Abstract

We show that disorder-induced interaction between guided modes and a flat band of low-Q radiating modes in planar arrays of dielectric particles can lead to frequency-selective omni-directional scattering of light. This phenomenon is numerically observed in planar arrays consisting of periodically arranged dielectric particles with small randomness in particle sizes. The flat band of low-Q radiating modes originates from coupling of Mie resonances of individual particles. The small structural randomness enables coupling between the guided modes and the radiating modes with overlapping spectral ranges. Through interaction with the flat band of low-Q radiating modes, the guided modes can be effectively excited by far-field sources from any direction, and make key contribution to the frequency-selective omni-directional scattering. The frequency-selective omni-directional scattering has many potential applications such as display and sensing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays

Francisco J. Bezares, James P. Long, Orest J. Glembocki, Junpeng Guo, Ronald W. Rendell, Richard Kasica, Loretta Shirey, Jeffrey C. Owrutsky, and Joshua D. Caldwell
Opt. Express 21(23) 27587-27601 (2013)

Scattering enhancement from an array of interacting dipoles near a planar waveguide

Brian J. Soller and Dennis G. Hall
J. Opt. Soc. Am. B 19(10) 2437-2448 (2002)

High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers

A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner
J. Opt. Soc. Am. B 21(1) 121-131 (2004)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
    [Crossref] [PubMed]
  2. C. W. Hsu, O. D. Miller, S. G. Johnson, and M. Soljačić, “Optimization of sharp and viewing-angle-independent structural color,” Opt. Express 23(7), 9516–9526 (2015).
    [Crossref] [PubMed]
  3. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  4. L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
    [Crossref] [PubMed]
  5. M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18(5), 4356–4364 (2010).
    [Crossref] [PubMed]
  6. V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci. Rep. 4, 4921 (2014).
    [Crossref] [PubMed]
  7. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
    [Crossref] [PubMed]
  8. C. Yang, L. Hong, W. Shen, Y. Zhang, X. Liu, and H. Zhen, “Design of reflective color filters with high angular tolerance by particle swarm optimization method,” Opt. Express 21(8), 9315–9323 (2013).
    [Crossref] [PubMed]
  9. B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
    [Crossref]
  10. Y. Shen, V. Rinnerbauer, I. Wang, V. Stelmakh, J. D. Joannopoulos, and M. Soljačić, “Structural colors from Fano resonances,” ACS Photonics 2(1), 27–32 (2015).
    [Crossref]
  11. A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
    [Crossref]
  12. Y. Takeoka, M. Honda, T. Seki, M. Ishii, and H. Nakamura, “Structural colored liquid membrane without angle dependence,” ACS Appl. Mater. Interfaces 1(5), 982–986 (2009).
    [Crossref] [PubMed]
  13. K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) 2009(24), 3603–3605 (2009).
    [Crossref] [PubMed]
  14. M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
    [Crossref] [PubMed]
  15. J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
    [Crossref] [PubMed]
  16. Y. Takeoka, “Angle-independent structural coloured amorphous arrays,” J. Mater. Chem. 22(44), 23299–23309 (2012).
    [Crossref]
  17. S. Magkiriadou, J.-G. Park, Y.-S. Kim, and V. N. Manoharan, “Disordered packings of core-shell particles with angle-independent structural colors,” Opt. Mater. Express 2(10), 1343–1352 (2012).
    [Crossref]
  18. M. Ye, L. Sun, X. Hu, B. Shi, B. Zeng, L. Wang, J. Zhao, S. Yang, R. Tai, H.-J. Fecht, J.-Z. Jiang, and D.-X. Zhang, “Angle-insensitive plasmonic color filters with randomly distributed silver nanodisks,” Opt. Lett. 40(21), 4979–4982 (2015).
    [Crossref] [PubMed]
  19. S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).
  20. R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
    [Crossref]
  21. A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11(4), 2785–2792 (2011).
    [Crossref] [PubMed]
  22. M. A. Steindorfer, V. Schmidt, M. Belegratis, B. Stadlober, and J. R. Krenn, “Detailed simulation of structural color generation inspired by the Morpho butterfly,” Opt. Express 20(19), 21485–21494 (2012).
    [Crossref] [PubMed]
  23. V. E. Johansen, “Optical role of randomness for structured surfaces,” Appl. Opt. 53(11), 2405–2415 (2014).
    [Crossref] [PubMed]
  24. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
    [Crossref]
  25. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [Crossref] [PubMed]
  26. A. R. McGurn, K. T. Christensen, F. M. Mueller, and A. A. Maradudin, “Anderson localization in one-dimensional randomly disordered optical systems that are periodic on average,” Phys. Rev. B Condens. Matter 47(20), 13120–13125 (1993).
    [Crossref] [PubMed]
  27. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
    [Crossref] [PubMed]
  28. J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
    [Crossref] [PubMed]
  29. C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4(10), 794–798 (2008).
    [Crossref]
  30. D. Molinari and A. Fratalocchi, “Route to strong localization of light: the role of disorder,” Opt. Express 20(16), 18156–18164 (2012).
    [Crossref] [PubMed]
  31. M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
    [Crossref] [PubMed]
  32. A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3, 914 (2012).
    [Crossref] [PubMed]
  33. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  34. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
    [Crossref] [PubMed]
  35. R. Ferrini, D. Leuenberger, R. Houdré, H. Benisty, M. Kamp, and A. Forchel, “Disorder-induced losses in planar photonic crystals,” Opt. Lett. 31(10), 1426–1428 (2006).
    [Crossref] [PubMed]
  36. C. M. Soukoulis, Photonic Band Gaps and Localization (Springer, 1993).
  37. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81(7), 1405–1408 (1998).
    [Crossref]
  38. L. Shi, X. Jiang, and C. Li, “Effects induced by Mie resonance in two-dimensional photonic crystals,” J. Phys. Condens. Matter 19(17), 176214 (2007).
    [Crossref] [PubMed]
  39. P. Markoš, “Fano resonances and band structure of two-dimensional photonic structures,” Phys. Rev. A 92(4), 043814 (2015).
    [Crossref]
  40. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  41. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  42. S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [Crossref]
  43. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [Crossref] [PubMed]
  44. W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
    [Crossref]
  45. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
    [Crossref] [PubMed]
  46. C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
    [Crossref] [PubMed]
  47. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref] [PubMed]
  48. M. Born and E. Wolf, Principle of Optics—Electromagnetic Theory and Propagation, 7th ed. (Cambridge University, 1999).

