Abstract

We systematically study different approaches to introduce high birefringence and high polarization extinction ratio in hollow core antiresonant fibers. Having shown the ineffectiveness of elliptical cores to induce large birefringence in hollow core fibers, we focus on designing and optimizing polarization maintaining Hollow Core Nested Antiresonant Nodeless Fibers (HC-NANF). In a first approach, we create and exploit anti-crossings with glass modes at different wavelengths for the two polarizations. We show that suitable low loss high birefringence regions can be obtained by appropriately modifying the thickness of tubes along one direction while leaving the tubes in the orthogonal direction unchanged and in antiresonance. Using this concept, we propose a new birefringent NANF design providing low loss (~40dB/km) and high birefringence (>10−4) over a record bandwidth of ~550nm, and discuss how bandwidth can be traded off to further reduce the loss to a few dB/km. Finally, we propose a polarization mode-stripping technique in the birefringent NANF. As a demonstration, we propose a polarizing birefringent NANF design that can achieve orthogonal polarization loss ratios as large as 30dB over the C-band while eliminating any undesirable polarization coupling effect thereby resulting in a single polarization output in a hollow core fiber regardless of the input polarization state.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nested antiresonant nodeless hollow core fiber

Francesco Poletti
Opt. Express 22(20) 23807-23828 (2014)

Dual-core antiresonant hollow core fibers

Xuesong Liu, Zhongwei Fan, Zhaohui Shi, Yunfeng Ma, Jin Yu, and Jing Zhang
Opt. Express 24(15) 17453-17458 (2016)

Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers

Wei Ding and Ying-Ying Wang
Opt. Express 23(16) 21165-21174 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Terrel, M. J. F. Digonnet, and S. Fan, “Resonant fiber optic gyroscope using an air-core fiber,” J. Lightwave Technol. 30(7), 931–937 (2012).
    [Crossref]
  2. G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. S. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
    [Crossref] [PubMed]
  3. A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81(5), 053825 (2010).
    [Crossref]
  4. X. Peng and L. Dong, “Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 µm2,” Opt. Lett. 32(4), 358–360 (2007).
    [Crossref] [PubMed]
  5. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett. 17(15), 530–531 (1981).
    [Crossref]
  6. R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarisation-maintaining fibres using gas-phase etching,” Electron. Lett. 18(24), 1036–1038 (1982).
    [Crossref]
  7. R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
    [Crossref]
  8. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref] [PubMed]
  9. P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
    [Crossref]
  10. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
    [Crossref]
  11. O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009).
    [Crossref]
  12. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
    [Crossref] [PubMed]
  13. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  14. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13 (1986).
    [Crossref]
  15. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  16. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  17. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB4.
    [Crossref]
  18. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315 (2013).
    [Crossref]
  19. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [Crossref] [PubMed]
  20. J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
    [Crossref] [PubMed]
  21. A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber - guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(16), 19131–19140 (2014).
    [Crossref] [PubMed]
  22. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref] [PubMed]
  23. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
    [Crossref] [PubMed]
  24. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
    [Crossref] [PubMed]
  25. W. Belardi, “Design and properties of hollow antiresonant fibers for the visible and near infrared spectral range,” J. Lightwave Technol. 33(21), 4497–4503 (2015).
    [Crossref]
  26. A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
    [Crossref]
  27. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
    [Crossref] [PubMed]
  28. B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
    [Crossref] [PubMed]
  29. F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gèrôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression,” Opt. Lett. 39(24), 6843–6846 (2014).
    [Crossref] [PubMed]
  30. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
    [Crossref] [PubMed]
  31. J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
    [Crossref] [PubMed]
  32. S. A. Mousavi, D. J. Richardson, S. R. Sandoghchi, and F. Poletti, “First design of high birefringence and polarising hollow core anti-resonant fibre,” in 2015 European Conference on Optical Communication (ECOC) (2015), pp. 1–3.
    [Crossref]
  33. W. Ding and Y.-Y. Wang, “Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers,” Opt. Express 23(16), 21165–21174 (2015).
    [Crossref] [PubMed]
  34. P. J. Roberts, “Birefringent hollow core fibers,” Proc. SPIE 6782, 67821R (2007).
    [Crossref]
  35. F. Poletti, N. G. R. Broderick, D. Richardson, and T. Monro, “The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers,” Opt. Express 13(22), 9115–9124 (2005).
    [Crossref] [PubMed]
  36. X.-L. Tang, B.-S. Sun, and Y.-W. Shi, “Design and optimization of low-loss high-birefringence hollow fiber at terahertz frequency,” Opt. Express 19(25), 24967–24979 (2011).
    [Crossref] [PubMed]
  37. P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14(16), 7329–7341 (2006).
    [Crossref] [PubMed]
  38. J. Hayes, S. Sandoghchi, T. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. Wheeler, G. Jasion, Y. Chen, E. Numkam-Fokoua, M. Petrovich, D. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), p. Th5A.3.
  39. C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23(12), 15824–15832 (2015).
    [Crossref] [PubMed]
  40. M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
    [Crossref] [PubMed]
  41. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
    [Crossref] [PubMed]
  42. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]

