Abstract

Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a “pinched” p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%–90% transition time, and with efficiency of 3.2 μW/GHz.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon dual-ring modulator

Qianfan Xu
Opt. Express 17(23) 20783-20793 (2009)

Silicon dual-ring modulator driven by differential signal

Hui Yu, Marianna Pantouvaki, Peter Verheyen, Guy Lepage, Philippe Absil, Wim Bogaerts, and Joris Van Campenhout
Opt. Lett. 39(22) 6379-6382 (2014)

Cascaded uncoupled dual-ring modulator

Tingyi Gu, Young-Kai Chen, Chee Wei Wong, and Po Dong
Opt. Lett. 39(16) 4974-4977 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29, 2861–2863 (2004).
    [Crossref]
  2. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref]
  3. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15, 11934–11941 (2007).
    [Crossref]
  4. H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 um wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
    [Crossref]
  5. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37, 4236–4238 (2012).
    [Crossref]
  6. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
    [Crossref]
  7. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010).
    [Crossref]
  8. J. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Tech. Lett. 25, 1543–1546 (2013).
    [Crossref]
  9. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16, 4881–4887 (2008).
    [Crossref]
  10. J. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient cw four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Tech. Lett. 25, 1699–1702 (2013).
    [Crossref]
  11. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
    [Crossref]
  12. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
    [Crossref]
  13. M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
    [Crossref]
  14. A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20, 15807–15817 (2012).
    [Crossref]
  15. Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett. 36, 2668–2670 (2011).
    [Crossref]
  16. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators byoverlaying a polymer cladding on narrowedwaveguides,” Optics Express 17, 14627–14633 (2009).
    [Crossref]
  17. R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [Crossref]
  18. R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Tech. Lett. 15, 1366–1368 (2003).
    [Crossref]
  19. D. Geuzebroek, E. J. Klein, H. Kelderman, and A. Driessen, “Wavelength tuning and switching of a thermooptic microring resonator,” in “Proceedings of the European Conference on Integrated Optics (ECIO),” (2003), paper FrB3.2.
  20. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 71110 (2006).
    [Crossref]
  21. G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in “Proceedings of the ACM SIGCOMM 2013 Conference,” (ACM, New York, NY, USA, 2013), SIGCOMM ’13, pp. 447–458.
  22. C. L. Schow, “Next generation data centres: How will optics be employed?” in “Proceedings of the European Conference on Optical Communication (ECOC)” (Viajes el Corte Ingles, VECISA, 2015).
  23. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
    [Crossref]
  24. M. R. Watts and G. N. Nielson, “Optical waveguide device with an adiabatically-varying width,” US Patent No. 7,941,014 B1 (2011).
  25. C. T. DeRose, M. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, “Low power and broadband 2 × 2 silicon thermo-optic switch,” in “Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011,” (Optical Society of America, 2011), p. OThM3.
  26. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in “Proceedings of the Conference on Lasers and Electro-Optics” (Optical Society of America, 2009), paper CPDB10.
  27. R. Aguinaldo, H. Grant, C. Derose, D. Trotter, A. Pomerene, A. Starbuck, A. Lentine, and S. Mookherjea, “Silicon photonic integrated components for add, drop, and VOA in a 4-channel data-center network,” in “Proceedings of the IEEE Photonics Conference”, (IEEE, 2014), paper PD.3.
  28. S. K. Wiedmann, “Monolithic circuits with pinch resistors,” U.S. Patent 3,693,057 (1972).
  29. N. H. E. Weste and D. M. Harris, CMOS VLSI Design (Addison-Wesley, 2004), 4th ed.
  30. M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photon. Tech. Lett. 16, 2039–2041 (2004).
    [Crossref]
  31. Z. Su, E. Timurdogan, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “An interior-ridge silicon microring switch with integrated thermal tuner,” in “Proc. Integrated Photonics Research, Silicon and Nanophotonics Conf.”, (Optical Society of America, 2015), paper IM2B–5.
  32. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
    [Crossref]
  33. Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Tech. Lett. 23, 525–527 (2011).
    [Crossref]
  34. R. Aguinaldo, Y. Shen, and S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photon. Tech. Lett. 24, 1242–1244 (2012).
    [Crossref]
  35. R. Ahmed, A. A. Rifat, A. K. Yetisen, M. S. Salem, S.-H. Yun, and H. Butt, “Optical microring resonator based corrosion sensing,” RSC Adv. 6, 56127–56133 (2016).
    [Crossref]

