Abstract

This work proposes a tunable reflective guided-mode resonant (GMR) filter that incorporates a 90° twisted nematic liquid crystal (TNLC). The GMR grating acts as an optical resonator that reflects strongly at the resonance wavelength and as an alignment layer for LC. The 90° TNLC functions as an achromic polarization rotator that alters the polarization of incident light. The resonance wavelength and reflectance of such a filter can be controlled by setting the angle of incidence and driving the 90° TNLC, respectively. The designed filter exhibits a very large spectral shift in resonance wavelength from 710 to 430 nm, which covers the entire visible spectrum. The transmittance can be tuned to within 10 V at various resonance wavelengths. The hybrid GMR - LC filter is compact, has a simple design, and is easy to fabricated. It can therefore be used in practical applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Full-color reflector using vertically stacked liquid crystal guided-mode resonators

Chun-Ta Wang, Ping-Chien Chang, Jia Jin Lin, Mao Chou Tai, Yung-Jr Hung, and Tsung-Hsien Lin
Appl. Opt. 56(14) 4219-4223 (2017)

Two-dimensional grating guided-mode resonance tunable filter

Wen-Kai Kuo and Che-Jung Hsu
Opt. Express 25(24) 29642-29649 (2017)

Optical notch filter with tunable bandwidth based on guided-mode resonant polarization-sensitive spectral feature

Linyong Qian, Dawei Zhang, Bo Dai, Qi Wang, Yuanshen Huang, and Songlin Zhuang
Opt. Express 23(14) 18300-18309 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. W. Dobbs and B. T. Cunningham, “Optically tunable guided-mode resonance filter,” Appl. Opt. 45(28), 7286–7293 (2006).
    [Crossref] [PubMed]
  2. Y.-T. Yoon, H.-S. Lee, S.-S. Lee, S. H. Kim, J.-D. Park, and K.-D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16(4), 2374–2380 (2008).
    [Crossref] [PubMed]
  3. S. Boonruang and W. S. Mohammed, “Multiwavelength guided mode resonance sensor array,” Appl. Phys. Express 8(9), 092004 (2015).
    [Crossref]
  4. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  5. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
    [Crossref]
  6. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
    [Crossref]
  7. G. Niederer, H. P. Herzig, J. Shamir, H. Thiele, M. Schnieper, and C. Zschokke, “Tunable, oblique incidence resonant grating filter for telecommunications,” Appl. Opt. 43(8), 1683–1694 (2004).
    [Crossref] [PubMed]
  8. L.-H. Xu, G.-G. Zheng, D.-L. Zhao, Y.-Y. Chen, and K. Cao, “Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region,” Optik (Stuttg.) 127(2), 955–958 (2016).
    [Crossref]
  9. J. H. Lin, Y. C. Huang, N. DiepLai, H.-C. Kan, and C. C. Hsu, “Optical modulation of guided mode resonance in the waveguide grating structure incorporated with azo-doped-poly(methylmethacrylate) cladding layer,” Opt. Express 20(1), 377–384 (2012).
    [Crossref] [PubMed]
  10. R. Magnusson and M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express 15(17), 10903–10910 (2007).
    [Crossref] [PubMed]
  11. M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
    [Crossref]
  12. K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
    [Crossref]
  13. I. Abdulhalim, “Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter,” Chin. Opt. Lett. 7, 667–670 (2009).
    [Crossref]
  14. A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
    [Crossref]
  15. F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
    [Crossref]
  16. L. Qian, D. Zhang, B. Dai, Y. Huang, C. Tao, R. Hong, and S. Zhuang, “Electrically driving bandwidth tunable guided-mode resonance filter based on a twisted nematic liquid crystal polarization rotator,” Opt. Lett. 40(5), 713–716 (2015).
    [Crossref] [PubMed]
  17. M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
    [Crossref]
  18. Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
    [Crossref]
  19. C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles =90 degrees,” J. Phys. D Appl. Phys. 8(13), 1575–1584 (1975).
    [Crossref]
  20. N. Konforti, E. Marom, and S. T. Wu, “Phase-only modulation with twisted nematic liquid-crystal spatial light modulators,” Opt. Lett. 13(3), 251–253 (1988).
    [Crossref] [PubMed]
  21. S. Oka, M. Kimura, and T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80(10), 1847–1849 (2002).
    [Crossref]
  22. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).
  23. S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
    [Crossref]
  24. Y.-Q. Lu, F. Du, Y.-H. Lin, and S.-T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express 12(7), 1221–1227 (2004).
    [Crossref] [PubMed]

