Abstract

We present a far-field imaging system with a one-dimensional form factor based on coupling light into the side of an optical fiber. The point spread function of this threadlike camera is determined analytically and confirmed experimentally. Because the system is one-dimensional, high resolution is available in one spatial dimension. An imaging device is demonstrated with an angular resolution of 100 micro-radians. Diffraction-limited imaging is achieved for aperture lengths as large as 1 cm. An image is formed from a light field produced by a Dammann grating illuminated by a laser.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
One-dimensional Fibonacci grating for far-field super-resolution imaging

Kedi Wu and Guo Ping Wang
Opt. Lett. 38(12) 2032-2034 (2013)

Interscale mixing microscopy: far-field imaging beyond the diffraction limit

Christopher M. Roberts, Nicolas Olivier, William P. Wardley, Sandeep Inampudi, Wayne Dickson, Anatoly V. Zayats, and Viktor A. Podolskiy
Optica 3(8) 803-808 (2016)

Superresolution in far-field imaging

I. Leizerson, S. G. Lipson, and V. Sarafis
J. Opt. Soc. Am. A 19(3) 436-443 (2002)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Fourier Optics (Roberts and Company, 2005).
  2. J. C. Brazas and L. Li, “Analysis of input-grating couplers having finite lengths,” Appl. Opt. 34, 3786 (1995).
    [Crossref] [PubMed]
  3. E. J. Tremblay, R. A. Stack, R. L. Morrison, and J. E. Ford, “Ultrathin cameras using annular folded optics,” Appl. Opt. 46, 463 (2007).
    [Crossref] [PubMed]
  4. J. Burch, Y. Wan, J. Zhang, T. Smith, and J. Leger, “Imaging skins: an imaging modality with ultra-thin form factor,” Opt. Lett. 37, 2856 (2012).
    [Crossref] [PubMed]
  5. T. Cizmar and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1 (2012).
    [Crossref]
  6. B. Heshmat, I. H. Lee, and R. Raskar, “Optical brush: Imaging through permuted probes,” Sci. Rep. 6, 1 (2015).
  7. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheterâĂŞendoscope for optical coherence tomography,” Opt. Lett. 21, 543 (1996).
    [Crossref] [PubMed]
  8. M. Gu, H. Kang, and X. Li, “Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam,” Sci. Rep. 4, 1 (2014).
    [Crossref]
  9. Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic enomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express 17, 7907 (2009).
    [Crossref] [PubMed]
  10. J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted Fiber Bragg Gratings Sensors,” Laser Photon. Rev. 7, 83 (2013).
    [Crossref]
  11. Y. Li, M. Froggatt, and T. Erdogan, “Volume Current Method for Analysis of Tilted Fiber Gratings,” J. Lightwave Technol. 19, 1580 (2001).
    [Crossref]
  12. T. Erdogan and J. E. Sipe, “Radiation-mode coupling loss in tilted fiber phase gratings,” Opt. Lett. 20, 1838 (1995).
    [Crossref] [PubMed]
  13. Y. Li and T. G. Brown, “Radiation modes and tilted fiber gratings,” J. Opt. Soc. Am. B 23, 1544 (2006).
    [Crossref]
  14. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235 (1977).
    [Crossref]

2015 (1)

B. Heshmat, I. H. Lee, and R. Raskar, “Optical brush: Imaging through permuted probes,” Sci. Rep. 6, 1 (2015).

2014 (1)

M. Gu, H. Kang, and X. Li, “Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam,” Sci. Rep. 4, 1 (2014).
[Crossref]

2013 (1)

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted Fiber Bragg Gratings Sensors,” Laser Photon. Rev. 7, 83 (2013).
[Crossref]

2012 (2)

T. Cizmar and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1 (2012).
[Crossref]

J. Burch, Y. Wan, J. Zhang, T. Smith, and J. Leger, “Imaging skins: an imaging modality with ultra-thin form factor,” Opt. Lett. 37, 2856 (2012).
[Crossref] [PubMed]

2009 (1)

2007 (1)

2006 (1)

2001 (1)

1996 (1)

1995 (2)

1977 (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235 (1977).
[Crossref]

Albert, J.

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted Fiber Bragg Gratings Sensors,” Laser Photon. Rev. 7, 83 (2013).
[Crossref]

Boppart, S. A.

Bouma, B. E.

Brazas, J. C.

Brezinski, M. E.

Brown, T. G.

Burch, J.

Caucheteur, C.

