Abstract

We investigate the impact of threading dislocation density (TDD) and thermal conductivity of substrates on the performance of GaInP/AlInP light-emitting diodes (LEDs) for the integration of III-V optoelectronics on Si. We utilized an arsenic (As) doped Ge/Si substrate that showed a reduced TDD compared to undoped Ge/Si. Compared to LEDs on undoped Ge/Si, the leakage current density for LEDs on As-doped Ge/Si substrate is reduced by four orders of magnitude and the light output is increased six-fold. An increased junction temperature causes light output saturation for LEDs on bulk Ge at high injection current densities. The light output of LEDs on As-doped Ge/Si shows good linearity with injection current density and its junction temperature is ~25 ± 5 °C lower than that of LEDs on bulk Ge at high injection current densities due to better thermal conductivity of the Ge/Si substrate.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-performance AlGaInP light-emitting diodes integrated on silicon through a superior quality germanium-on-insulator

Yue Wang, Bing Wang, Wardhana A. Sasangka, Shuyu Bao, Yiping Zhang, Hilmi Volkan Demir, Jurgen Michel, Kenneth Eng Kian Lee, Soon Fatt Yoon, Eugene A. Fitzgerald, Chuan Seng Tan, and Kwang Hong Lee
Photon. Res. 6(4) 290-295 (2018)

High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001)

Jinkwan Kwoen, Bongyong Jang, Katsuyuki Watanabe, and Yasuhiko Arakawa
Opt. Express 27(3) 2681-2688 (2019)

Electrical determination of current injection and internal quantum efficiencies in AlGaN-based deep-ultraviolet light-emitting diodes

Guo-Dong Hao, Naoki Tamari, Toshiyuki Obata, Toru Kinoshita, and Shin-ichiro Inoue
Opt. Express 25(16) A639-A648 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Kim, Y. Tak, J. Kim, H. G. Hong, S. Chae, J. W. Lee, H. Choi, Y. Park, U. I. Chung, J. R. Kim, and J.-I. Shim, “Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate,” Proc. SPIE 8262, 82621 (2012).
    [Crossref]
  2. K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic CMOS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22(2), 29–34 (2007).
    [Crossref]
  3. K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. A. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200 mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9(8), 086501 (2016).
    [Crossref]
  4. J. J. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30(1), 61–67 (2012).
    [Crossref]
  5. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [Crossref]
  6. E. Fitzgerald, K. Lee, S. Yoon, S. Chua, C. Tan, T. Palacios, X. Zhou, J. S. Chang, D. A. Kohen, L. Zhang, K. H. Lee, Z. H. Liu, S. B. Chiah, and T. Ge, “Enabling the integrated circuits of the future,” 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC, 2015), pp. 1–4.
    [Crossref]
  7. K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
    [Crossref]
  8. F. Cai, Y. Dong, Y. H. Tan, C. S. Tan, and G. Xia, “Enhanced Si-Ge interdiffusion in high phosphorus-doped germanium on silicon,” Semicond. Sci. Technol. 30, 105008 (2015).
    [Crossref]
  9. S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. A. Fitzgerald, A. M. Joshi, R. Brown, X. Wang, R. M. Sieg, and S. Ringel, “Monolithic integration of III-V materials and devices on silicon,” Proc. SPIE 3630, 0227–0786 (1999).
    [Crossref]
  10. G. Garcia-Belmonte, J. M. Montero, Y. Ayyad-Limonge, E. M. Barea, J. Bisquert, and H. J. Bolink, “Perimeter leakage current in polymer light-emitting diodes,” Curr. Appl. Phys. 9(2), 414–416 (2009).
    [Crossref]
  11. C. S. Solanki, Solar Photovoltaics: Fundamentals, Technologies And Applications (PHI, 2015), Chap. 5.
  12. V. Yang, S. Ting, M. Groenert, M. Bulsara, M. Currie, C. Leitz, and E. A. Fitzgerald, “Comparison of luminescent efficiency of InGaAs quantum well structures grown on Si, GaAs, Ge, and SiGe virtual substrate,” J. Appl. Phys. 93(9), 5095–5102 (2003).
    [Crossref]
  13. S. A. Ringel, J. Carlin, C. Andre, M. Hudait, M. Gonzalez, D. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, “Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers,” Prog. Photovolt. Res. Appl. 10(6), 417–426 (2002).
    [Crossref]
  14. F. J. Schultes, T. Christian, R. Jones-Albertus, E. Pickett, K. Alberi, B. Fluegel, T. Liu, P. Misra, A. Sukiasyan, H. Yuen, and N. M. Haegel, “H. Yuen3 and N. M. Haegel, “Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP,” Appl. Phys. Lett. 103(24), 242106 (2013).
    [Crossref]
  15. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006), Appx.
  16. L. Li, P. Li, Y. Wen, J. Wen, and Y. Zhu, “Temperature dependences of photoluminescence and electroluminescence spectra in light-emitting diodes,” Appl. Phys. Lett. 94(26), 261103 (2009).
    [Crossref]