2016 (2)

L.-H. Xu, G.-G. Zheng, D.-L. Zhao, Y.-Y. Chen, and K. Cao, “Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region,” Optik (Stuttg.) 127(2), 955–958 (2016).
[Crossref]

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

2015 (2)

2013 (1)

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

2012 (1)

2010 (1)

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

2009 (2)

I. Abdulhalim, “Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter,” Chin. Opt. Lett. 7, 667–670 (2009).
[Crossref]

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

2008 (1)

2007 (4)

R. Magnusson and M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express 15(17), 10903–10910 (2007).
[Crossref] [PubMed]

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[Crossref]

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

2006 (1)

2004 (2)

2003 (1)

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

2002 (1)

S. Oka, M. Kimura, and T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80(10), 1847–1849 (2002).
[Crossref]

1997 (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

1993 (1)

1988 (1)

1975 (1)

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles =90 degrees,” J. Phys. D Appl. Phys. 8(13), 1575–1584 (1975).
[Crossref]

Abdulhalim, I.

Akahane, T.

S. Oka, M. Kimura, and T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80(10), 1847–1849 (2002).
[Crossref]

Boonruang, S.

S. Boonruang and W. S. Mohammed, “Multiwavelength guided mode resonance sensor array,” Appl. Phys. Express 8(9), 092004 (2015).
[Crossref]

Brunner, R.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

Cao, K.

L.-H. Xu, G.-G. Zheng, D.-L. Zhao, Y.-Y. Chen, and K. Cao, “Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region,” Optik (Stuttg.) 127(2), 955–958 (2016).
[Crossref]

Chan, H. P.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Chang, A. S. P.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Chang, P.-C.

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

Chen, Y.-Y.

L.-H. Xu, G.-G. Zheng, D.-L. Zhao, Y.-Y. Chen, and K. Cao, “Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region,” Optik (Stuttg.) 127(2), 955–958 (2016).
[Crossref]

Chiang, K. S.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Chou, S. Y.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Chow, C. K.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Chu, Y. M.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Cunningham, B. T.

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[Crossref]

D. W. Dobbs and B. T. Cunningham, “Optically tunable guided-mode resonance filter,” Appl. Opt. 45(28), 7286–7293 (2006).
[Crossref] [PubMed]

Dabrowski, R.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

Dai, B.

DiepLai, N.

Dobbs, D. W.

Du, F.

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Fujii, A.

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

Gauza, S.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

Gooch, C. H.

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles =90 degrees,” J. Phys. D Appl. Phys. 8(13), 1575–1584 (1975).
[Crossref]

Gosele, U.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

Helgert, M.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

Herzig, H. P.

Heyroth, F.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

Hong, R.

Hsu, C. C.

Huang, Y.

Huang, Y. C.

Hung, Y.-J.

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

Kan, H.-C.

Kim, S. H.

Kimura, M.

S. Oka, M. Kimura, and T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80(10), 1847–1849 (2002).
[Crossref]

Knez, M.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

Konforti, N.

Kubo, H.

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

Lee, H.-S.

Lee, K.-D.

Lee, S.-S.

Lin, J. H.

Lin, J.-J.

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

Lin, Y.-H.

Lin, Y.-N.

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

Lor, K. P.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Lu, Y.-Q.

Magnusson, R.

Marom, E.

