + C 1 e E 1 k B T + C 2 e E 2 k B T ) 1 ,
g source ( 2 ) ( τ ) = 1 ( ( 1 g ( 2 ) ( 0 ) ) * e | τ τ C | )
g measured ( 2 ) ( τ ) = ( g source ( 2 ) * f Det ) ( τ )
g b ( 2 ) ( τ ) = 1 + ρ 2 ( g ( 2 ) ( τ ) 1 ) ,

Metrics