2016 (2)

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
[Crossref]

R. Ahmed, A. A. Rifat, A. K. Yetisen, M. S. Salem, S.-H. Yun, and H. Butt, “Optical microring resonator based corrosion sensing,” RSC Adv. 6, 56127–56133 (2016).
[Crossref]

2013 (2)

J. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient cw four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Tech. Lett. 25, 1699–1702 (2013).
[Crossref]

J. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Tech. Lett. 25, 1543–1546 (2013).
[Crossref]

2012 (4)

2011 (2)

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Tech. Lett. 23, 525–527 (2011).
[Crossref]

Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett. 36, 2668–2670 (2011).
[Crossref]

2010 (3)

2009 (3)

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 um wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators byoverlaying a polymer cladding on narrowedwaveguides,” Optics Express 17, 14627–14633 (2009).
[Crossref]

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 71110 (2006).
[Crossref]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

2004 (2)

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29, 2861–2863 (2004).
[Crossref]

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photon. Tech. Lett. 16, 2039–2041 (2004).
[Crossref]

2003 (1)

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Tech. Lett. 15, 1366–1368 (2003).
[Crossref]

1987 (1)

R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Aalto, T.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photon. Tech. Lett. 16, 2039–2041 (2004).
[Crossref]

Agarwal, A.

Aguinaldo, R.

J. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient cw four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Tech. Lett. 25, 1699–1702 (2013).
[Crossref]

R. Aguinaldo, Y. Shen, and S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photon. Tech. Lett. 24, 1242–1244 (2012).
[Crossref]

R. Aguinaldo, H. Grant, C. Derose, D. Trotter, A. Pomerene, A. Starbuck, A. Lentine, and S. Mookherjea, “Silicon photonic integrated components for add, drop, and VOA in a 4-channel data-center network,” in “Proceedings of the IEEE Photonics Conference”, (IEEE, 2014), paper PD.3.

Ahmed, R.

R. Ahmed, A. A. Rifat, A. K. Yetisen, M. S. Salem, S.-H. Yun, and H. Butt, “Optical microring resonator based corrosion sensing,” RSC Adv. 6, 56127–56133 (2016).
[Crossref]

Asghari, M.

Azzini, S.

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators byoverlaying a polymer cladding on narrowedwaveguides,” Optics Express 17, 14627–14633 (2009).
[Crossref]

Baets, R. G.

Bajoni, D.

Basov, D. N.

Bennett, B.

R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Biberman, A.

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators byoverlaying a polymer cladding on narrowedwaveguides,” Optics Express 17, 14627–14633 (2009).
[Crossref]

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
[Crossref]

Bolivar, P. H.

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Butt, H.

R. Ahmed, A. A. Rifat, A. K. Yetisen, M. S. Salem, S.-H. Yun, and H. Butt, “Optical microring resonator based corrosion sensing,” RSC Adv. 6, 56127–56133 (2016).
[Crossref]

Cai, H.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Tech. Lett. 23, 525–527 (2011).
[Crossref]

Canciamilla, A.

Chen, H.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 um wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]

Chen-Sun, P.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in “Proceedings of the ACM SIGCOMM 2013 Conference,” (ACM, New York, NY, USA, 2013), SIGCOMM ’13, pp. 447–458.

Chrostowski, L.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
[Crossref]

Clemmen, S.

Coolbaugh, D.