2016 (2)

K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. A. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200 mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9(8), 086501 (2016).
[Crossref]

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

2015 (1)

F. Cai, Y. Dong, Y. H. Tan, C. S. Tan, and G. Xia, “Enhanced Si-Ge interdiffusion in high phosphorus-doped germanium on silicon,” Semicond. Sci. Technol. 30, 105008 (2015).
[Crossref]

2013 (1)

F. J. Schultes, T. Christian, R. Jones-Albertus, E. Pickett, K. Alberi, B. Fluegel, T. Liu, P. Misra, A. Sukiasyan, H. Yuen, and N. M. Haegel, “H. Yuen3 and N. M. Haegel, “Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP,” Appl. Phys. Lett. 103(24), 242106 (2013).
[Crossref]

2012 (2)

J. J. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30(1), 61–67 (2012).
[Crossref]

J. Y. Kim, Y. Tak, J. Kim, H. G. Hong, S. Chae, J. W. Lee, H. Choi, Y. Park, U. I. Chung, J. R. Kim, and J.-I. Shim, “Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate,” Proc. SPIE 8262, 82621 (2012).
[Crossref]

2010 (1)

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

2009 (2)

G. Garcia-Belmonte, J. M. Montero, Y. Ayyad-Limonge, E. M. Barea, J. Bisquert, and H. J. Bolink, “Perimeter leakage current in polymer light-emitting diodes,” Curr. Appl. Phys. 9(2), 414–416 (2009).
[Crossref]

L. Li, P. Li, Y. Wen, J. Wen, and Y. Zhu, “Temperature dependences of photoluminescence and electroluminescence spectra in light-emitting diodes,” Appl. Phys. Lett. 94(26), 261103 (2009).
[Crossref]

2007 (1)

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic CMOS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22(2), 29–34 (2007).
[Crossref]

2003 (1)

V. Yang, S. Ting, M. Groenert, M. Bulsara, M. Currie, C. Leitz, and E. A. Fitzgerald, “Comparison of luminescent efficiency of InGaAs quantum well structures grown on Si, GaAs, Ge, and SiGe virtual substrate,” J. Appl. Phys. 93(9), 5095–5102 (2003).
[Crossref]

2002 (1)

S. A. Ringel, J. Carlin, C. Andre, M. Hudait, M. Gonzalez, D. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, “Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers,” Prog. Photovolt. Res. Appl. 10(6), 417–426 (2002).
[Crossref]

1999 (1)

S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. A. Fitzgerald, A. M. Joshi, R. Brown, X. Wang, R. M. Sieg, and S. Ringel, “Monolithic integration of III-V materials and devices on silicon,” Proc. SPIE 3630, 0227–0786 (1999).
[Crossref]

Alberi, K.

F. J. Schultes, T. Christian, R. Jones-Albertus, E. Pickett, K. Alberi, B. Fluegel, T. Liu, P. Misra, A. Sukiasyan, H. Yuen, and N. M. Haegel, “H. Yuen3 and N. M. Haegel, “Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP,” Appl. Phys. Lett. 103(24), 242106 (2013).
[Crossref]

Allerman, A.

S. A. Ringel, J. Carlin, C. Andre, M. Hudait, M. Gonzalez, D. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, “Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers,” Prog. Photovolt. Res. Appl. 10(6), 417–426 (2002).
[Crossref]

Andre, C.

S. A. Ringel, J. Carlin, C. Andre, M. Hudait, M. Gonzalez, D. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, “Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers,” Prog. Photovolt. Res. Appl. 10(6), 417–426 (2002).
[Crossref]

Ayyad-Limonge, Y.

G. Garcia-Belmonte, J. M. Montero, Y. Ayyad-Limonge, E. M. Barea, J. Bisquert, and H. J. Bolink, “Perimeter leakage current in polymer light-emitting diodes,” Curr. Appl. Phys. 9(2), 414–416 (2009).
[Crossref]

Bao, S.

