Abstract

Independent of instrumental properties and scanning geometry, target reflectance is significantly important for terrestrial laser scanning (TLS) data processing and utilization, especially in multi-temporal and multi-sensor cases. In addition to the 3D topographic coordinates, TLS systems also record the backscattered intensity value of each point that provides additional information on the reflectance characteristics of the scanned surface. However, a number of confounding variables, particularly the distance and incidence angle, distort the ability of the original intensity to directly retrieve the target reflectance. This study proposes a new method to model the hemispherical reflectance of natural surfaces from the TLS intensity data by eliminating the effects of incidence angle and distance. The incidence angle effect is corrected by the Oren-Nayar reflectance model which takes individual surface roughness into account whereas the irregular distance effect is eliminated by reference targets without estimating the specific distance-intensity function. The Faro Focus3D 120 terrestrial scanner is utilized in the case study. Six typical natural surfaces are chosen as the experimental objects. Results imply that the proposed method exhibits high accuracy in retrieving reflectance values. The deviation of the retrieved reflectance values from that measured by a spectrometer is approximately 4.29% and the root mean square error (RMSE) is approximately 0.0562.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface reflectance retrieval from the intensity data of a terrestrial laser scanner

Kai Tan and Xiaojun Cheng
J. Opt. Soc. Am. A 33(4) 771-778 (2016)

Effect of incidence angle on laser scanner intensity and surface data

Antero Kukko, Sanna Kaasalainen, and Paula Litkey
Appl. Opt. 47(7) 986-992 (2008)

Curvature and height corrections of hyperspectral images using built-in 3D laser profilometry