2016 (2)

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (9)

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
[Crossref] [PubMed]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
[Crossref] [PubMed]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber - guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(16), 19131–19140 (2014).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gèrôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression,” Opt. Lett. 39(24), 6843–6846 (2014).
[Crossref] [PubMed]

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. S. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (4)

2010 (2)

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[Crossref] [PubMed]

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81(5), 053825 (2010).
[Crossref]

2009 (1)

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009).
[Crossref]

2007 (3)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

P. J. Roberts, “Birefringent hollow core fibers,” Proc. SPIE 6782, 67821R (2007).
[Crossref]

X. Peng and L. Dong, “Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 µm2,” Opt. Lett. 32(4), 358–360 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (2)

2002 (1)

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13 (1986).
[Crossref]

1982 (1)

R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarisation-maintaining fibres using gas-phase etching,” Electron. Lett. 18(24), 1036–1038 (1982).
[Crossref]

1981 (1)

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[Crossref]

1979 (1)

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[Crossref]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Abdolvand, A.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Abeeluck, A. K.

Abokhamis, M. S.

Alagashev, G. K.

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

Alharbi, M.

Alkeskjold, T. T.

Baddela, N. K.

Baer, C. R. E.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009).
[Crossref]

Bang, O.

Belardi, W.

Benabid, F.

F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gèrôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression,” Opt. Lett. 39(24), 6843–6846 (2014).
[Crossref] [PubMed]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
[Crossref] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref] [PubMed]

Bhagwat, A. R.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81(5), 053825 (2010).
[Crossref]

Bierlich, J.

Birch, R. D.

R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarisation-maintaining fibres using gas-phase etching,” Electron. Lett. 18(24), 1036–1038 (1982).
[Crossref]

Bird, D. M.

Biriukov, A. S.

Birks, T. A.

Biryukov, A. S.

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

Broderick, N. G. R.

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Bufetov, I. A.

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

Chang, W.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Chenard, F.

Couny, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

Cozens, J. R.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[Crossref]

Debord, B.

DeSantolo, A.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Dianov, E. M.

Diebold, A.

Digonnet, M. J. F.

DiMarcello, F. V.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Ding, W.

Dong, L.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13 (1986).
[Crossref]

Dyott, R. B.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[Crossref]

Edahiro, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[Crossref]

Eggleton, B. J.

Emaury, F.

Epple, G.

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. S. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

Euser, T. G.

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. S. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

Fan, S.

Farr, L.

Fini, J. M.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Fourcade-Dutin, C.

Frosch, T.

Gaeta, A. L.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81(5), 053825 (2010).
[Crossref]

Gérôme, F.

Gèrôme, F.

Ghosh, D.

Hartung, A.

Hayes, J. R.