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. A. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200 mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9(8), 086501 (2016).
[Crossref]

Barea, E. M.

G. Garcia-Belmonte, J. M. Montero, Y. Ayyad-Limonge, E. M. Barea, J. Bisquert, and H. J. Bolink, “Perimeter leakage current in polymer light-emitting diodes,” Curr. Appl. Phys. 9(2), 414–416 (2009).
[Crossref]

Bisquert, J.

G. Garcia-Belmonte, J. M. Montero, Y. Ayyad-Limonge, E. M. Barea, J. Bisquert, and H. J. Bolink, “Perimeter leakage current in polymer light-emitting diodes,” Curr. Appl. Phys. 9(2), 414–416 (2009).
[Crossref]

Bolink, H. J.

G. Garcia-Belmonte, J. M. Montero, Y. Ayyad-Limonge, E. M. Barea, J. Bisquert, and H. J. Bolink, “Perimeter leakage current in polymer light-emitting diodes,” Curr. Appl. Phys. 9(2), 414–416 (2009).
[Crossref]

Brown, R.

S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. A. Fitzgerald, A. M. Joshi, R. Brown, X. Wang, R. M. Sieg, and S. Ringel, “Monolithic integration of III-V materials and devices on silicon,” Proc. SPIE 3630, 0227–0786 (1999).
[Crossref]

Bulsara, M.

V. Yang, S. Ting, M. Groenert, M. Bulsara, M. Currie, C. Leitz, and E. A. Fitzgerald, “Comparison of luminescent efficiency of InGaAs quantum well structures grown on Si, GaAs, Ge, and SiGe virtual substrate,” J. Appl. Phys. 93(9), 5095–5102 (2003).
[Crossref]

S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. A. Fitzgerald, A. M. Joshi, R. Brown, X. Wang, R. M. Sieg, and S. Ringel, “Monolithic integration of III-V materials and devices on silicon,” Proc. SPIE 3630, 0227–0786 (1999).
[Crossref]

Cai, F.

F. Cai, Y. Dong, Y. H. Tan, C. S. Tan, and G. Xia, “Enhanced Si-Ge interdiffusion in high phosphorus-doped germanium on silicon,” Semicond. Sci. Technol. 30, 105008 (2015).
[Crossref]

Carlin, J.

S. A. Ringel, J. Carlin, C. Andre, M. Hudait, M. Gonzalez, D. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, “Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers,” Prog. Photovolt. Res. Appl. 10(6), 417–426 (2002).
[Crossref]

Chae, S.

J. Y. Kim, Y. Tak, J. Kim, H. G. Hong, S. Chae, J. W. Lee, H. Choi, Y. Park, U. I. Chung, J. R. Kim, and J.-I. Shim, “Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate,” Proc. SPIE 8262, 82621 (2012).
[Crossref]

Chilukuri, K.

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic CMOS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22(2), 29–34 (2007).
[Crossref]

Choi, H.

J. Y. Kim, Y. Tak, J. Kim, H. G. Hong, S. Chae, J. W. Lee, H. Choi, Y. Park, U. I. Chung, J. R. Kim, and J.-I. Shim, “Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate,” Proc. SPIE 8262, 82621 (2012).
[Crossref]

Christian, T.

F. J. Schultes, T. Christian, R. Jones-Albertus, E. Pickett, K. Alberi, B. Fluegel, T. Liu, P. Misra, A. Sukiasyan, H. Yuen, and N. M. Haegel, “H. Yuen3 and N. M. Haegel, “Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP,” Appl. Phys. Lett. 103(24), 242106 (2013).
[Crossref]

Chung, U. I.

J. Y. Kim, Y. Tak, J. Kim, H. G. Hong, S. Chae, J. W. Lee, H. Choi, Y. Park, U. I. Chung, J. R. Kim, and J.-I. Shim, “Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate,” Proc. SPIE 8262, 82621 (2012).
[Crossref]

Clark, E. B.

S. A. Ringel, J. Carlin, C. Andre, M. Hudait, M. Gonzalez, D. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, “Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers,” Prog. Photovolt. Res. Appl. 10(6), 417–426 (2002).
[Crossref]

Currie, M.