Luka Rogelj, Urban Pavlovčič, Jošt Stergar, Matija Jezeršek, Urban Simončič, and Matija Milanič
Appl. Opt. 58(32) 9002-9012 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Tan and X. Cheng, “Correction of incidence angle and distance effects on TLS intensity data based on reference targets,” Remote Sens. 8(3), 251 (2016).
    [Crossref]
  2. Y. Wang, J. Zhang, A. Roncat, C. Künzer, and W. Wagner, “Regularizing method for the determination of the backscatter cross section in lidar data,” J. Opt. Soc. Am. A 26(5), 1071–1079 (2009).
    [Crossref] [PubMed]
  3. B. Höfle and N. Pfeifer, “Correction of laser scanning intensity data: Data and model-driven approaches,” ISPRS J. Photogramm. Remote Sens. 62(6), 415–433 (2007).
    [Crossref]
  4. X. Li and Y. Liang, “Surface characteristics modeling and performance evaluation of urban building materials using LiDAR data,” Appl. Opt. 54(15), 4750–4759 (2015).
    [Crossref] [PubMed]
  5. A. G. Kashani, M. J. Olsen, C. E. Parrish, and N. Wilson, “A review of LIDAR radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration,” Sensors (Basel) 15(11), 28099–28128 (2015).
    [Crossref] [PubMed]
  6. P. C. Joerg, J. Weyermann, F. Morsdorf, M. Zemp, and M. E. Schaepman, “Computation of a distributed glacier surface albedo proxy using airborne laser scanning intensity data and in-situ spectro-radiometric measurements,” Remote Sens. Environ. 160, 31–42 (2015).
    [Crossref]
  7. D. Carrea, A. Abellan, F. Humair, B. Matasci, M. H. Derron, and M. Jaboyedoff, “Correction of terrestrial LiDAR intensity channel using Oren–Nayar reflectance model: An application to lithological differentiation,” ISPRS J. Photogramm. Remote Sens. 113, 17–29 (2016).
    [Crossref]
  8. T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20(7), 7119–7127 (2012).
    [Crossref] [PubMed]
  9. X. Li and Y. Liang, “Remote measurement of surface roughness, surface reflectance, and body reflectance with LiDAR,” Appl. Opt. 54(30), 8904–8912 (2015).
    [Crossref] [PubMed]
  10. K. Nishino and S. Lombardi, “Directional statistics-based reflectance model for isotropic bidirectional reflectance distribution functions,” J. Opt. Soc. Am. A 28(1), 8–18 (2011).
    [Crossref] [PubMed]
  11. B. G. Hoover and V. L. Gamiz, “Coherence solution for bidirectional reflectance distributions of surfaces with wavelength-scale statistics,” J. Opt. Soc. Am. A 23(2), 314–328 (2006).
    [Crossref] [PubMed]
  12. K. Tan and X. Cheng, “Intensity data correction based on incidence angle and distance for terrestrial laser scanner,” J. Photogram. Rem. Sens. 9, 094094 (2015).
  13. S. Kaasalainen, A. Jaakkola, M. Kaasalainen, A. Krooks, and A. Kukko, “Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods,” Remote Sens. 3(12), 2207–2221 (2011).
    [Crossref]
  14. K. Tan, X. Cheng, X. Ding, and Q. Zhang, “Intensity data correction for the distance effect in terrestrial laser scanners,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9(1), 304–312 (2016).
    [Crossref]
  15. A. Kukko, S. Kaasalainen, and P. Litkey, “Effect of incidence angle on laser scanner intensity and surface data,” Appl. Opt. 47(7), 986–992 (2008).
    [Crossref] [PubMed]
  16. G. T. Georgiev and J. J. Butler, “Laboratory-based bidirectional reflectance distribution functions of radiometric tarps,” Appl. Opt. 47(18), 3313–3323 (2008).
    [Crossref] [PubMed]
  17. C. C. Kim, B. Thai, N. Yamaoka, and O. Aboutalib, “Hemispherical reflectance model for passive images in an outdoor environment,” J. Opt. Soc. Am. A 32(5), 1003–1011 (2015).
    [Crossref] [PubMed]
  18. X. Li, L. Ma, and L. Xu, “Empirical modeling for non-Lambertian reflectance based on full-waveform laser detection,” Opt. Eng. 52(11), 116110 (2013).
    [Crossref]
  19. X. Li, Y. Liang, and L. Xu, “Bidirectional reflectance distribution function based surface modeling of non-Lambertian using intensity data of light detection and ranging,” J. Opt. Soc. Am. A 31(9), 2055–2063 (2014).
    [Crossref] [PubMed]
  20. K. Tan and X. Cheng, “Surface reflectance retrieval from the intensity data of a terrestrial laser scanner,” J. Opt. Soc. Am. A 33(4), 771–778 (2016).
    [Crossref] [PubMed]
  21. J. Qiu, W. J. Zhang, L. H. Liu, P. F. Hsu, and L. J. Liu, “Reflective properties of randomly rough surfaces under large incidence angles,” J. Opt. Soc. Am. A 31(6), 1251–1258 (2014).
    [Crossref] [PubMed]
  22. I. G. E. Renhorn and G. D. Boreman, “Analytical fitting model for rough-surface BRDF,” Opt. Express 16(17), 12892–12898 (2008).
    [Crossref] [PubMed]
  23. S. Luo, C. Wang, X. Xi, and F. Pan, “Estimating FPAR of maize canopy using airborne discrete-return LiDAR data,” Opt. Express 22(5), 5106–5117 (2014).
    [Crossref] [PubMed]
  24. W. Wagner, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65(6), 505–513 (2010).
    [Crossref]
  25. A. Ferrero, A. M. Rabal, J. Campos, A. Pons, and M. L. Hernanz, “Spectral and geometrical variation of the bidirectional reflectance distribution function of diffuse reflectance standards,” Appl. Opt. 51(36), 8535–8540 (2012).
    [Crossref] [PubMed]
  26. F. Coren and P. Sterzai, “Radiometric correction in laser scanning,” Int. J. Remote Sens. 27(15), 3097–3104 (2006).
    [Crossref]
  27. M. Oren and S. K. Nayar, “Generalization of the Lambertian model and implications for machine vision,” Int. J. Comput. Vis. 14(3), 227–251 (1995).
    [Crossref]
  28. S. R. Marschner, S. H. Westin, E. P. Lafortune, and K. E. Torrance, “Image-based bidirectional reflectance distribution function measurement,” Appl. Opt. 39(16), 2592–2600 (2000).
    [Crossref] [PubMed]
  29. I. G. Renhorn, T. Hallberg, and G. D. Boreman, “Efficient polarimetric BRDF model,” Opt. Express 23(24), 31253–31273 (2015).
    [Crossref] [PubMed]
  30. Z. Li, D. L. Jupp, A. H. Strahler, C. B. Schaaf, G. Howe, K. Hewawasam, E. S. Douglas, S. Chakrabarti, T. A. Cook, I. Paynter, E. J. Saenz, and M. Schaefer, “Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar,” Sensors (Basel) 16(3), 313 (2016).
    [Crossref] [PubMed]

2016 (5)

K. Tan and X. Cheng, “Correction of incidence angle and distance effects on TLS intensity data based on reference targets,” Remote Sens. 8(3), 251 (2016).
[Crossref]

D. Carrea, A. Abellan, F. Humair, B. Matasci, M. H. Derron, and M. Jaboyedoff, “Correction of terrestrial LiDAR intensity channel using Oren–Nayar reflectance model: An application to lithological differentiation,” ISPRS J. Photogramm. Remote Sens. 113, 17–29 (2016).
[Crossref]