2016 (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (6)

V. E. Johansen, “Optical role of randomness for structured surfaces,” Appl. Opt. 53(11), 2405–2415 (2014).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci. Rep. 4, 4921 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (5)

2011 (1)

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11(4), 2785–2792 (2011).
[Crossref] [PubMed]

2010 (7)

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
[Crossref] [PubMed]

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18(5), 4356–4364 (2010).
[Crossref] [PubMed]

2009 (4)

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

Y. Takeoka, M. Honda, T. Seki, M. Ishii, and H. Nakamura, “Structural colored liquid membrane without angle dependence,” ACS Appl. Mater. Interfaces 1(5), 982–986 (2009).
[Crossref] [PubMed]

K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) 2009(24), 3603–3605 (2009).
[Crossref] [PubMed]

2008 (1)

C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4(10), 794–798 (2008).
[Crossref]

2007 (5)

L. Shi, X. Jiang, and C. Li, “Effects induced by Mie resonance in two-dimensional photonic crystals,” J. Phys. Condens. Matter 19(17), 176214 (2007).
[Crossref] [PubMed]

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[Crossref]

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

2003 (1)

2002 (2)

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

1998 (1)

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81(7), 1405–1408 (1998).
[Crossref]

1993 (1)

A. R. McGurn, K. T. Christensen, F. M. Mueller, and A. A. Maradudin, “Anderson localization in one-dimensional randomly disordered optical systems that are periodic on average,” Phys. Rev. B Condens. Matter 47(20), 13120–13125 (1993).
[Crossref] [PubMed]

1987 (1)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Akai-Kasaya, M.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11(4), 2785–2792 (2011).
[Crossref] [PubMed]

Arju, N.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Arsenault, A. C.

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[Crossref]

Barnard, E. S.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Bartal, G.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

Baumberg, J. J.

Belegratis, M.

Benisty, H.

Bin Imran, A.

M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
[Crossref] [PubMed]

Brener, I.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Briggs, D. P.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Brongersma, M. L.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Brown, A. M.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Cao, H.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Cao, L.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Chadha, A.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Cheong, B.-H.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Cho, E.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

Cho, Y.-S.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

Choi, D.-Y.