V. Yang, S. Ting, M. Groenert, M. Bulsara, M. Currie, C. Leitz, and E. A. Fitzgerald, “Comparison of luminescent efficiency of InGaAs quantum well structures grown on Si, GaAs, Ge, and SiGe virtual substrate,” J. Appl. Phys. 93(9), 5095–5102 (2003).
[Crossref]

S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. A. Fitzgerald, A. M. Joshi, R. Brown, X. Wang, R. M. Sieg, and S. Ringel, “Monolithic integration of III-V materials and devices on silicon,” Proc. SPIE 3630, 0227–0786 (1999).
[Crossref]

Dawson, M. D.

Dohrman, C. L.

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic CMOS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22(2), 29–34 (2007).
[Crossref]

Dong, Y.

F. Cai, Y. Dong, Y. H. Tan, C. S. Tan, and G. Xia, “Enhanced Si-Ge interdiffusion in high phosphorus-doped germanium on silicon,” Semicond. Sci. Technol. 30, 105008 (2015).
[Crossref]

Fitzgerald, E. A.

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. A. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200 mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9(8), 086501 (2016).
[Crossref]

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic CMOS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22(2), 29–34 (2007).
[Crossref]

V. Yang, S. Ting, M. Groenert, M. Bulsara, M. Currie, C. Leitz, and E. A. Fitzgerald, “Comparison of luminescent efficiency of InGaAs quantum well structures grown on Si, GaAs, Ge, and SiGe virtual substrate,” J. Appl. Phys. 93(9), 5095–5102 (2003).
[Crossref]

S. A. Ringel, J. Carlin, C. Andre, M. Hudait, M. Gonzalez, D. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, “Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers,” Prog. Photovolt. Res. Appl. 10(6), 417–426 (2002).
[Crossref]

S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. A. Fitzgerald, A. M. Joshi, R. Brown, X. Wang, R. M. Sieg, and S. Ringel, “Monolithic integration of III-V materials and devices on silicon,” Proc. SPIE 3630, 0227–0786 (1999).
[Crossref]

Fluegel, B.

F. J. Schultes, T. Christian, R. Jones-Albertus, E. Pickett, K. Alberi, B. Fluegel, T. Liu, P. Misra, A. Sukiasyan, H. Yuen, and N. M. Haegel, “H. Yuen3 and N. M. Haegel, “Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP,” Appl. Phys. Lett. 103(24), 242106 (2013).
[Crossref]

Garcia-Belmonte, G.

G. Garcia-Belmonte, J. M. Montero, Y. Ayyad-Limonge, E. M. Barea, J. Bisquert, and H. J. Bolink, “Perimeter leakage current in polymer light-emitting diodes,” Curr. Appl. Phys. 9(2), 414–416 (2009).
[Crossref]

Gonzalez, M.

S. A. Ringel, J. Carlin, C. Andre, M. Hudait, M. Gonzalez, D. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, “Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers,” Prog. Photovolt. Res. Appl. 10(6), 417–426 (2002).
[Crossref]

Green, R. P.

Groenert, M.

V. Yang, S. Ting, M. Groenert, M. Bulsara, M. Currie, C. Leitz, and E. A. Fitzgerald, “Comparison of luminescent efficiency of InGaAs quantum well structures grown on Si, GaAs, Ge, and SiGe virtual substrate,” J. Appl. Phys. 93(9), 5095–5102 (2003).
[Crossref]

S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. A. Fitzgerald, A. M. Joshi, R. Brown, X. Wang, R. M. Sieg, and S. Ringel, “Monolithic integration of III-V materials and devices on silicon,” Proc. SPIE 3630, 0227–0786 (1999).
[Crossref]

Gu, E.

Haegel, N. M.

F. J. Schultes, T. Christian, R. Jones-Albertus, E. Pickett, K. Alberi, B. Fluegel, T. Liu, P. Misra, A. Sukiasyan, H. Yuen, and N. M. Haegel, “H. Yuen3 and N. M. Haegel, “Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP,” Appl. Phys. Lett. 103(24), 242106 (2013).
[Crossref]

Henderson, R. K.

Hong, H. G.

J. Y. Kim, Y. Tak, J. Kim, H. G. Hong, S. Chae, J. W. Lee, H. Choi, Y. Park, U. I. Chung, J. R. Kim, and J.-I. Shim, “Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate,” Proc. SPIE 8262, 82621 (2012).
[Crossref]

Hudait, M.

S. A. Ringel, J. Carlin, C. Andre, M. Hudait, M. Gonzalez, D. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, “Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers,” Prog. Photovolt. Res. Appl. 10(6), 417–426 (2002).
[Crossref]

Jenkins, P.