K. Tan, X. Cheng, X. Ding, and Q. Zhang, “Intensity data correction for the distance effect in terrestrial laser scanners,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9(1), 304–312 (2016).
[Crossref]

K. Tan and X. Cheng, “Surface reflectance retrieval from the intensity data of a terrestrial laser scanner,” J. Opt. Soc. Am. A 33(4), 771–778 (2016).
[Crossref] [PubMed]

Z. Li, D. L. Jupp, A. H. Strahler, C. B. Schaaf, G. Howe, K. Hewawasam, E. S. Douglas, S. Chakrabarti, T. A. Cook, I. Paynter, E. J. Saenz, and M. Schaefer, “Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar,” Sensors (Basel) 16(3), 313 (2016).
[Crossref] [PubMed]

2015 (7)

I. G. Renhorn, T. Hallberg, and G. D. Boreman, “Efficient polarimetric BRDF model,” Opt. Express 23(24), 31253–31273 (2015).
[Crossref] [PubMed]

C. C. Kim, B. Thai, N. Yamaoka, and O. Aboutalib, “Hemispherical reflectance model for passive images in an outdoor environment,” J. Opt. Soc. Am. A 32(5), 1003–1011 (2015).
[Crossref] [PubMed]

K. Tan and X. Cheng, “Intensity data correction based on incidence angle and distance for terrestrial laser scanner,” J. Photogram. Rem. Sens. 9, 094094 (2015).

X. Li and Y. Liang, “Remote measurement of surface roughness, surface reflectance, and body reflectance with LiDAR,” Appl. Opt. 54(30), 8904–8912 (2015).
[Crossref] [PubMed]

X. Li and Y. Liang, “Surface characteristics modeling and performance evaluation of urban building materials using LiDAR data,” Appl. Opt. 54(15), 4750–4759 (2015).
[Crossref] [PubMed]

A. G. Kashani, M. J. Olsen, C. E. Parrish, and N. Wilson, “A review of LIDAR radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration,” Sensors (Basel) 15(11), 28099–28128 (2015).
[Crossref] [PubMed]

P. C. Joerg, J. Weyermann, F. Morsdorf, M. Zemp, and M. E. Schaepman, “Computation of a distributed glacier surface albedo proxy using airborne laser scanning intensity data and in-situ spectro-radiometric measurements,” Remote Sens. Environ. 160, 31–42 (2015).
[Crossref]

2014 (3)

2013 (1)

X. Li, L. Ma, and L. Xu, “Empirical modeling for non-Lambertian reflectance based on full-waveform laser detection,” Opt. Eng. 52(11), 116110 (2013).
[Crossref]

2012 (2)

2011 (2)

K. Nishino and S. Lombardi, “Directional statistics-based reflectance model for isotropic bidirectional reflectance distribution functions,” J. Opt. Soc. Am. A 28(1), 8–18 (2011).
[Crossref] [PubMed]

S. Kaasalainen, A. Jaakkola, M. Kaasalainen, A. Krooks, and A. Kukko, “Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods,” Remote Sens. 3(12), 2207–2221 (2011).
[Crossref]

2010 (1)

W. Wagner, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65(6), 505–513 (2010).
[Crossref]

2009 (1)

2008 (3)

2007 (1)

B. Höfle and N. Pfeifer, “Correction of laser scanning intensity data: Data and model-driven approaches,” ISPRS J. Photogramm. Remote Sens. 62(6), 415–433 (2007).
[Crossref]

2006 (2)

2000 (1)

1995 (1)

M. Oren and S. K. Nayar, “Generalization of the Lambertian model and implications for machine vision,” Int. J. Comput. Vis. 14(3), 227–251 (1995).
[Crossref]

Abellan, A.

D. Carrea, A. Abellan, F. Humair, B. Matasci, M. H. Derron, and M. Jaboyedoff, “Correction of terrestrial LiDAR intensity channel using Oren–Nayar reflectance model: An application to lithological differentiation,” ISPRS J. Photogramm. Remote Sens. 113, 17–29 (2016).
[Crossref]

Aboutalib, O.

Boreman, G. D.

Butler, J. J.

Campos, J.

Carrea, D.

D. Carrea, A. Abellan, F. Humair, B. Matasci, M. H. Derron, and M. Jaboyedoff, “Correction of terrestrial LiDAR intensity channel using Oren–Nayar reflectance model: An application to lithological differentiation,” ISPRS J. Photogramm. Remote Sens. 113, 17–29 (2016).
[Crossref]

Chakrabarti, S.