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci. Rep. 4, 4921 (2014).
[Crossref] [PubMed]

Choi, H.-Y.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

Christensen, K. T.

A. R. McGurn, K. T. Christensen, F. M. Mueller, and A. A. Maradudin, “Anderson localization in one-dimensional randomly disordered optical systems that are periodic on average,” Phys. Rev. B Condens. Matter 47(20), 13120–13125 (1993).
[Crossref] [PubMed]

Chuwongin, S.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Conti, C.

C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4(10), 794–798 (2008).
[Crossref]

Cournoyer, J. R.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

DeLacy, B. G.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

Dominguez, J.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Dovidenko, K.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Dufresne, E. R.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Economou, E. N.

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81(7), 1405–1408 (1998).
[Crossref]

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Fan, J. A.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Fan, P.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Fan, S.

Fan, S. H.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Fecht, H.-J.

Ferrini, R.

Fishman, S.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Forchel, A.

Forster, J. D.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Fratalocchi, A.

D. Molinari and A. Fratalocchi, “Route to strong localization of light: the role of disorder,” Opt. Express 20(16), 18156–18164 (2012).
[Crossref] [PubMed]

C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4(10), 794–798 (2008).
[Crossref]

Fujii, Y.

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

Ghiradella, H.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Gibbons, N.

Gonzales, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Guo, L. J.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Harun-Ur-Rashid, M.

M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
[Crossref] [PubMed]

Honda, M.

Y. Takeoka, M. Honda, T. Seki, M. Ishii, and H. Nakamura, “Structural colored liquid membrane without angle dependence,” ACS Appl. Mater. Interfaces 1(5), 982–986 (2009).
[Crossref] [PubMed]

Hong, L.

Houdré, R.

Hsu, C. W.

C. W. Hsu, O. D. Miller, S. G. Johnson, and M. Soljačić, “Optimization of sharp and viewing-angle-independent structural color,” Opt. Express 23(7), 9516–9526 (2015).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

Hu, X.

Hughes, S.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Ilic, B.

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
[Crossref] [PubMed]

Inaba, A.

K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) 2009(24), 3603–3605 (2009).
[Crossref] [PubMed]

Inoue, M.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

Ishii, M.

M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
[Crossref] [PubMed]

Y. Takeoka, M. Honda, T. Seki, M. Ishii, and H. Nakamura, “Structural colored liquid membrane without angle dependence,” ACS Appl. Mater. Interfaces 1(5), 982–986 (2009).
[Crossref] [PubMed]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jiang, J.-Z.

Jiang, X.

L. Shi, X. Jiang, and C. Li, “Effects induced by Mie resonance in two-dimensional photonic crystals,” J. Phys. Condens. Matter 19(17), 176214 (2007).
[Crossref] [PubMed]

Joannopoulos, J. D.

Y. Shen, V. Rinnerbauer, I. Wang, V. Stelmakh, J. D. Joannopoulos, and M. Soljačić, “Structural colors from Fano resonances,” ACS Photonics 2(1), 27–32 (2015).
[Crossref]

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Johansen, V. E.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Johnson, S. G.

Juodkazis, S.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11(4), 2785–2792 (2011).
[Crossref] [PubMed]

Kamp, M.

Kelp, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Khanikaev, A. B.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

Kim, E.-S.

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci. Rep. 4, 4921 (2014).
[Crossref] [PubMed]

Kim, H.-S.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

Kim, Y.-S.

Kinoshita, S.

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

Kivshar, Y. S.

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3, 914 (2012).
[Crossref] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Kolle, M.

Kondoh, M.

K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) 2009(24), 3603–3605 (2009).
[Crossref] [PubMed]

Kravchenko, I. I.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Krenn, J. R.

Kuwahara, Y.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11(4), 2785–2792 (2011).
[Crossref] [PubMed]

Lee, S.-S.

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci. Rep. 4, 4921 (2014).
[Crossref] [PubMed]

Leuenberger, D.

Li, C.

L. Shi, X. Jiang, and C. Li, “Effects induced by Mie resonance in two-dimensional photonic crystals,” J. Phys. Condens. Matter 19(17), 176214 (2007).
[Crossref] [PubMed]

Lidorikis, E.

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81(7), 1405–1408 (1998).
[Crossref]

Liew, S. F.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Limonov, M. F.