S. A. Ringel, J. Carlin, C. Andre, M. Hudait, M. Gonzalez, D. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, “Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers,” Prog. Photovolt. Res. Appl. 10(6), 417–426 (2002).
[Crossref]

Jones-Albertus, R.

F. J. Schultes, T. Christian, R. Jones-Albertus, E. Pickett, K. Alberi, B. Fluegel, T. Liu, P. Misra, A. Sukiasyan, H. Yuen, and N. M. Haegel, “H. Yuen3 and N. M. Haegel, “Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP,” Appl. Phys. Lett. 103(24), 242106 (2013).
[Crossref]

Joshi, A. M.

S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. A. Fitzgerald, A. M. Joshi, R. Brown, X. Wang, R. M. Sieg, and S. Ringel, “Monolithic integration of III-V materials and devices on silicon,” Proc. SPIE 3630, 0227–0786 (1999).
[Crossref]

Kelly, A. E.

Kim, J.

J. Y. Kim, Y. Tak, J. Kim, H. G. Hong, S. Chae, J. W. Lee, H. Choi, Y. Park, U. I. Chung, J. R. Kim, and J.-I. Shim, “Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate,” Proc. SPIE 8262, 82621 (2012).
[Crossref]

Kim, J. R.

J. Y. Kim, Y. Tak, J. Kim, H. G. Hong, S. Chae, J. W. Lee, H. Choi, Y. Park, U. I. Chung, J. R. Kim, and J.-I. Shim, “Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate,” Proc. SPIE 8262, 82621 (2012).
[Crossref]

Kim, J. Y.

J. Y. Kim, Y. Tak, J. Kim, H. G. Hong, S. Chae, J. W. Lee, H. Choi, Y. Park, U. I. Chung, J. R. Kim, and J.-I. Shim, “Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate,” Proc. SPIE 8262, 82621 (2012).
[Crossref]

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Kohen, D.

K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. A. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200 mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9(8), 086501 (2016).
[Crossref]

Langdo, T.

S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. A. Fitzgerald, A. M. Joshi, R. Brown, X. Wang, R. M. Sieg, and S. Ringel, “Monolithic integration of III-V materials and devices on silicon,” Proc. SPIE 3630, 0227–0786 (1999).
[Crossref]

Lee, J. W.

J. Y. Kim, Y. Tak, J. Kim, H. G. Hong, S. Chae, J. W. Lee, H. Choi, Y. Park, U. I. Chung, J. R. Kim, and J.-I. Shim, “Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate,” Proc. SPIE 8262, 82621 (2012).
[Crossref]

Lee, K. H.

K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. A. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200 mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9(8), 086501 (2016).
[Crossref]

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

Leitz, C.

V. Yang, S. Ting, M. Groenert, M. Bulsara, M. Currie, C. Leitz, and E. A. Fitzgerald, “Comparison of luminescent efficiency of InGaAs quantum well structures grown on Si, GaAs, Ge, and SiGe virtual substrate,” J. Appl. Phys. 93(9), 5095–5102 (2003).
[Crossref]

Leitz, C. W.

S. A. Ringel, J. Carlin, C. Andre, M. Hudait, M. Gonzalez, D. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, “Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers,” Prog. Photovolt. Res. Appl. 10(6), 417–426 (2002).
[Crossref]

Li, L.

L. Li, P. Li, Y. Wen, J. Wen, and Y. Zhu, “Temperature dependences of photoluminescence and electroluminescence spectra in light-emitting diodes,” Appl. Phys. Lett. 94(26), 261103 (2009).
[Crossref]

Li, P.

L. Li, P. Li, Y. Wen, J. Wen, and Y. Zhu, “Temperature dependences of photoluminescence and electroluminescence spectra in light-emitting diodes,” Appl. Phys. Lett. 94(26), 261103 (2009).
[Crossref]

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Liu, T.

F. J. Schultes, T. Christian, R. Jones-Albertus, E. Pickett, K. Alberi, B. Fluegel, T. Liu, P. Misra, A. Sukiasyan, H. Yuen, and N. M. Haegel, “H. Yuen3 and N. M. Haegel, “Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP,” Appl. Phys. Lett. 103(24), 242106 (2013).
[Crossref]

Massoubre, D.

McKendry, J. J.

Michel, J.

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Misra, P.

F. J. Schultes, T. Christian, R. Jones-Albertus, E. Pickett, K. Alberi, B. Fluegel, T. Liu, P. Misra, A. Sukiasyan, H. Yuen, and N. M. Haegel, “H. Yuen3 and N. M. Haegel, “Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP,” Appl. Phys. Lett. 103(24), 242106 (2013).
[Crossref]

Montero, J. M.