Z. Li, D. L. Jupp, A. H. Strahler, C. B. Schaaf, G. Howe, K. Hewawasam, E. S. Douglas, S. Chakrabarti, T. A. Cook, I. Paynter, E. J. Saenz, and M. Schaefer, “Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar,” Sensors (Basel) 16(3), 313 (2016).
[Crossref] [PubMed]

Chen, Y.

Cheng, X.

K. Tan and X. Cheng, “Surface reflectance retrieval from the intensity data of a terrestrial laser scanner,” J. Opt. Soc. Am. A 33(4), 771–778 (2016).
[Crossref] [PubMed]

K. Tan, X. Cheng, X. Ding, and Q. Zhang, “Intensity data correction for the distance effect in terrestrial laser scanners,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9(1), 304–312 (2016).
[Crossref]

K. Tan and X. Cheng, “Correction of incidence angle and distance effects on TLS intensity data based on reference targets,” Remote Sens. 8(3), 251 (2016).
[Crossref]

K. Tan and X. Cheng, “Intensity data correction based on incidence angle and distance for terrestrial laser scanner,” J. Photogram. Rem. Sens. 9, 094094 (2015).

Cook, T. A.

Z. Li, D. L. Jupp, A. H. Strahler, C. B. Schaaf, G. Howe, K. Hewawasam, E. S. Douglas, S. Chakrabarti, T. A. Cook, I. Paynter, E. J. Saenz, and M. Schaefer, “Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar,” Sensors (Basel) 16(3), 313 (2016).
[Crossref] [PubMed]

Coren, F.

F. Coren and P. Sterzai, “Radiometric correction in laser scanning,” Int. J. Remote Sens. 27(15), 3097–3104 (2006).
[Crossref]

Derron, M. H.

D. Carrea, A. Abellan, F. Humair, B. Matasci, M. H. Derron, and M. Jaboyedoff, “Correction of terrestrial LiDAR intensity channel using Oren–Nayar reflectance model: An application to lithological differentiation,” ISPRS J. Photogramm. Remote Sens. 113, 17–29 (2016).
[Crossref]

Ding, X.

K. Tan, X. Cheng, X. Ding, and Q. Zhang, “Intensity data correction for the distance effect in terrestrial laser scanners,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9(1), 304–312 (2016).
[Crossref]

Douglas, E. S.

Z. Li, D. L. Jupp, A. H. Strahler, C. B. Schaaf, G. Howe, K. Hewawasam, E. S. Douglas, S. Chakrabarti, T. A. Cook, I. Paynter, E. J. Saenz, and M. Schaefer, “Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar,” Sensors (Basel) 16(3), 313 (2016).
[Crossref] [PubMed]

Ferrero, A.

Gamiz, V. L.

Georgiev, G. T.

Hakala, T.

Hallberg, T.

Hernanz, M. L.

Hewawasam, K.

Z. Li, D. L. Jupp, A. H. Strahler, C. B. Schaaf, G. Howe, K. Hewawasam, E. S. Douglas, S. Chakrabarti, T. A. Cook, I. Paynter, E. J. Saenz, and M. Schaefer, “Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar,” Sensors (Basel) 16(3), 313 (2016).
[Crossref] [PubMed]

Höfle, B.

B. Höfle and N. Pfeifer, “Correction of laser scanning intensity data: Data and model-driven approaches,” ISPRS J. Photogramm. Remote Sens. 62(6), 415–433 (2007).
[Crossref]

Hoover, B. G.

Howe, G.

Z. Li, D. L. Jupp, A. H. Strahler, C. B. Schaaf, G. Howe, K. Hewawasam, E. S. Douglas, S. Chakrabarti, T. A. Cook, I. Paynter, E. J. Saenz, and M. Schaefer, “Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar,” Sensors (Basel) 16(3), 313 (2016).
[Crossref] [PubMed]

Hsu, P. F.

Humair, F.

D. Carrea, A. Abellan, F. Humair, B. Matasci, M. H. Derron, and M. Jaboyedoff, “Correction of terrestrial LiDAR intensity channel using Oren–Nayar reflectance model: An application to lithological differentiation,” ISPRS J. Photogramm. Remote Sens. 113, 17–29 (2016).
[Crossref]

Jaakkola, A.

S. Kaasalainen, A. Jaakkola, M. Kaasalainen, A. Krooks, and A. Kukko, “Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods,” Remote Sens. 3(12), 2207–2221 (2011).
[Crossref]

Jaboyedoff, M.

D. Carrea, A. Abellan, F. Humair, B. Matasci, M. H. Derron, and M. Jaboyedoff, “Correction of terrestrial LiDAR intensity channel using Oren–Nayar reflectance model: An application to lithological differentiation,” ISPRS J. Photogramm. Remote Sens. 113, 17–29 (2016).
[Crossref]

Joerg, P. C.