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3, 914 (2012).
[Crossref] [PubMed]

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

Liu, V.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Liu, X.

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Luo, X.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Ma, Z. Q.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Magkiriadou, S.

Manners, I.

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[Crossref]

Manoharan, V. N.

Maradudin, A. A.

A. R. McGurn, K. T. Christensen, F. M. Mueller, and A. A. Maradudin, “Anderson localization in one-dimensional randomly disordered optical systems that are periodic on average,” Phys. Rev. B Condens. Matter 47(20), 13120–13125 (1993).
[Crossref] [PubMed]

Markoš, P.

P. Markoš, “Fano resonances and band structure of two-dimensional photonic structures,” Phys. Rev. A 92(4), 043814 (2015).
[Crossref]

McGurn, A. R.

A. R. McGurn, K. T. Christensen, F. M. Mueller, and A. A. Maradudin, “Anderson localization in one-dimensional randomly disordered optical systems that are periodic on average,” Phys. Rev. B Condens. Matter 47(20), 13120–13125 (1993).
[Crossref] [PubMed]

Miller, O. D.

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Mizeikis, V.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11(4), 2785–2792 (2011).
[Crossref] [PubMed]

Mochrie, S. G.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Molinari, D.

Mueller, F. M.

A. R. McGurn, K. T. Christensen, F. M. Mueller, and A. A. Maradudin, “Anderson localization in one-dimensional randomly disordered optical systems that are periodic on average,” Phys. Rev. B Condens. Matter 47(20), 13120–13125 (1993).
[Crossref] [PubMed]

Murase, J.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11(4), 2785–2792 (2011).
[Crossref] [PubMed]

Nakamura, H.

M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
[Crossref] [PubMed]

Y. Takeoka, M. Honda, T. Seki, M. Ishii, and H. Nakamura, “Structural colored liquid membrane without angle dependence,” ACS Appl. Mater. Interfaces 1(5), 982–986 (2009).
[Crossref] [PubMed]

Noh, H.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

O’Hern, C. S.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Okamoto, N.

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

Olson, E.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Ozin, G. A.

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[Crossref]

Park, J. G.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Park, J.-G.

Poddubny, A. N.

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3, 914 (2012).
[Crossref] [PubMed]

Potyrailo, R. A.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Prudnikov, O. N.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

Prum, R. O.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Puzzo, D. P.

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[Crossref]

Qiu, W.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

Ramunno, L.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Rinnerbauer, V.

Y. Shen, V. Rinnerbauer, I. Wang, V. Stelmakh, J. D. Joannopoulos, and M. Soljačić, “Structural colors from Fano resonances,” ACS Photonics 2(1), 27–32 (2015).
[Crossref]

Rybin, M. V.

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3, 914 (2012).
[Crossref] [PubMed]

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

Saito, A.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11(4), 2785–2792 (2011).
[Crossref] [PubMed]

Samusev, K. B.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

Sano, Y.

K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) 2009(24), 3603–3605 (2009).
[Crossref] [PubMed]

Saranathan, V.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Schmidt, V.

Schreck, C. F.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Schwartz, T.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

Segev, M.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Seki, T.

M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
[Crossref] [PubMed]

Y. Takeoka, M. Honda, T. Seki, M. Ishii, and H. Nakamura, “Structural colored liquid membrane without angle dependence,” ACS Appl. Mater. Interfaces 1(5), 982–986 (2009).
[Crossref] [PubMed]

Seo, J. H.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Shapira, O.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

Shen, W.

Shen, Y.

Y. Shen, V. Rinnerbauer, I. Wang, V. Stelmakh, J. D. Joannopoulos, and M. Soljačić, “Structural colors from Fano resonances,” ACS Photonics 2(1), 27–32 (2015).
[Crossref]

Shi, B.

Shi, L.

L. Shi, X. Jiang, and C. Li, “Effects induced by Mie resonance in two-dimensional photonic crystals,” J. Phys. Condens. Matter 19(17), 176214 (2007).
[Crossref] [PubMed]

Shin, S. T.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

Shrestha, V. R.

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci. Rep. 4, 4921 (2014).
[Crossref] [PubMed]

Shuai, Y. C.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Shvets, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Sigalas, M. M.

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81(7), 1405–1408 (1998).
[Crossref]

Sipe, J. E.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Soljacic, M.