G. Garcia-Belmonte, J. M. Montero, Y. Ayyad-Limonge, E. M. Barea, J. Bisquert, and H. J. Bolink, “Perimeter leakage current in polymer light-emitting diodes,” Curr. Appl. Phys. 9(2), 414–416 (2009).
[Crossref]

Mori, M. J.

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic CMOS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22(2), 29–34 (2007).
[Crossref]

Park, Y.

J. Y. Kim, Y. Tak, J. Kim, H. G. Hong, S. Chae, J. W. Lee, H. Choi, Y. Park, U. I. Chung, J. R. Kim, and J.-I. Shim, “Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate,” Proc. SPIE 8262, 82621 (2012).
[Crossref]

Pickett, E.

F. J. Schultes, T. Christian, R. Jones-Albertus, E. Pickett, K. Alberi, B. Fluegel, T. Liu, P. Misra, A. Sukiasyan, H. Yuen, and N. M. Haegel, “H. Yuen3 and N. M. Haegel, “Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP,” Appl. Phys. Lett. 103(24), 242106 (2013).
[Crossref]

Rae, B. R.

Ringel, S.

S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. A. Fitzgerald, A. M. Joshi, R. Brown, X. Wang, R. M. Sieg, and S. Ringel, “Monolithic integration of III-V materials and devices on silicon,” Proc. SPIE 3630, 0227–0786 (1999).
[Crossref]

Ringel, S. A.

S. A. Ringel, J. Carlin, C. Andre, M. Hudait, M. Gonzalez, D. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, “Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers,” Prog. Photovolt. Res. Appl. 10(6), 417–426 (2002).
[Crossref]

Samavedam, S.

S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. A. Fitzgerald, A. M. Joshi, R. Brown, X. Wang, R. M. Sieg, and S. Ringel, “Monolithic integration of III-V materials and devices on silicon,” Proc. SPIE 3630, 0227–0786 (1999).
[Crossref]

Scheiman, D.

S. A. Ringel, J. Carlin, C. Andre, M. Hudait, M. Gonzalez, D. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, “Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers,” Prog. Photovolt. Res. Appl. 10(6), 417–426 (2002).
[Crossref]

Schultes, F. J.

F. J. Schultes, T. Christian, R. Jones-Albertus, E. Pickett, K. Alberi, B. Fluegel, T. Liu, P. Misra, A. Sukiasyan, H. Yuen, and N. M. Haegel, “H. Yuen3 and N. M. Haegel, “Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP,” Appl. Phys. Lett. 103(24), 242106 (2013).
[Crossref]

Shim, J.-I.

J. Y. Kim, Y. Tak, J. Kim, H. G. Hong, S. Chae, J. W. Lee, H. Choi, Y. Park, U. I. Chung, J. R. Kim, and J.-I. Shim, “Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate,” Proc. SPIE 8262, 82621 (2012).
[Crossref]

Sieg, R. M.

S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. A. Fitzgerald, A. M. Joshi, R. Brown, X. Wang, R. M. Sieg, and S. Ringel, “Monolithic integration of III-V materials and devices on silicon,” Proc. SPIE 3630, 0227–0786 (1999).
[Crossref]

Sukiasyan, A.

F. J. Schultes, T. Christian, R. Jones-Albertus, E. Pickett, K. Alberi, B. Fluegel, T. Liu, P. Misra, A. Sukiasyan, H. Yuen, and N. M. Haegel, “H. Yuen3 and N. M. Haegel, “Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP,” Appl. Phys. Lett. 103(24), 242106 (2013).
[Crossref]

Tak, Y.

J. Y. Kim, Y. Tak, J. Kim, H. G. Hong, S. Chae, J. W. Lee, H. Choi, Y. Park, U. I. Chung, J. R. Kim, and J.-I. Shim, “Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate,” Proc. SPIE 8262, 82621 (2012).
[Crossref]

Tan, C. S.

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. A. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200 mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9(8), 086501 (2016).
[Crossref]

F. Cai, Y. Dong, Y. H. Tan, C. S. Tan, and G. Xia, “Enhanced Si-Ge interdiffusion in high phosphorus-doped germanium on silicon,” Semicond. Sci. Technol. 30, 105008 (2015).
[Crossref]

Tan, Y. H.