Mohammed, W. S.

S. Boonruang and W. S. Mohammed, “Multiwavelength guided mode resonance sensor array,” Appl. Phys. Express 8(9), 092004 (2015).
[Crossref]

Morton, K. J.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Murata, K.

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

Murphy, P. F.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Niederer, G.

Numata, N.

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

Ogawa, Y.

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

Ojima, M.

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

Oka, S.

S. Oka, M. Kimura, and T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80(10), 1847–1849 (2002).
[Crossref]

Ozaki, M.

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

Park, J.-D.

Piecek, W.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

Qian, L.

Rastogi, V.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Schnieper, M.

Shamir, J.

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Shokooh-Saremi, M.

Szeghalmi, A.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

Tan, H.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Tao, C.

Tarry, H. A.

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles =90 degrees,” J. Phys. D Appl. Phys. 8(13), 1575–1584 (1975).
[Crossref]

Thiele, H.

Uddin, M. J.

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

Wang, S. S.

Wu, S. T.

Wu, S.-T.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

Y.-Q. Lu, F. Du, Y.-H. Lin, and S.-T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express 12(7), 1221–1227 (2004).
[Crossref] [PubMed]

Wu, W.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Xu, L.-H.

L.-H. Xu, G.-G. Zheng, D.-L. Zhao, Y.-Y. Chen, and K. Cao, “Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region,” Optik (Stuttg.) 127(2), 955–958 (2016).
[Crossref]

Yang, F.

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[Crossref]

Yen, G.

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[Crossref]

Yoon, Y.-T.

Zhang, D.

Zhao, D.-L.

L.-H. Xu, G.-G. Zheng, D.-L. Zhao, Y.-Y. Chen, and K. Cao, “Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region,” Optik (Stuttg.) 127(2), 955–958 (2016).
[Crossref]

Zheng, G.-G.

L.-H. Xu, G.-G. Zheng, D.-L. Zhao, Y.-Y. Chen, and K. Cao, “Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region,” Optik (Stuttg.) 127(2), 955–958 (2016).
[Crossref]

Zhu, X.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

Zhuang, S.

Zschokke, C.

Adv. Funct. Mater. (1)

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Express (2)

S. Boonruang and W. S. Mohammed, “Multiwavelength guided mode resonance sensor array,” Appl. Phys. Express 8(9), 092004 (2015).
[Crossref]

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

Appl. Phys. Lett. (2)

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[Crossref]

S. Oka, M. Kimura, and T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80(10), 1847–1849 (2002).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

J. Disp. Technol. (1)

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

J. Phys. D Appl. Phys. (1)

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles =90 degrees,” J. Phys. D Appl. Phys. 8(13), 1575–1584 (1975).
[Crossref]

J. Vac. Sci. Technol. B (1)

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optik (Stuttg.) (1)

L.-H. Xu, G.-G. Zheng, D.-L. Zhao, Y.-Y. Chen, and K. Cao, “Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region,” Optik (Stuttg.) 127(2), 955–958 (2016).
[Crossref]

Other (1)

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Cross-section of designed filter; SEM images of SWG structure after (b) photoresist development and (c) Ta2O5 deposition
Fig. 2
Fig. 2 Operation of proposed filter with 90° TNLC cladding in (a) Voff and (b) Von states.
Fig. 3
Fig. 3 POM images of proposed filter in T-mode under (a) parallel and (b) crossed polarizers. (c) V-T curves of 90° TNLC in proposed filter at various oblique angles of incidence.
Fig. 4
Fig. 4 (a) Dependence of experimental and simulated resonance wavelengths of proposed filter on angle of incidence. (b) Reflection spectra of proposed filter at angles of incidence of 3, 9, 16, 26, 34°.
Fig. 5
Fig. 5 Transmission spectra of proposed filter for angles of incidence of (a) 0, (b) 9, (c) 26, and (d) 45 degrees; (e) V-T curves of proposed filter at various angles of incidence.

Metrics