Headley, C.

Heckl, O. H.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009).
[Crossref]

Hoenninger, C.

Holler, M.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009).
[Crossref]

Hölzer, P.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Hosaka, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[Crossref]

Hu, J.

Husakou, A.

Jakobsen, C.

Joly, N. Y.

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. S. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

Keller, U.

F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gèrôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression,” Opt. Lett. 39(24), 6843–6846 (2014).
[Crossref] [PubMed]

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009).
[Crossref]

Kleinbach, K. S.

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. S. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

Knight, J. C.

Kobelke, J.

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13 (1986).
[Crossref]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13 (1986).
[Crossref]

Kolyadin, A. N.

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

Kosolapov, A. F.

Kränkel, C.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009).
[Crossref]

Kuis, R. A.

Lægsgaard, J.

Light, P.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009).
[Crossref]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref] [PubMed]

Litchinitser, N. M.

Londero, P.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81(5), 053825 (2010).
[Crossref]

Löw, R.

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. S. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

Lyngsø, J. K.

Mangan, B.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Mangan, B. J.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Marchese, S. V.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009).
[Crossref]

Mason, M. W.

Meng, L.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Menyuk, C. R.

Michieletto, M.

Miya, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[Crossref]

Monberg, E. M.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Monro, T.

Morris, D. G.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[Crossref]

Mottay, E.

Mousavi, S. A.

S. A. Mousavi, D. J. Richardson, S. R. Sandoghchi, and F. Poletti, “First design of high birefringence and polarising hollow core anti-resonant fibre,” in 2015 European Conference on Optical Communication (ECOC) (2015), pp. 1–3.
[Crossref]

Mukasa, K.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Nicholson, J. W.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Okamoto, K.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[Crossref]

Payne, D. N.

R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarisation-maintaining fibres using gas-phase etching,” Electron. Lett. 18(24), 1036–1038 (1982).
[Crossref]

Peng, X.

Petrovich, M. N.

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315 (2013).
[Crossref]

Pfau, T.

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. S. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13 (1986).
[Crossref]

Plotnichenko, V. G.

Poletti, F.

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315 (2013).
[Crossref]

F. Poletti, N. G. R. Broderick, D. Richardson, and T. Monro, “The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers,” Opt. Express 13(22), 9115–9124 (2005).
[Crossref] [PubMed]

S. A. Mousavi, D. J. Richardson, S. R. Sandoghchi, and F. Poletti, “First design of high birefringence and polarising hollow core anti-resonant fibre,” in 2015 European Conference on Optical Communication (ECOC) (2015), pp. 1–3.
[Crossref]

Popp, J.

Pryamikov, A. D.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Richardson, D.

Richardson, D. J.

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315 (2013).
[Crossref]

S. A. Mousavi, D. J. Richardson, S. R. Sandoghchi, and F. Poletti, “First design of high birefringence and polarising hollow core anti-resonant fibre,” in 2015 European Conference on Optical Communication (ECOC) (2015), pp. 1–3.
[Crossref]

Roberts, P. J.

Robinson, J. S.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009).
[Crossref]

Russell, P. S. J.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. S. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14(16), 7329–7341 (2006).
[Crossref] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Sabert, H.

Sandoghchi, S. R.

S. A. Mousavi, D. J. Richardson, S. R. Sandoghchi, and F. Poletti, “First design of high birefringence and polarising hollow core anti-resonant fibre,” in 2015 European Conference on Optical Communication (ECOC) (2015), pp. 1–3.
[Crossref]

Saraceno, C. J.

Sasaki, Y.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[Crossref]

Schapper, F.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009).
[Crossref]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Schmidt, M. A.

Schwuchow, A.

Semjonov, S. L.

Setti, V.

Shi, Y.-W.

Slepkov, A. D.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81(5), 053825 (2010).
[Crossref]

St. J. Russell, P.

Südmeyer, T.