P. C. Joerg, J. Weyermann, F. Morsdorf, M. Zemp, and M. E. Schaepman, “Computation of a distributed glacier surface albedo proxy using airborne laser scanning intensity data and in-situ spectro-radiometric measurements,” Remote Sens. Environ. 160, 31–42 (2015).
[Crossref]

Jupp, D. L.

Z. Li, D. L. Jupp, A. H. Strahler, C. B. Schaaf, G. Howe, K. Hewawasam, E. S. Douglas, S. Chakrabarti, T. A. Cook, I. Paynter, E. J. Saenz, and M. Schaefer, “Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar,” Sensors (Basel) 16(3), 313 (2016).
[Crossref] [PubMed]

Kaasalainen, M.

S. Kaasalainen, A. Jaakkola, M. Kaasalainen, A. Krooks, and A. Kukko, “Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods,” Remote Sens. 3(12), 2207–2221 (2011).
[Crossref]

Kaasalainen, S.

Kashani, A. G.

A. G. Kashani, M. J. Olsen, C. E. Parrish, and N. Wilson, “A review of LIDAR radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration,” Sensors (Basel) 15(11), 28099–28128 (2015).
[Crossref] [PubMed]

Kim, C. C.

Krooks, A.

S. Kaasalainen, A. Jaakkola, M. Kaasalainen, A. Krooks, and A. Kukko, “Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods,” Remote Sens. 3(12), 2207–2221 (2011).
[Crossref]

Kukko, A.

S. Kaasalainen, A. Jaakkola, M. Kaasalainen, A. Krooks, and A. Kukko, “Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods,” Remote Sens. 3(12), 2207–2221 (2011).
[Crossref]

A. Kukko, S. Kaasalainen, and P. Litkey, “Effect of incidence angle on laser scanner intensity and surface data,” Appl. Opt. 47(7), 986–992 (2008).
[Crossref] [PubMed]

Künzer, C.

Lafortune, E. P.

Li, X.

Li, Z.

Z. Li, D. L. Jupp, A. H. Strahler, C. B. Schaaf, G. Howe, K. Hewawasam, E. S. Douglas, S. Chakrabarti, T. A. Cook, I. Paynter, E. J. Saenz, and M. Schaefer, “Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar,” Sensors (Basel) 16(3), 313 (2016).
[Crossref] [PubMed]

Liang, Y.

Litkey, P.

Liu, L. H.

Liu, L. J.

Lombardi, S.

Luo, S.

Ma, L.

X. Li, L. Ma, and L. Xu, “Empirical modeling for non-Lambertian reflectance based on full-waveform laser detection,” Opt. Eng. 52(11), 116110 (2013).
[Crossref]

Marschner, S. R.

Matasci, B.

D. Carrea, A. Abellan, F. Humair, B. Matasci, M. H. Derron, and M. Jaboyedoff, “Correction of terrestrial LiDAR intensity channel using Oren–Nayar reflectance model: An application to lithological differentiation,” ISPRS J. Photogramm. Remote Sens. 113, 17–29 (2016).
[Crossref]

Morsdorf, F.

P. C. Joerg, J. Weyermann, F. Morsdorf, M. Zemp, and M. E. Schaepman, “Computation of a distributed glacier surface albedo proxy using airborne laser scanning intensity data and in-situ spectro-radiometric measurements,” Remote Sens. Environ. 160, 31–42 (2015).
[Crossref]

Nayar, S. K.

M. Oren and S. K. Nayar, “Generalization of the Lambertian model and implications for machine vision,” Int. J. Comput. Vis. 14(3), 227–251 (1995).
[Crossref]

Nishino, K.

Olsen, M. J.

A. G. Kashani, M. J. Olsen, C. E. Parrish, and N. Wilson, “A review of LIDAR radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration,” Sensors (Basel) 15(11), 28099–28128 (2015).
[Crossref] [PubMed]

Oren, M.

M. Oren and S. K. Nayar, “Generalization of the Lambertian model and implications for machine vision,” Int. J. Comput. Vis. 14(3), 227–251 (1995).
[Crossref]

Pan, F.

Parrish, C. E.

A. G. Kashani, M. J. Olsen, C. E. Parrish, and N. Wilson, “A review of LIDAR radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration,” Sensors (Basel) 15(11), 28099–28128 (2015).
[Crossref] [PubMed]

Paynter, I.

Z. Li, D. L. Jupp, A. H. Strahler, C. B. Schaaf, G. Howe, K. Hewawasam, E. S. Douglas, S. Chakrabarti, T. A. Cook, I. Paynter, E. J. Saenz, and M. Schaefer, “Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar,” Sensors (Basel) 16(3), 313 (2016).
[Crossref] [PubMed]

Pfeifer, N.