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted Fiber Bragg Gratings Sensors,” Laser Photon. Rev. 7, 83 (2013).
[Crossref]

Cizmar, T.

T. Cizmar and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1 (2012).
[Crossref]

Dholakia, K.

T. Cizmar and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1 (2012).
[Crossref]

Erdogan, T.

Ford, J. E.

Froggatt, M.

Fujimoto, J. G.

Goodman, J. W.

J. W. Goodman, Fourier Optics (Roberts and Company, 2005).

Gu, M.

M. Gu, H. Kang, and X. Li, “Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam,” Sci. Rep. 4, 1 (2014).
[Crossref]

Heshmat, B.

B. Heshmat, I. H. Lee, and R. Raskar, “Optical brush: Imaging through permuted probes,” Sci. Rep. 6, 1 (2015).

Kang, H.

M. Gu, H. Kang, and X. Li, “Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam,” Sci. Rep. 4, 1 (2014).
[Crossref]

Lee, I. H.

B. Heshmat, I. H. Lee, and R. Raskar, “Optical brush: Imaging through permuted probes,” Sci. Rep. 6, 1 (2015).

Leger, J.

Leng, Y.

Li, L.

Li, X.

M. Gu, H. Kang, and X. Li, “Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam,” Sci. Rep. 4, 1 (2014).
[Crossref]

Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic enomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express 17, 7907 (2009).
[Crossref] [PubMed]

Li, Y.

Morrison, R. L.

Peng, S. T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235 (1977).
[Crossref]

Raskar, R.

B. Heshmat, I. H. Lee, and R. Raskar, “Optical brush: Imaging through permuted probes,” Sci. Rep. 6, 1 (2015).

Shao, L.-Y.

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted Fiber Bragg Gratings Sensors,” Laser Photon. Rev. 7, 83 (2013).
[Crossref]

Sipe, J. E.

Smith, T.

Southern, J.

Stack, R. A.

Tamir, T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235 (1977).
[Crossref]

Tearney, G. J.

Tremblay, E. J.

Wan, Y.

Weissman, N. J.

Wu, Y.

Xi, J.

Zhang, J.

Appl. Opt. (2)

Appl. Phys. (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235 (1977).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted Fiber Bragg Gratings Sensors,” Laser Photon. Rev. 7, 83 (2013).
[Crossref]

Nat. Commun. (1)

T. Cizmar and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Sci. Rep. (2)

B. Heshmat, I. H. Lee, and R. Raskar, “Optical brush: Imaging through permuted probes,” Sci. Rep. 6, 1 (2015).

M. Gu, H. Kang, and X. Li, “Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam,” Sci. Rep. 4, 1 (2014).
[Crossref]

Other (1)

J. W. Goodman, Fourier Optics (Roberts and Company, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Diagram of the proposed fiber imaging system.
Fig. 2
Fig. 2 Illustration of cone exiting fiber.
Fig. 3
Fig. 3 (a) far-field pattern captured on a CCD (b) Simulated pattern based on Eqs. (4) and (5).
Fig. 4
Fig. 4 Setup for measuring the angle spread function.
Fig. 5
Fig. 5 Comparison of the measured (a) and theoretical (b) angular spread functions for varying aperture widths.
Fig. 6
Fig. 6 Far-field image of Dammann grating captured with a conventional lens (a) and imaging thread (b).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

k z = β l m 2 π Λ g cos θ g ,
k r = ( 2 π λ 0 ) 2 n 2 k z 2 ,
θ c = tan 1 ( k r k z ) .
x ( ϕ ) = R 0 2 sin 2 θ c ( cos ϕ 1 ) cos 2 θ c + cos ϕ sin 2 θ c
y ( ϕ ) = R 0 sin ϕ sin θ c cos 2 θ c + cos ϕ sin 2 θ c
R ( ϕ ) = R 0 cos 2 θ c + cos ϕ sin 2 θ c .
ψ ( ϕ ) = 2 π λ [ R ( ϕ ) R 0 ]
= 4 π R 0 λ sin 2 ( ϕ 2 ) sin 2 ( θ c ) cos ( ϕ ) sin 2 ( θ c ) + cos 2 ( θ c )
A ( z ) = A 0 exp [ z + ( L g sin θ c ) / 2 L c sin θ c ] × rect [ z L g sin θ c ] .
A ( θ x ) = 2 exp ( L g 2 L c ) sinh ( L g 2 L c + ι π L g sin θ c λ θ x ) 1 L c sin θ c + ι 2 π λ θ x

Metrics