Y. Shen, V. Rinnerbauer, I. Wang, V. Stelmakh, J. D. Joannopoulos, and M. Soljačić, “Structural colors from Fano resonances,” ACS Photonics 2(1), 27–32 (2015).
[Crossref]

C. W. Hsu, O. D. Miller, S. G. Johnson, and M. Soljačić, “Optimization of sharp and viewing-angle-independent structural color,” Opt. Express 23(7), 9516–9526 (2015).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

Soukoulis, C. M.

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81(7), 1405–1408 (1998).
[Crossref]

Stadlober, B.

Steel, M. J.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

Steindorfer, M. A.

Steiner, U.

Stelmakh, V.

Y. Shen, V. Rinnerbauer, I. Wang, V. Stelmakh, J. D. Joannopoulos, and M. Soljačić, “Structural colors from Fano resonances,” ACS Photonics 2(1), 27–32 (2015).
[Crossref]

Suh, W.

Sun, L.

Tai, R.

Takeoka, Y.

Y. Takeoka, “Angle-independent structural coloured amorphous arrays,” J. Mater. Chem. 22(44), 23299–23309 (2012).
[Crossref]

M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
[Crossref] [PubMed]

Y. Takeoka, M. Honda, T. Seki, M. Ishii, and H. Nakamura, “Structural colored liquid membrane without angle dependence,” ACS Appl. Mater. Interfaces 1(5), 982–986 (2009).
[Crossref] [PubMed]

Topolancik, J.

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
[Crossref] [PubMed]

Tutuc, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Ueno, K.

K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) 2009(24), 3603–3605 (2009).
[Crossref] [PubMed]

Valentine, J.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Vertiatchikh, A.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Vollmer, F.

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
[Crossref] [PubMed]

Wang, I.

Y. Shen, V. Rinnerbauer, I. Wang, V. Stelmakh, J. D. Joannopoulos, and M. Soljačić, “Structural colors from Fano resonances,” ACS Photonics 2(1), 27–32 (2015).
[Crossref]

Wang, K. X.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Wang, L.

Watanabe, M.

K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) 2009(24), 3603–3605 (2009).
[Crossref] [PubMed]

Wu, C.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Wu, Y.-K.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Xu, T.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Yang, C.

Yang, H. J.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Yang, L.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Yang, S.

Yang, Y.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Ye, M.

Yonezawa, M.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11(4), 2785–2792 (2011).
[Crossref] [PubMed]

Yoshioka, S.

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Yu, J.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

Yushin, G.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

Zeng, B.

Zhang, D.-X.

Zhang, Y.

Zhao, D. Y.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Zhao, J.

Zhen, B.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

Zhen, H.

Zheng, B.

Zhou, W. D.

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Y. Takeoka, M. Honda, T. Seki, M. Ishii, and H. Nakamura, “Structural colored liquid membrane without angle dependence,” ACS Appl. Mater. Interfaces 1(5), 982–986 (2009).
[Crossref] [PubMed]

ACS Photonics (1)

Y. Shen, V. Rinnerbauer, I. Wang, V. Stelmakh, J. D. Joannopoulos, and M. Soljačić, “Structural colors from Fano resonances,” ACS Photonics 2(1), 27–32 (2015).
[Crossref]

Adv. Mater. (1)

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. 22(26-27), 2939–2944 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[Crossref]

Chem. Commun. (Camb.) (1)

K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) 2009(24), 3603–3605 (2009).
[Crossref] [PubMed]

ChemPhysChem (1)

M. Harun-Ur-Rashid, A. Bin Imran, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka, “Angle-independent structural color in colloidal amorphous arrays,” ChemPhysChem 11(3), 579–583 (2010).
[Crossref] [PubMed]

Forma (1)

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

J. Mater. Chem. (1)

Y. Takeoka, “Angle-independent structural coloured amorphous arrays,” J. Mater. Chem. 22(44), 23299–23309 (2012).
[Crossref]

J. Nanosci. Nanotechnol. (1)

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnol. 11(4), 2785–2792 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Condens. Matter (1)

L. Shi, X. Jiang, and C. Li, “Effects induced by Mie resonance in two-dimensional photonic crystals,” J. Phys. Condens. Matter 19(17), 176214 (2007).
[Crossref] [PubMed]

Nano Lett. (1)

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref] [PubMed]

Nat. Commun. (5)

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
[Crossref] [PubMed]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3, 914 (2012).
[Crossref] [PubMed]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Nat. Photonics (2)