B. Höfle and N. Pfeifer, “Correction of laser scanning intensity data: Data and model-driven approaches,” ISPRS J. Photogramm. Remote Sens. 62(6), 415–433 (2007).
[Crossref]

Pons, A.

Qiu, J.

Rabal, A. M.

Renhorn, I. G.

Renhorn, I. G. E.

Roncat, A.

Saenz, E. J.

Z. Li, D. L. Jupp, A. H. Strahler, C. B. Schaaf, G. Howe, K. Hewawasam, E. S. Douglas, S. Chakrabarti, T. A. Cook, I. Paynter, E. J. Saenz, and M. Schaefer, “Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar,” Sensors (Basel) 16(3), 313 (2016).
[Crossref] [PubMed]

Schaaf, C. B.

Z. Li, D. L. Jupp, A. H. Strahler, C. B. Schaaf, G. Howe, K. Hewawasam, E. S. Douglas, S. Chakrabarti, T. A. Cook, I. Paynter, E. J. Saenz, and M. Schaefer, “Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar,” Sensors (Basel) 16(3), 313 (2016).
[Crossref] [PubMed]

Schaefer, M.

Z. Li, D. L. Jupp, A. H. Strahler, C. B. Schaaf, G. Howe, K. Hewawasam, E. S. Douglas, S. Chakrabarti, T. A. Cook, I. Paynter, E. J. Saenz, and M. Schaefer, “Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar,” Sensors (Basel) 16(3), 313 (2016).
[Crossref] [PubMed]

Schaepman, M. E.

P. C. Joerg, J. Weyermann, F. Morsdorf, M. Zemp, and M. E. Schaepman, “Computation of a distributed glacier surface albedo proxy using airborne laser scanning intensity data and in-situ spectro-radiometric measurements,” Remote Sens. Environ. 160, 31–42 (2015).
[Crossref]

Sterzai, P.

F. Coren and P. Sterzai, “Radiometric correction in laser scanning,” Int. J. Remote Sens. 27(15), 3097–3104 (2006).
[Crossref]

Strahler, A. H.

Z. Li, D. L. Jupp, A. H. Strahler, C. B. Schaaf, G. Howe, K. Hewawasam, E. S. Douglas, S. Chakrabarti, T. A. Cook, I. Paynter, E. J. Saenz, and M. Schaefer, “Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar,” Sensors (Basel) 16(3), 313 (2016).
[Crossref] [PubMed]

Suomalainen, J.

Tan, K.

K. Tan and X. Cheng, “Correction of incidence angle and distance effects on TLS intensity data based on reference targets,” Remote Sens. 8(3), 251 (2016).
[Crossref]

K. Tan, X. Cheng, X. Ding, and Q. Zhang, “Intensity data correction for the distance effect in terrestrial laser scanners,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9(1), 304–312 (2016).
[Crossref]

K. Tan and X. Cheng, “Surface reflectance retrieval from the intensity data of a terrestrial laser scanner,” J. Opt. Soc. Am. A 33(4), 771–778 (2016).
[Crossref] [PubMed]

K. Tan and X. Cheng, “Intensity data correction based on incidence angle and distance for terrestrial laser scanner,” J. Photogram. Rem. Sens. 9, 094094 (2015).

Thai, B.

Torrance, K. E.

Wagner, W.

W. Wagner, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65(6), 505–513 (2010).
[Crossref]

Y. Wang, J. Zhang, A. Roncat, C. Künzer, and W. Wagner, “Regularizing method for the determination of the backscatter cross section in lidar data,” J. Opt. Soc. Am. A 26(5), 1071–1079 (2009).
[Crossref] [PubMed]

Wang, C.

Wang, Y.

Westin, S. H.

Weyermann, J.

P. C. Joerg, J. Weyermann, F. Morsdorf, M. Zemp, and M. E. Schaepman, “Computation of a distributed glacier surface albedo proxy using airborne laser scanning intensity data and in-situ spectro-radiometric measurements,” Remote Sens. Environ. 160, 31–42 (2015).
[Crossref]

Wilson, N.

A. G. Kashani, M. J. Olsen, C. E. Parrish, and N. Wilson, “A review of LIDAR radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration,” Sensors (Basel) 15(11), 28099–28128 (2015).
[Crossref] [PubMed]

Xi, X.

Xu, L.

Yamaoka, N.

Zemp, M.