Z. Su, E. Timurdogan, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “An interior-ridge silicon microring switch with integrated thermal tuner,” in “Proc. Integrated Photonics Research, Silicon and Nanophotonics Conf.”, (Optical Society of America, 2015), paper IM2B–5.

Cunningham, J. E.

Derose, C.

R. Aguinaldo, H. Grant, C. Derose, D. Trotter, A. Pomerene, A. Starbuck, A. Lentine, and S. Mookherjea, “Silicon photonic integrated components for add, drop, and VOA in a 4-channel data-center network,” in “Proceedings of the IEEE Photonics Conference”, (IEEE, 2014), paper PD.3.

DeRose, C. T.

C. T. DeRose, M. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, “Low power and broadband 2 × 2 silicon thermo-optic switch,” in “Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011,” (Optical Society of America, 2011), p. OThM3.

Divliansky, I. B.

Dong, P.

Driessen, A.

D. Geuzebroek, E. J. Klein, H. Kelderman, and A. Driessen, “Wavelength tuning and switching of a thermooptic microring resonator,” in “Proceedings of the European Conference on Integrated Optics (ECIO),” (2003), paper FrB3.2.

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators byoverlaying a polymer cladding on narrowedwaveguides,” Optics Express 17, 14627–14633 (2009).
[Crossref]

Emplit, P.

Espinola, R. L.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Tech. Lett. 15, 1366–1368 (2003).
[Crossref]

Fainman, Y.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in “Proceedings of the ACM SIGCOMM 2013 Conference,” (ACM, New York, NY, USA, 2013), SIGCOMM ’13, pp. 447–458.

Fang, Q.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Tech. Lett. 23, 525–527 (2011).
[Crossref]

Farrington, N.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in “Proceedings of the ACM SIGCOMM 2013 Conference,” (ACM, New York, NY, USA, 2013), SIGCOMM ’13, pp. 447–458.

Feng, D.

Feng, N.-N.

Forencich, A.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in “Proceedings of the ACM SIGCOMM 2013 Conference,” (ACM, New York, NY, USA, 2013), SIGCOMM ’13, pp. 447–458.

Foster, M. A.

Gaeta, A. L.

Galli, M.

Geuzebroek, D.

D. Geuzebroek, E. J. Klein, H. Kelderman, and A. Driessen, “Wavelength tuning and switching of a thermooptic microring resonator,” in “Proceedings of the European Conference on Integrated Optics (ECIO),” (2003), paper FrB3.2.

Grant, H.

R. Aguinaldo, H. Grant, C. Derose, D. Trotter, A. Pomerene, A. Starbuck, A. Lentine, and S. Mookherjea, “Silicon photonic integrated components for add, drop, and VOA in a 4-channel data-center network,” in “Proceedings of the IEEE Photonics Conference”, (IEEE, 2014), paper PD.3.

Grassani, D.

Grillanda, S.

Han, X.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators byoverlaying a polymer cladding on narrowedwaveguides,” Optics Express 17, 14627–14633 (2009).
[Crossref]

Harjanne, M.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photon. Tech. Lett. 16, 2039–2041 (2004).
[Crossref]

Harris, D. M.

N. H. E. Weste and D. M. Harris, CMOS VLSI Design (Addison-Wesley, 2004), 4th ed.

Heimala, P.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photon. Tech. Lett. 16, 2039–2041 (2004).
[Crossref]

Helt, L. G.

Henschel, W.

Hochberg, M.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
[Crossref]

Huy, K. P.

Jian, X.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators byoverlaying a polymer cladding on narrowedwaveguides,” Optics Express 17, 14627–14633 (2009).
[Crossref]

Kapulainen, M.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photon. Tech. Lett. 16, 2039–2041 (2004).
[Crossref]

Kekatpure, R. D.

C. T. DeRose, M. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, “Low power and broadband 2 × 2 silicon thermo-optic switch,” in “Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011,” (Optical Society of America, 2011), p. OThM3.

Kelderman, H.