F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gèrôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression,” Opt. Lett. 39(24), 6843–6846 (2014).
[Crossref] [PubMed]

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009).
[Crossref]

Sun, B.-S.

Tang, X.-L.

Terrel, M. A.

Tisch, J. W. G.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009).
[Crossref]

Tomlinson, A.

Travers, J. C.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Varnham, M. P.

R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarisation-maintaining fibres using gas-phase etching,” Electron. Lett. 18(24), 1036–1038 (1982).
[Crossref]

Venkataraman, V.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81(5), 053825 (2010).
[Crossref]

Vincetti, L.

Wang, Y. Y.

Wang, Y.-Y.

Wei, C.

Wheeler, N. V.

Williams, D. P.

Windeler, R. S.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Wondraczek, K.

Appl. Phys. B (1)

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009).
[Crossref]

Appl. Phys. Lett. (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13 (1986).
[Crossref]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Electron. Lett. (3)

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[Crossref]

R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarisation-maintaining fibres using gas-phase etching,” Electron. Lett. 18(24), 1036–1038 (1982).
[Crossref]

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[Crossref]

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

Nanophotonics (1)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315 (2013).
[Crossref]

Nat. Commun. (2)

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. S. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nat. Commun. 5, 4132 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Opt. Express (15)

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
[Crossref] [PubMed]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
[Crossref] [PubMed]

F. Poletti, N. G. R. Broderick, D. Richardson, and T. Monro, “The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers,” Opt. Express 13(22), 9115–9124 (2005).
[Crossref] [PubMed]

X.-L. Tang, B.-S. Sun, and Y.-W. Shi, “Design and optimization of low-loss high-birefringence hollow fiber at terahertz frequency,” Opt. Express 19(25), 24967–24979 (2011).
[Crossref] [PubMed]

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14(16), 7329–7341 (2006).
[Crossref] [PubMed]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber - guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(16), 19131–19140 (2014).
[Crossref] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

W. Ding and Y.-Y. Wang, “Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers,” Opt. Express 23(16), 21165–21174 (2015).
[Crossref] [PubMed]

C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23(12), 15824–15832 (2015).
[Crossref] [PubMed]

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
[Crossref] [PubMed]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Rev. A (1)

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81(5), 053825 (2010).
[Crossref]

Proc. SPIE (1)

P. J. Roberts, “Birefringent hollow core fibers,” Proc. SPIE 6782, 67821R (2007).
[Crossref]

Quantum Electron. (1)

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

Science (2)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Other (3)

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB4.
[Crossref]

S. A. Mousavi, D. J. Richardson, S. R. Sandoghchi, and F. Poletti, “First design of high birefringence and polarising hollow core anti-resonant fibre,” in 2015 European Conference on Optical Communication (ECOC) (2015), pp. 1–3.
[Crossref]