P. C. Joerg, J. Weyermann, F. Morsdorf, M. Zemp, and M. E. Schaepman, “Computation of a distributed glacier surface albedo proxy using airborne laser scanning intensity data and in-situ spectro-radiometric measurements,” Remote Sens. Environ. 160, 31–42 (2015).
[Crossref]

Zhang, J.

Zhang, Q.

K. Tan, X. Cheng, X. Ding, and Q. Zhang, “Intensity data correction for the distance effect in terrestrial laser scanners,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9(1), 304–312 (2016).
[Crossref]

Zhang, W. J.

Appl. Opt. (6)

IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. (1)

K. Tan, X. Cheng, X. Ding, and Q. Zhang, “Intensity data correction for the distance effect in terrestrial laser scanners,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9(1), 304–312 (2016).
[Crossref]

Int. J. Comput. Vis. (1)

M. Oren and S. K. Nayar, “Generalization of the Lambertian model and implications for machine vision,” Int. J. Comput. Vis. 14(3), 227–251 (1995).
[Crossref]

Int. J. Remote Sens. (1)

F. Coren and P. Sterzai, “Radiometric correction in laser scanning,” Int. J. Remote Sens. 27(15), 3097–3104 (2006).
[Crossref]

ISPRS J. Photogramm. Remote Sens. (3)

W. Wagner, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65(6), 505–513 (2010).
[Crossref]

D. Carrea, A. Abellan, F. Humair, B. Matasci, M. H. Derron, and M. Jaboyedoff, “Correction of terrestrial LiDAR intensity channel using Oren–Nayar reflectance model: An application to lithological differentiation,” ISPRS J. Photogramm. Remote Sens. 113, 17–29 (2016).
[Crossref]

B. Höfle and N. Pfeifer, “Correction of laser scanning intensity data: Data and model-driven approaches,” ISPRS J. Photogramm. Remote Sens. 62(6), 415–433 (2007).
[Crossref]

J. Opt. Soc. Am. A (7)

J. Photogram. Rem. Sens. (1)

K. Tan and X. Cheng, “Intensity data correction based on incidence angle and distance for terrestrial laser scanner,” J. Photogram. Rem. Sens. 9, 094094 (2015).

Opt. Eng. (1)

X. Li, L. Ma, and L. Xu, “Empirical modeling for non-Lambertian reflectance based on full-waveform laser detection,” Opt. Eng. 52(11), 116110 (2013).
[Crossref]

Opt. Express (4)

Remote Sens. (2)

S. Kaasalainen, A. Jaakkola, M. Kaasalainen, A. Krooks, and A. Kukko, “Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods,” Remote Sens. 3(12), 2207–2221 (2011).
[Crossref]

K. Tan and X. Cheng, “Correction of incidence angle and distance effects on TLS intensity data based on reference targets,” Remote Sens. 8(3), 251 (2016).
[Crossref]

Remote Sens. Environ. (1)

P. C. Joerg, J. Weyermann, F. Morsdorf, M. Zemp, and M. E. Schaepman, “Computation of a distributed glacier surface albedo proxy using airborne laser scanning intensity data and in-situ spectro-radiometric measurements,” Remote Sens. Environ. 160, 31–42 (2015).
[Crossref]

Sensors (Basel) (2)

A. G. Kashani, M. J. Olsen, C. E. Parrish, and N. Wilson, “A review of LIDAR radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration,” Sensors (Basel) 15(11), 28099–28128 (2015).
[Crossref] [PubMed]