D. Geuzebroek, E. J. Klein, H. Kelderman, and A. Driessen, “Wavelength tuning and switching of a thermooptic microring resonator,” in “Proceedings of the European Conference on Integrated Optics (ECIO),” (2003), paper FrB3.2.

Kimerling, L. C.

Klein, E. J.

D. Geuzebroek, E. J. Klein, H. Kelderman, and A. Driessen, “Wavelength tuning and switching of a thermooptic microring resonator,” in “Proceedings of the European Conference on Integrated Optics (ECIO),” (2003), paper FrB3.2.

Krishnamoorthy, A. V.

Kumar, R.

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
[Crossref]

J. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient cw four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Tech. Lett. 25, 1699–1702 (2013).
[Crossref]

J. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Tech. Lett. 25, 1543–1546 (2013).
[Crossref]

Kurz, H.

Kwong, D. L.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Tech. Lett. 23, 525–527 (2011).
[Crossref]

Leake, G.

Z. Su, E. Timurdogan, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “An interior-ridge silicon microring switch with integrated thermal tuner,” in “Proc. Integrated Photonics Research, Silicon and Nanophotonics Conf.”, (Optical Society of America, 2015), paper IM2B–5.

Lentine, A.

R. Aguinaldo, H. Grant, C. Derose, D. Trotter, A. Pomerene, A. Starbuck, A. Lentine, and S. Mookherjea, “Silicon photonic integrated components for add, drop, and VOA in a 4-channel data-center network,” in “Proceedings of the IEEE Photonics Conference”, (IEEE, 2014), paper PD.3.

Li, G.

Liang, H.

Liow, T. Y.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Tech. Lett. 23, 525–527 (2011).
[Crossref]

Lipson, M.

Liscidini, M.

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 71110 (2006).
[Crossref]

Lo, G. Q.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Tech. Lett. 23, 525–527 (2011).
[Crossref]

Luck, D. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in “Proceedings of the Conference on Lasers and Electro-Optics” (Optical Society of America, 2009), paper CPDB10.

Luo, X.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 um wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]

Massar, S.

Melloni, A.

Mookherjea, S.

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
[Crossref]

J. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient cw four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Tech. Lett. 25, 1699–1702 (2013).
[Crossref]

J. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Tech. Lett. 25, 1543–1546 (2013).
[Crossref]

R. Aguinaldo, Y. Shen, and S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photon. Tech. Lett. 24, 1242–1244 (2012).
[Crossref]

Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett. 36, 2668–2670 (2011).
[Crossref]

R. Aguinaldo, H. Grant, C. Derose, D. Trotter, A. Pomerene, A. Starbuck, A. Lentine, and S. Mookherjea, “Silicon photonic integrated components for add, drop, and VOA in a 4-channel data-center network,” in “Proceedings of the IEEE Photonics Conference”, (IEEE, 2014), paper PD.3.

Moresco, M.

Z. Su, E. Timurdogan, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “An interior-ridge silicon microring switch with integrated thermal tuner,” in “Proc. Integrated Photonics Research, Silicon and Nanophotonics Conf.”, (Optical Society of America, 2015), paper IM2B–5.

Morichetti, F.

Morthier, G.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators byoverlaying a polymer cladding on narrowedwaveguides,” Optics Express 17, 14627–14633 (2009).
[Crossref]

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 71110 (2006).
[Crossref]

Niehusmann, J.

Nielson, G. N.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in “Proceedings of the Conference on Lasers and Electro-Optics” (Optical Society of America, 2009), paper CPDB10.

M. R. Watts and G. N. Nielson, “Optical waveguide device with an adiabatically-varying width,” US Patent No. 7,941,014 B1 (2011).

C. T. DeRose, M. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, “Low power and broadband 2 × 2 silicon thermo-optic switch,” in “Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011,” (Optical Society of America, 2011), p. OThM3.

Ong, J.

J. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Tech. Lett. 25, 1543–1546 (2013).
[Crossref]

J. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient cw four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Tech. Lett. 25, 1699–1702 (2013).
[Crossref]

Osgood, R. M.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Tech. Lett. 15, 1366–1368 (2003).
[Crossref]

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 71110 (2006).
[Crossref]

Papen, G.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in “Proceedings of the ACM SIGCOMM 2013 Conference,” (ACM, New York, NY, USA, 2013), SIGCOMM ’13, pp. 447–458.

Pomerene, A.

R. Aguinaldo, H. Grant, C. Derose, D. Trotter, A. Pomerene, A. Starbuck, A. Lentine, and S. Mookherjea, “Silicon photonic integrated components for add, drop, and VOA in a 4-channel data-center network,” in “Proceedings of the IEEE Photonics Conference”, (IEEE, 2014), paper PD.3.

Poon, A. W.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 um wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]

Porter, G.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in “Proceedings of the ACM SIGCOMM 2013 Conference,” (ACM, New York, NY, USA, 2013), SIGCOMM ’13, pp. 447–458.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Qian, W.

Rifat, A. A.

R. Ahmed, A. A. Rifat, A. K. Yetisen, M. S. Salem, S.-H. Yun, and H. Butt, “Optical microring resonator based corrosion sensing,” RSC Adv. 6, 56127–56133 (2016).
[Crossref]

Rooks, M.

Rosing, T.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in “Proceedings of the ACM SIGCOMM 2013 Conference,” (ACM, New York, NY, USA, 2013), SIGCOMM ’13, pp. 447–458.

Salem, M. S.

R. Ahmed, A. A. Rifat, A. K. Yetisen, M. S. Salem, S.-H. Yun, and H. Butt, “Optical microring resonator based corrosion sensing,” RSC Adv. 6, 56127–56133 (2016).
[Crossref]

Savanier, M.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Schow, C. L.

C. L. Schow, “Next generation data centres: How will optics be employed?” in “Proceedings of the European Conference on Optical Communication (ECOC)” (Viajes el Corte Ingles, VECISA, 2015).

Sekaric, L.

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Shafiiha, R.

Shaw, M. J.

Shen, Y.

R. Aguinaldo, Y. Shen, and S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photon. Tech. Lett. 24, 1242–1244 (2012).
[Crossref]

Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett. 36, 2668–2670 (2011).
[Crossref]

Singh, V.

Sipe, J. E.

Song, J. F.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Tech. Lett. 23, 525–527 (2011).
[Crossref]

Soref, R. A.

R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Sorel, M.

Starbuck, A.

R. Aguinaldo, H. Grant, C. Derose, D. Trotter, A. Pomerene, A. Starbuck, A. Lentine, and S. Mookherjea, “Silicon photonic integrated components for add, drop, and VOA in a 4-channel data-center network,” in “Proceedings of the IEEE Photonics Conference”, (IEEE, 2014), paper PD.3.

Strain, M. J.

Strong, R.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in “Proceedings of the ACM SIGCOMM 2013 Conference,” (ACM, New York, NY, USA, 2013), SIGCOMM ’13, pp. 447–458.

Su, Z.

Z. Su, E. Timurdogan, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “An interior-ridge silicon microring switch with integrated thermal tuner,” in “Proc. Integrated Photonics Research, Silicon and Nanophotonics Conf.”, (Optical Society of America, 2015), paper IM2B–5.

Sun, J.

Z. Su, E. Timurdogan, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “An interior-ridge silicon microring switch with integrated thermal tuner,” in “Proc. Integrated Photonics Research, Silicon and Nanophotonics Conf.”, (Optical Society of America, 2015), paper IM2B–5.

Teng, J.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators byoverlaying a polymer cladding on narrowedwaveguides,” Optics Express 17, 14627–14633 (2009).
[Crossref]

Thourhout, D. V.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Timurdogan, E.

A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37, 4236–4238 (2012).
[Crossref]

Z. Su, E. Timurdogan, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “An interior-ridge silicon microring switch with integrated thermal tuner,” in “Proc. Integrated Photonics Research, Silicon and Nanophotonics Conf.”, (Optical Society of America, 2015), paper IM2B–5.