F. Cai, Y. Dong, Y. H. Tan, C. S. Tan, and G. Xia, “Enhanced Si-Ge interdiffusion in high phosphorus-doped germanium on silicon,” Semicond. Sci. Technol. 30, 105008 (2015).
[Crossref]

Ting, S.

V. Yang, S. Ting, M. Groenert, M. Bulsara, M. Currie, C. Leitz, and E. A. Fitzgerald, “Comparison of luminescent efficiency of InGaAs quantum well structures grown on Si, GaAs, Ge, and SiGe virtual substrate,” J. Appl. Phys. 93(9), 5095–5102 (2003).
[Crossref]

S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. A. Fitzgerald, A. M. Joshi, R. Brown, X. Wang, R. M. Sieg, and S. Ringel, “Monolithic integration of III-V materials and devices on silicon,” Proc. SPIE 3630, 0227–0786 (1999).
[Crossref]

Wang, B.

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

Wang, C.

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

Wang, X.

S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. A. Fitzgerald, A. M. Joshi, R. Brown, X. Wang, R. M. Sieg, and S. Ringel, “Monolithic integration of III-V materials and devices on silicon,” Proc. SPIE 3630, 0227–0786 (1999).
[Crossref]

Wen, J.

L. Li, P. Li, Y. Wen, J. Wen, and Y. Zhu, “Temperature dependences of photoluminescence and electroluminescence spectra in light-emitting diodes,” Appl. Phys. Lett. 94(26), 261103 (2009).
[Crossref]

Wen, Y.

L. Li, P. Li, Y. Wen, J. Wen, and Y. Zhu, “Temperature dependences of photoluminescence and electroluminescence spectra in light-emitting diodes,” Appl. Phys. Lett. 94(26), 261103 (2009).
[Crossref]

Wilt, D.

S. A. Ringel, J. Carlin, C. Andre, M. Hudait, M. Gonzalez, D. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, “Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers,” Prog. Photovolt. Res. Appl. 10(6), 417–426 (2002).
[Crossref]

Xia, G.

F. Cai, Y. Dong, Y. H. Tan, C. S. Tan, and G. Xia, “Enhanced Si-Ge interdiffusion in high phosphorus-doped germanium on silicon,” Semicond. Sci. Technol. 30, 105008 (2015).
[Crossref]

Yang, V.

V. Yang, S. Ting, M. Groenert, M. Bulsara, M. Currie, C. Leitz, and E. A. Fitzgerald, “Comparison of luminescent efficiency of InGaAs quantum well structures grown on Si, GaAs, Ge, and SiGe virtual substrate,” J. Appl. Phys. 93(9), 5095–5102 (2003).
[Crossref]

S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. A. Fitzgerald, A. M. Joshi, R. Brown, X. Wang, R. M. Sieg, and S. Ringel, “Monolithic integration of III-V materials and devices on silicon,” Proc. SPIE 3630, 0227–0786 (1999).
[Crossref]

Yoon, S. F.

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

Yuen, H.

F. J. Schultes, T. Christian, R. Jones-Albertus, E. Pickett, K. Alberi, B. Fluegel, T. Liu, P. Misra, A. Sukiasyan, H. Yuen, and N. M. Haegel, “H. Yuen3 and N. M. Haegel, “Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP,” Appl. Phys. Lett. 103(24), 242106 (2013).
[Crossref]

Zhang, L.

K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. A. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200 mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9(8), 086501 (2016).
[Crossref]

Zhang, S.

Zhu, Y.

L. Li, P. Li, Y. Wen, J. Wen, and Y. Zhu, “Temperature dependences of photoluminescence and electroluminescence spectra in light-emitting diodes,” Appl. Phys. Lett. 94(26), 261103 (2009).
[Crossref]

AIP Adv. (1)

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

Appl. Phys. Express (1)

K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. A. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200 mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9(8), 086501 (2016).
[Crossref]

Appl. Phys. Lett. (2)

F. J. Schultes, T. Christian, R. Jones-Albertus, E. Pickett, K. Alberi, B. Fluegel, T. Liu, P. Misra, A. Sukiasyan, H. Yuen, and N. M. Haegel, “H. Yuen3 and N. M. Haegel, “Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP,” Appl. Phys. Lett. 103(24), 242106 (2013).
[Crossref]

L. Li, P. Li, Y. Wen, J. Wen, and Y. Zhu, “Temperature dependences of photoluminescence and electroluminescence spectra in light-emitting diodes,” Appl. Phys. Lett. 94(26), 261103 (2009).
[Crossref]