Z. Li, D. L. Jupp, A. H. Strahler, C. B. Schaaf, G. Howe, K. Hewawasam, E. S. Douglas, S. Chakrabarti, T. A. Cook, I. Paynter, E. J. Saenz, and M. Schaefer, “Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar,” Sensors (Basel) 16(3), 313 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Two different reflection models.
Fig. 2
Fig. 2 Curves of the Oren-Nayar model with different values of σ slope .
Fig. 3
Fig. 3 Calculation of incidence angle and distance.
Fig. 4
Fig. 4 Original intensity with respect to distance for the four reference targets (θ = 0°).
Fig. 5
Fig. 5 Original intensity image. (a) White lime wall. (b) Building facade with gray bricks. (c) Cement road. (d) Metro tunnel. (e) Dry soil pit. (f) Camphor tree branches.
Fig. 6
Fig. 6 Original intensity values of the sampled regions of the six surfaces. The horizontal axis is the region identification (ID) of these sampled regions.
Fig. 7
Fig. 7 (a) Distances of the sampled regions of the six surfaces. (b) Cosine of the incidence angles of the sampled regions of the six surfaces. The horizontal axis is the region identification (ID) of these sampled regions.
Fig. 8
Fig. 8 Incidence angle corrected intensity values of the sampled regions with different values of σ slope from 0° to 90° in steps of 1°. (a) White lime wall. (b) Building facade with gray bricks. (c) Cement road. (d) Metro tunnel. (e) Dry soil pit. (f) Camphor tree branches.
Fig. 9
Fig. 9 Optimal values of σ slope of the other four surfaces were used to correct the incidence angle effect of the cement road and the metro tunnel. (a) Cement road (62°). (b) Metro tunnel (58°).
Fig. 10
Fig. 10 Interpolated intensities of the four reference targets at the same distances as the sampled regions and incidence angle corrected intensities ( θ s = 0°) of the six surfaces. (a) Wall. (b) Building. (c) Road. (d) Tunnel. (e) Soil. (f) Branch.
Fig. 11
Fig. 11 Relationship between the corrected intensities and the reflectance values of the 20%, 40%, and 60% targets. The 80% target is used as a reference and the corrected intensity value of the 80% target was set as 1.
Fig. 12
Fig. 12 Retrieved reflectance values of the sampled regions of the six surfaces. (a) The 80% target is used as a reference. (b) The 60% target is used as a reference. (c) The 40% target is used as a reference. (d) The 20% target is used as a reference.
Fig. 13
Fig. 13 Final retrieved reflectance values of the sampled regions of the six surfaces by the proposed method.

Tables (2)

Tables Icon

Table 1 Optimal Values of σ slope for the Six Surfaces

Tables Icon

Table 2 Retrieved Reflectance Values of the Six Surfaces by Using Different Reference Targets

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

P r = P t D r 2 4π R 4 β t 2 σ η sys η atm
σ= 4π Ω ρ A s
P r = P t D r 2 ρcosθ 4 R 2 η sys η atm
ρ= 4 P r R 2 P t D r 2 cosθ η sys η atm
P r =Cρcosθ R 2
I P r ρcosθ R 2
I= f 1 ( ρ ) f 2 ( cosθ ) f 3 ( R )
I c = f 1 ( ρ ) f 2 ( cos θ s ) f 3 ( R s )=I f 2 ( cos θ s ) f 2 ( cosθ ) f 3 ( R s ) f 3 ( R ) = I a f 3 ( R s ) f 3 ( R ) = I d f 2 ( cos θ s ) f 2 ( cosθ )
{ I a =I f 2 ( cos θ s ) f 2 ( cosθ ) I d =I f 3 ( R s ) f 3 ( R )
L out = L in cosθ( A+Bsinθtanθ )
{ A=10.5 σ slope 2 σ slope 2 +0.33 B=0.45 σ slope 2 σ slope 2 +0.09
f 2 ( cosθ )=cosθ( A+Bsinθtanθ )
M= R 0 < R 1 << R n =N
R i < R y << R i+1 ,i=0,1,,n1
I( ρ r ,cos θ d , R y )= I( ρ r ,cos θ d , R i+1 )I( ρ r ,cos θ d , R i ) R i+1 R i ( R y R i )+I( ρ r ,cos θ d , R i )
{ I( ρ r ,cos θ d , R y )= f 1 ( ρ r ) f 2 ( cos θ d ) f 3 ( R y ) I( ρ r ,cos θ d , R s )= f 1 ( ρ r ) f 2 ( cos θ d ) f 3 ( R s )
f 3 ( R s ) f 3 ( R y ) = I( ρ r ,cos θ d , R s ) I( ρ r ,cos θ d , R y )
I c =I f 2 ( cos θ s ) f 2 ( cos θ y ) f 3 ( R s ) f 3 ( R y ) =I cos θ s ( A+Bsin θ s tan θ s ) cos θ y ( A+Bsin θ y tan θ y ) I( ρ r ,cos θ d , R s ) I( ρ r ,cos θ d , R y )
I a =I f 2 ( cos θ d ) f 2 ( cos θ y ) =I( ρ y ,cos θ d , R y )= f 1 ( ρ y ) f 2 ( cos θ d ) f 3 ( R y )
f 1 ( ρ y )= f 1 ( ρ r ) I( ρ z ,cos θ d , R y ) I( ρ r ,cos θ d , R y ) = f 1 ( ρ r )I[ cos θ d ( A+Bsin θ d tan θ d ) ] I( ρ r ,cos θ d , R y )[ cos θ y ( A+Bsin θ y tan θ y ) ]
f( σ slope )= i=1 m | I c 0 π/2 ( ρ x ,cos θ i , R i ) I d ( ρ x ,cos θ j , R j ) | m
ρ y =( ρ r + ρ off ) I( ρ y ,cos θ d , R y ) I( ρ r ,cos θ d , R y ) ρ off

Metrics