Trotter, D.

R. Aguinaldo, H. Grant, C. Derose, D. Trotter, A. Pomerene, A. Starbuck, A. Lentine, and S. Mookherjea, “Silicon photonic integrated components for add, drop, and VOA in a 4-channel data-center network,” in “Proceedings of the IEEE Photonics Conference”, (IEEE, 2014), paper PD.3.

Trotter, D. C.

C. T. DeRose, M. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, “Low power and broadband 2 × 2 silicon thermo-optic switch,” in “Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011,” (Optical Society of America, 2011), p. OThM3.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in “Proceedings of the Conference on Lasers and Electro-Optics” (Optical Society of America, 2009), paper CPDB10.

Tsai, M. C.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Tech. Lett. 15, 1366–1368 (2003).
[Crossref]

Turner, A. C.

Vahdat, A.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in “Proceedings of the ACM SIGCOMM 2013 Conference,” (ACM, New York, NY, USA, 2013), SIGCOMM ’13, pp. 447–458.

Velha, P.

Vlasov, Y.

Vörckel, A.

Vos, K. D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Wahlbrink, T.

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 71110 (2006).
[Crossref]

Watts, M.

C. T. DeRose, M. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, “Low power and broadband 2 × 2 silicon thermo-optic switch,” in “Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011,” (Optical Society of America, 2011), p. OThM3.

Z. Su, E. Timurdogan, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “An interior-ridge silicon microring switch with integrated thermal tuner,” in “Proc. Integrated Photonics Research, Silicon and Nanophotonics Conf.”, (Optical Society of America, 2015), paper IM2B–5.

Watts, M. R.

A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37, 4236–4238 (2012).
[Crossref]

M. R. Watts and G. N. Nielson, “Optical waveguide device with an adiabatically-varying width,” US Patent No. 7,941,014 B1 (2011).

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in “Proceedings of the Conference on Lasers and Electro-Optics” (Optical Society of America, 2009), paper CPDB10.

Weste, N. H. E.

N. H. E. Weste and D. M. Harris, CMOS VLSI Design (Addison-Wesley, 2004), 4th ed.

Wiedmann, S. K.

S. K. Wiedmann, “Monolithic circuits with pinch resistors,” U.S. Patent 3,693,057 (1972).

Wright, J. B.

Xia, F.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Yardley, J. T.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Tech. Lett. 15, 1366–1368 (2003).
[Crossref]

Yetisen, A. K.

R. Ahmed, A. A. Rifat, A. K. Yetisen, M. S. Salem, S.-H. Yun, and H. Butt, “Optical microring resonator based corrosion sensing,” RSC Adv. 6, 56127–56133 (2016).
[Crossref]

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in “Proceedings of the Conference on Lasers and Electro-Optics” (Optical Society of America, 2009), paper CPDB10.

C. T. DeRose, M. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, “Low power and broadband 2 × 2 silicon thermo-optic switch,” in “Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011,” (Optical Society of America, 2011), p. OThM3.

Yu, M. B.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Tech. Lett. 23, 525–527 (2011).
[Crossref]

Yun, S.-H.

R. Ahmed, A. A. Rifat, A. K. Yetisen, M. S. Salem, S.-H. Yun, and H. Butt, “Optical microring resonator based corrosion sensing,” RSC Adv. 6, 56127–56133 (2016).
[Crossref]

Zhang, H.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators byoverlaying a polymer cladding on narrowedwaveguides,” Optics Express 17, 14627–14633 (2009).
[Crossref]

Zhao, M.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators byoverlaying a polymer cladding on narrowedwaveguides,” Optics Express 17, 14627–14633 (2009).
[Crossref]

Zheng, X.

Zortman, W.

C. T. DeRose, M. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, “Low power and broadband 2 × 2 silicon thermo-optic switch,” in “Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011,” (Optical Society of America, 2011), p. OThM3.