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics 1(8), 468–472 (2007).
[Crossref]

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007).
[Crossref]

Nat. Phys. (1)

C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4(10), 794–798 (2008).
[Crossref]

Nature (1)

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. A (1)

P. Markoš, “Fano resonances and band structure of two-dimensional photonic structures,” Phys. Rev. A 92(4), 043814 (2015).
[Crossref]

Phys. Rev. B (2)

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Phys. Rev. B Condens. Matter (1)

A. R. McGurn, K. T. Christensen, F. M. Mueller, and A. A. Maradudin, “Anderson localization in one-dimensional randomly disordered optical systems that are periodic on average,” Phys. Rev. B Condens. Matter 47(20), 13120–13125 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81(7), 1405–1408 (1998).
[Crossref]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

W. D. Zhou, D. Y. Zhao, Y. C. Shuai, H. J. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Q. Ma, and S. H. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38(1), 1–74 (2014).
[Crossref]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Sci. Rep. (1)

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci. Rep. 4, 4921 (2014).
[Crossref] [PubMed]

Other (5)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

M. Born and E. Wolf, Principle of Optics—Electromagnetic Theory and Propagation, 7th ed. (Cambridge University, 1999).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

C. M. Soukoulis, Photonic Band Gaps and Localization (Springer, 1993).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Spectra of electromagnetic modes supported by the periodic array along the ΓM axis, excited by a magnetic dipole source placed at the center of the dielectric cuboid with the magnetic moment in y’ direction. The slant dashed line is the light line f=c/(2π n 0 k x 2 + k y 2 ) separating the radiating modes and the guided modes. The two horizontal dashed lines indicate the spectral range of the radiating modes. Inset shows schematic of the particle array. (b)-(e) Magnetic field H y ' distributions in the central xy plane within one unit cell for spectral positions labeled in (a). The dashed square shows cross-section of the dielectric cuboid in xy plane.

Fig. 2
Fig. 2

Frequency-selective leakage of guided modes in the random array. (a) Schematic of FDTD simulation setup. The in-plane incident light (the red arrow) is linearly polarized with magnetic field in y' direction. The particle array is bounded by periodic boundary conditions in y' direction and PMLs in x' and z directions. (b) Magnetic field spectra at the center point of the periodic arrays (blue line) and the random array (red line). The dash-dotted line shows spectrum of the radiating mode at k x' =0 , and spectral range of the radiating mode is indicated by two vertical dashed lines. (c)-(f) Cross-sections of Hy’ distribution in the central x'z plane for spectral positions labeled in (b). (c) and (e) correspond to the periodic case, and (d) and (f) correspond to the random case.

Fig. 3
Fig. 3

Comparison of responses to a vertically launched gaussian beam between the periodic array and the random array. (a) and (b) Reflection spectra. Insets show schematics of FDTD simulation setup. (c) and (d) Far-field projections E 2 (f,θ) of the reflected light along x' axis. The far-field intensities are normalized to their maximum value (unity reflection for f=0.552(c/a) and θ=0 ). (e) and (f) Results of temporal and spatial Fourier transformations of H y' in the central x'y' plane of the particle arrays. (g) and (h) H y' spectra within the center unit of the particle arrays. The vertical or horizontal dashed lines in each subfigure indicate spectral range of the radiating modes. The slant dashed lines in (e) and (f) are the light line which separates radiating modes and guided modes. Gray areas in (a), (b), (g), and (h) are frequency ranges overlapped by the guided modes and the radiating modes.

Fig. 4
Fig. 4

Magnetic dipolar Mie resonance of single dielectric particle obtained by FDTD simulation. The dielectric particle we used here is identical to the dielectric cuboids which comprise the periodic array in the main text. The magnetic dipolar Mie resonances is excited by a magnetic dipole source placed at the center point of the cuboid with the magnetic moment in y' direction. (a) Magnetic field spectrum of the magnetic dipolar Mie resonance. (b) H y' distribution at the resonant frequency of the magnetic dipolar Mie resonance in the central xy plane of the cuboid. The dashed square shows cross-section of the dielectric cuboid in xy plane.

Fig. 5
Fig. 5

Band diagrams of periodic planar particle arrays with different lattice unit lengths: (a) a 1 =0.75a , (b) a 2 =1.25a . Other parameters are identical to the periodic array in the main text.

Metrics