J. Hayes, S. Sandoghchi, T. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. Wheeler, G. Jasion, Y. Chen, E. Numkam-Fokoua, M. Petrovich, D. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers (Optical Society of America, 2016), p. Th5A.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The characteristic profile of a single tube for different minor axis (a = 10µm, 15µm, 20µm) vs major axis b with ts = 1.172µm at λ0 = 1.55µm. (a) Birefringence of the fibers for different ellipticity, (b) tube structure (top) and NANF structure (bottom), (c) loss profile of fibers for horizontal and vertical polarization for different ellipticity. Properties of elliptical core NANF for a = 10µm, 15µm at optimum ellipticity are provided for comparison.
Fig. 2
Fig. 2 (a) 6 tube NANF design, (b) alternative NANF with elliptical core designs studied in this work, which we found to be unable to provide birefringence >10−5.
Fig. 3
Fig. 3 Birefringence (Nv-Nh) of 3-tube to 8-tube ANF design at λ0 = 1.55µm alongside their structures with same core size (R = 7µm) and bi-thickness cladding tubes (thin tubes (blue) = 0.372µm and thick tubes (orange) = 0.633µm). The 4-tube structure shows maximum birefringence, and the structures with odd number of tubes show lower birefringence due to lack of 2-fold symmetry.
Fig. 4
Fig. 4 (a) Bi-thickness NANF and its design parameters, (b) simulated optical performance of a uniform NANF with t1 = t2 = 0.6µm, R = 7µm, d = 1.5µm and z = 0.65R.
Fig. 5
Fig. 5 Optical properties of the NANF in Fig. 4(a) (t1 = 0.6µm, R = 7µm, d = 1.5µm, z = 0.65R) at λ0 = 1.55µm as t2 / t1 varies between 1 and 4: (a) polarization mode loss, (b) birefringence.
Fig. 6
Fig. 6 Simulated loss and birefringence profile of a bi-thickness 4 tube NANF with t1 = 0.6µm, R = 7µm, d = 1.5µm and t2 = 0.6, 0.66, 1.05, 1.42 and 1.8µm ((a) to (e) respectively). The red dashed line in the loss profile shows 1 dB/m and the red dashed lines in the birefringence profile indicates a beat length equal to 15.5 mm (roughly the birefringence of a conventional solid-core PM fiber). The green arrows show the defined practical operating window with loss lower than 1 dB/m and beat length larger than 15.5 mm.
Fig. 7
Fig. 7 Proposed modified bi-thickness NANF: (a) structure; (b) birefringence and (c) loss of the proposed NANF with the same parameters as in Fig. 6(c), (d) loss of standard bi-thickness NANF (duplication of Fig. 6(c) for comparison). Anti-resonant field confinement by inner tubes of thickness t1 provides a significant improvement in the loss of the first anti-resonance region.
Fig. 8
Fig. 8 (a) Loss and (b) birefringence of the optimized new proposed design for λ0 = 1.55µm with R = 7µm, Z = 0.65R, d = 1.5µm, t1 = 0.372µm and t2 = 0.633µm. The fiber shows a very broad bandwidth (~550nm) PMB = ~1.5 × 10−4 with a loss <1dB/m.
Fig. 9
Fig. 9 3-dB contour plots of the normalized power of the fundamental mode with (a) horizontal and (b) vertical polarizations (red arrows indicate the direction of the electric field) at λ0 = 1.55µm for the optimum proposed design. (c) Cross-sectional profile of the normalized power in each polarization direction. A larger field penetration through the outer horizontal tubes (t2) than the vertical ones (t1) is clear while the horizontal inner tubes (t1) play a critical rule in confining the field and reducing the loss.
Fig. 10
Fig. 10 (a) Loss and (b) birefringence of the optimized new proposed design with thicker tubes at λ0 = 1.55µm with R = 7µm, Z = 0.65R, d = 1.5µm, t1 = t22 = 1.172µm and t2 = 1.42µm. The fiber shows a large bandwidth (~300nm) PMB = ~1.45 × 10−4 with a loss < 1dB/m.
Fig. 11
Fig. 11 (a) The proposed structure for polarizing NANF (P-NANF) and its (b) low loss polarization (horizontal), and its (c) high loss polarization (vertical). The coupled field to the cladding tubes in the vertical polarization increases the loss significantly.
Fig. 12
Fig. 12 (a) PMB, (b) loss and (c) PLR (High-loss/Low-loss) of the optimized P-NANF at λ0 = 1.55µm with R = 7µm, Z = 0.65R, Z1 = 1.74R, d = 1.5µm, t1 = 1.172µm and t2 = 1.42µm. The fiber has a bandwidth of ~100nm with PMB~1.5 × 10−4 and loss of the low-loss polarization <1dB/m. The PLR at λ0 = 1.55µm is 1000 which gives the fiber a strong polarizing property.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

c.(m1) 2 t 1 n 2 2 n 1 2 <f< c.m 2 t 1 n 2 2 n 1 2 ,m=1,2,....
z π 2 u 0 R0.65R.
N eff = 1 ( u 0 R. K 0 ) 2 .

Metrics