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in “Proceedings of the Conference on Lasers and Electro-Optics” (Optical Society of America, 2009), paper CPDB10.

Appl. Phys. Lett. (2)

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 um wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95, 171111 (2009).
[Crossref]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 71110 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

IEEE Photon. Tech. Lett. (6)

J. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Tech. Lett. 25, 1543–1546 (2013).
[Crossref]

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Tech. Lett. 15, 1366–1368 (2003).
[Crossref]

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photon. Tech. Lett. 16, 2039–2041 (2004).
[Crossref]

J. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient cw four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Tech. Lett. 25, 1699–1702 (2013).
[Crossref]

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Tech. Lett. 23, 525–527 (2011).
[Crossref]

R. Aguinaldo, Y. Shen, and S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photon. Tech. Lett. 24, 1242–1244 (2012).
[Crossref]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Opt. Express (8)

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15, 11934–11941 (2007).
[Crossref]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16, 4881–4887 (2008).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
[Crossref]

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
[Crossref]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[Crossref]

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
[Crossref]

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20, 15807–15817 (2012).
[Crossref]

Opt. Lett. (3)

Optics Express (1)

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators byoverlaying a polymer cladding on narrowedwaveguides,” Optics Express 17, 14627–14633 (2009).
[Crossref]

RSC Adv. (1)

R. Ahmed, A. A. Rifat, A. K. Yetisen, M. S. Salem, S.-H. Yun, and H. Butt, “Optical microring resonator based corrosion sensing,” RSC Adv. 6, 56127–56133 (2016).
[Crossref]

Other (11)

Z. Su, E. Timurdogan, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. Watts, “An interior-ridge silicon microring switch with integrated thermal tuner,” in “Proc. Integrated Photonics Research, Silicon and Nanophotonics Conf.”, (Optical Society of America, 2015), paper IM2B–5.

D. Geuzebroek, E. J. Klein, H. Kelderman, and A. Driessen, “Wavelength tuning and switching of a thermooptic microring resonator,” in “Proceedings of the European Conference on Integrated Optics (ECIO),” (2003), paper FrB3.2.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in “Proceedings of the ACM SIGCOMM 2013 Conference,” (ACM, New York, NY, USA, 2013), SIGCOMM ’13, pp. 447–458.

C. L. Schow, “Next generation data centres: How will optics be employed?” in “Proceedings of the European Conference on Optical Communication (ECOC)” (Viajes el Corte Ingles, VECISA, 2015).

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
[Crossref]

M. R. Watts and G. N. Nielson, “Optical waveguide device with an adiabatically-varying width,” US Patent No. 7,941,014 B1 (2011).

C. T. DeRose, M. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, “Low power and broadband 2 × 2 silicon thermo-optic switch,” in “Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011,” (Optical Society of America, 2011), p. OThM3.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in “Proceedings of the Conference on Lasers and Electro-Optics” (Optical Society of America, 2009), paper CPDB10.

R. Aguinaldo, H. Grant, C. Derose, D. Trotter, A. Pomerene, A. Starbuck, A. Lentine, and S. Mookherjea, “Silicon photonic integrated components for add, drop, and VOA in a 4-channel data-center network,” in “Proceedings of the IEEE Photonics Conference”, (IEEE, 2014), paper PD.3.

S. K. Wiedmann, “Monolithic circuits with pinch resistors,” U.S. Patent 3,693,057 (1972).

N. H. E. Weste and D. M. Harris, CMOS VLSI Design (Addison-Wesley, 2004), 4th ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic diagram of a waveguide-coupled optical microring resonator near an electrical tuning micro-heater. The latter may be integrated into the microring (when the resistor is formed using doped Si segments), or may be a separate structure (when the resistor is formed using metal traces). The current (I) - voltage (V) relationship can take several forms, including (i) Ohmic, (ii) non-Ohmic, leading to runaway, breakdown and destruction at a voltage labeled VD, and (iii) transistor-like behavior with a ‘saturated’ constant-current source ISAT. Panels (c)–(d) show experimental I-V data from structures on the chip for types (ii) and (iii).