Curr. Appl. Phys. (1)

G. Garcia-Belmonte, J. M. Montero, Y. Ayyad-Limonge, E. M. Barea, J. Bisquert, and H. J. Bolink, “Perimeter leakage current in polymer light-emitting diodes,” Curr. Appl. Phys. 9(2), 414–416 (2009).
[Crossref]

J. Appl. Phys. (1)

V. Yang, S. Ting, M. Groenert, M. Bulsara, M. Currie, C. Leitz, and E. A. Fitzgerald, “Comparison of luminescent efficiency of InGaAs quantum well structures grown on Si, GaAs, Ge, and SiGe virtual substrate,” J. Appl. Phys. 93(9), 5095–5102 (2003).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Proc. SPIE (2)

S. Ting, M. Bulsara, V. Yang, M. Groenert, S. Samavedam, M. Currie, T. Langdo, E. A. Fitzgerald, A. M. Joshi, R. Brown, X. Wang, R. M. Sieg, and S. Ringel, “Monolithic integration of III-V materials and devices on silicon,” Proc. SPIE 3630, 0227–0786 (1999).
[Crossref]

J. Y. Kim, Y. Tak, J. Kim, H. G. Hong, S. Chae, J. W. Lee, H. Choi, Y. Park, U. I. Chung, J. R. Kim, and J.-I. Shim, “Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate,” Proc. SPIE 8262, 82621 (2012).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

S. A. Ringel, J. Carlin, C. Andre, M. Hudait, M. Gonzalez, D. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, “Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers,” Prog. Photovolt. Res. Appl. 10(6), 417–426 (2002).
[Crossref]

Semicond. Sci. Technol. (2)

F. Cai, Y. Dong, Y. H. Tan, C. S. Tan, and G. Xia, “Enhanced Si-Ge interdiffusion in high phosphorus-doped germanium on silicon,” Semicond. Sci. Technol. 30, 105008 (2015).
[Crossref]

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic CMOS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22(2), 29–34 (2007).
[Crossref]

Other (3)

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006), Appx.

E. Fitzgerald, K. Lee, S. Yoon, S. Chua, C. Tan, T. Palacios, X. Zhou, J. S. Chang, D. A. Kohen, L. Zhang, K. H. Lee, Z. H. Liu, S. B. Chiah, and T. Ge, “Enabling the integrated circuits of the future,” 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC, 2015), pp. 1–4.
[Crossref]

C. S. Solanki, Solar Photovoltaics: Fundamentals, Technologies And Applications (PHI, 2015), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 EBIC images (40 × 40 µm2) of LEDs (a) on As-doped Ge/Si, (b) on undoped Ge/Si and (c) on bulk Ge with TDD of 5 ± 0.5 × 106 cm−2, 3 ± 0.5 × 106 cm−2 and 1 × 105 cm−2, repectively.
Fig. 2
Fig. 2 J-V characteristics of (a) LED on As-doped Ge/Si, and (b) LED on undoped Ge/Si. Device geometries are 300 × 300 μm2, 500 × 500 μm2 and 1000 × 1000 μm2.
Fig. 3
Fig. 3 (a) PL intensity vs. laser excitation power density for LEDs on bulk Ge, As-doped Ge/Si and undoped Ge/Si. The dashed lines fit a linear relationship of PL intensity with excitation power. (b) Normalized PL intensity and minority carrier diffusion lengths of LEDs on different substrates vs. TDD in the junction.
Fig. 4
Fig. 4 (a) EL intensity vs. injection current density for LEDs on bulk Ge, As-doped Ge/Si and undoped Ge/Si. The dashed lines fit a linear relationship of EL intensity with injection current density. (b) Junction temperature vs. injection current density for the LEDs on bulk Ge and As-doped Ge/Si. (c) The EL spectra at 2 A/cm2 and 40 A/cm2. (d) An example of fitted EL spectrum according to Eq. (5) and (6).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

J= J 01 exp[ q(VJ R s ) k B T ]+ J 02 exp[ q(VJ R s ) n k B T ]+ VJ R s R p ,
D=μ× k B T q ,
1 τ = 1 τ 0 + π 3 D( ρ TDD ) 4 ,
Ld= Dτ ,
E g = E peak 1 2 k B T,
A(ω)dω= 2 π 1/2 ( ω E g k B T ) 1/2 ×exp( ω E g k B T )d ω E g k B T ,

Metrics