Fig. 2
Fig. 2

(a) A silicon photonic chip, which contained several banks of tunable microring filters (locations indicated by the white boxes), was designed and fabricated using the Sandia photonics process. (b) Diagrams of the two types of microheater-integrated microrings studied here; only the silicon mask layer is shown. The n-doped regions are indicated by red color within the gray regions which indicate the p-doped Si in the starting wafer. Numerical values of the major diameter (MD) and doped length (L) are provided in the text. The dotted red lines schematically indicate the electrical connections made to drive current through the microheaters.

Fig. 3
Fig. 3

(a) Schematic diagram of the waveguide cross-section (not to scale). By partially counter-implanting (n-type) a section of the p-doped wavguide, a quasi-lateral p-n junction is created. (b) Simulation of the doped profile using ATHENA (Silvaco) for a representative waveguide section of width 800 nm in which the right-side one-half width (400 nm) was masked off for the implant. Spreading and diffusion of the implanted species results in a metallurgical junction that lies inside (under) the masked-off region. The colorbar shows the exponent of the net carrer density (units: cm−3).

Fig. 4
Fig. 4

(a) The I-V measurement (small squares) for the small microrings was well fitted by the JFET I-V equation as described in the text. The dashed red line shows the I-V measurements of a similar microring but with different dopants (and no channel pinch-off) which exhibited device destruction before saturation. (b) The larger microrings, with a longer ‘channel’ L, also were fitted by the same equation, with different parameters. (c) At low frequencies (< 75 Hz), the capacitance for 3 banks of dual-ring filters driven in parallel (red data points and sigmoidal fit) showed an increase with voltage. At high frequencies (100 kHz), the effect was less noticeable (blue points and fit). The black trace shows there was no change in capacitance with voltage of a loading circuit used in parallel with the device under test (see text for description). Errorbars show the uncertainty (noise) in the measurement.

Fig. 5
Fig. 5

Pulsed electrical waveform driving the microheater (black line showing a vertically-scaled replica for comparison; original waveform was 10 Vpp excluding pre-emphasis), and measured optical response (blue line, measured amplitude at oscilloscope). (a) For the smaller microrings, the 10%–90% transition rise and fall times were measured to be 0.6 μs and 19 μs. The optical waveforms in regions indicated by dotted boxes are shown in detail in subsequent panels. (b) The larger microring resonators (consistent with the smaller-sized heaters relative to their size) showed 10%–90% transition times of 24 μs and 47 μs for the rise and fall transitions. (c), Magnified view of the optical waveform (squares) and fitted line for the falling edge, with a 10%–90% transition time of 19 μs (16 μs from an exponential fit). (d) Magnified view of the optical waveform (square) and fitted line for the rising edge, with a 10%–90% transition time of 0.6 μs.

Fig. 6
Fig. 6

(a) Transmission spectrum at the drop’port of a dual-ring tunable filter made using the smaller microrings. Shown in panels (i)–(iv) are four measurements of wide range tuning at voltage levels of 0 V, 5 V, 10 V and 15 V, respectively. Measurements are shown by dots, and a Lorentzian fit by a solid line of the same color. (b) The peak wavelength of the fitted Lorentzian is plotted versus electrical driving power (V × I). (c) Transmission spectrum at the drop port of a dual-ring tunable filter made using the larger microrings. (d) Shown are four measurements of fine-tuning of the filter with increasing voltage levels (0 V, 5 V, 10 V and 15 V, respectively). (e) The peak wavelength of the fitted Lorentzian is plotted versus electrical driving power (V × I).

Fig. 7
Fig. 7

(a) Transmission spectrum of filter using the larger microrings at 0 V (blue dots) and the fit (black line) using the model described in the text. Shown are the extracted values of (b) the round-trip loss |α| and (c), the magnitude of the ring-waveguide coupler’s transmission coefficient |t| versus wavelength.

Metrics