Abstract

We propose a simple and reconfigured dispersion-tolerant single sideband (SSB) orthogonal frequency division multiplexing (OFDM) radio over fiber (RoF) system enabled by digital signal processing (DSP), one in-phase/quadrature (I/Q) modulator and direct-detection. The generated radio frequency (RF) is based on DSP and the frequency can be flexibly adjusted, which can be employed in the future software-defined radio access network (RAN). Based on our proposed system, we have experimentally demonstrated 16-ary quadrature amplitude modulation (16QAM) 21.87-Gb/s 21-GHz and 38-GHz SSB-OFDM RoF signal generation and transmission over 80-km single-mode fiber (SMF), respectively.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transmission of 20-Gb/s OFDM signals occupying 7-GHz license-free band at 60 GHz using a RoF system employing frequency sextupling optical up-conversion

Po-Tsung Shih, Chun-Ting Lin, Wen-Jr Jiang, Han-Sheng Huang, Jyehong Chen, Anthony Ng’oma, Michael Sauer, and Sien Chi
Opt. Express 18(12) 12748-12755 (2010)

OFDM Modulated WDM-ROF System based on PCF-Supercontinuum

Lijia Zhang, Xiangjun Xin, Bo Liu, Yongjun Wang, Jianjun Yu, and Chongxiu Yu
Opt. Express 18(14) 15003-15008 (2010)

High spectral efficient W-band OFDM-RoF system with direct-detection by two cascaded single-drive MZMs

Hou-Tzu Huang, Chun-Ting Lin, Chun-Hung Ho, Wan-Ling Liang, Chia-Chien Wei, Yu-Hsuan Cheng, and Sien Chi
Opt. Express 21(14) 16615-16620 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. H. Cho, C. F. Lai, T. K. Shih, and H. C. Chao, “Integration of SDR and SDN for 5G,” IEEE Access 2, 1196–1204 (2014).
    [Crossref]
  2. IMT-2020, (5G) Promotion Group white paper, “5G Air Interface Technical Framework,” (IMT-2020, 2015), http://www.imt-2020.org.cn/zh/documents/download/63
  3. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
    [Crossref]
  4. G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
    [Crossref]
  5. J. Ma and W. Zhou, “Joint influence of the optical carrier-to-sideband ratio and guard band on direct-detection SSB-OOFDM system,” IEEE Photonics J. 7(5), 7801713 (2015).
    [Crossref]
  6. J. Ma, “Dual-tone QPSK optical millimeter wave signal generation by frequency-nonupling the RF signal without phase precoding,” IEEE Photonics J. 8(4), 7803407 (2016).
    [Crossref]
  7. S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6, 19891 (2016).
    [Crossref] [PubMed]
  8. X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
    [Crossref]
  9. J. Yu, J. Hu, D. Qian, Z. Jia, G. K. Chang, and T. Wang, “16 Gbit/s super broadband OFDM-radio-over-fibre system,” Electron. Lett. 44(6), 450 (2008).
    [Crossref]
  10. . Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF System With Multi-Gb/s-QAM OFDM Single-Sideband Modulation Based on Injection-Locked Lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
    [Crossref]
  11. K. Kitayama, “Highly spectral efficient OFDM wireless networks by using optical SSB modulation,” in International Topical Meeting on Microwave Photonics (Academic, 1997), pp.231–234.
    [Crossref]
  12. Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photonics Technol. Lett. 24(10), 827–829 (2012).
    [Crossref]
  13. P. T. Shih, C. T. Lin, W. J. Jiang, Y. H. Chen, J. J. Chen, and S. Chi, “Full duplex 60-GHz RoF link employing tandem single sideband modulation scheme and high spectral efficiency modulation format,” Opt. Express 17(22), 19501–19508 (2009).
    [Crossref] [PubMed]
  14. P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Optical tandem single-sideband-based wdm interface for millimeterwave fiber-radio multisector antenna base station,” IEEE Microwave Theory Tech. Trans. 57(3), 725–732 (2009).
    [Crossref]
  15. C. T. Lin, J. Chen, P. T. Shih, W. J. Jiang, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and OFDM formats,” J. Lightwave Technol. 28(16), 2296–2306 (2010).
    [Crossref]
  16. F. Li, J. Yu, Y. Fang, Z. Dong, X. Li, and L. Chen, “Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser,” Opt. Express 22(7), 8742–8748 (2014).
    [Crossref] [PubMed]

2016 (2)

J. Ma, “Dual-tone QPSK optical millimeter wave signal generation by frequency-nonupling the RF signal without phase precoding,” IEEE Photonics J. 8(4), 7803407 (2016).
[Crossref]

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6, 19891 (2016).
[Crossref] [PubMed]

2015 (2)

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

J. Ma and W. Zhou, “Joint influence of the optical carrier-to-sideband ratio and guard band on direct-detection SSB-OOFDM system,” IEEE Photonics J. 7(5), 7801713 (2015).
[Crossref]

2014 (2)

2012 (1)

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photonics Technol. Lett. 24(10), 827–829 (2012).
[Crossref]

2011 (1)

. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF System With Multi-Gb/s-QAM OFDM Single-Sideband Modulation Based on Injection-Locked Lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

2010 (1)

2009 (3)

2008 (1)

J. Yu, J. Hu, D. Qian, Z. Jia, G. K. Chang, and T. Wang, “16 Gbit/s super broadband OFDM-radio-over-fibre system,” Electron. Lett. 44(6), 450 (2008).
[Crossref]

1997 (1)

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

Ahmad, H.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6, 19891 (2016).
[Crossref] [PubMed]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

Alavi, S. E.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6, 19891 (2016).
[Crossref] [PubMed]

Amiri, I. S.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6, 19891 (2016).
[Crossref] [PubMed]

Armstrong, J.

Cao, Z.

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photonics Technol. Lett. 24(10), 827–829 (2012).
[Crossref]

Chang, G. K.

J. Yu, J. Hu, D. Qian, Z. Jia, G. K. Chang, and T. Wang, “16 Gbit/s super broadband OFDM-radio-over-fibre system,” Electron. Lett. 44(6), 450 (2008).
[Crossref]

Chao, H. C.

H. H. Cho, C. F. Lai, T. K. Shih, and H. C. Chao, “Integration of SDR and SDN for 5G,” IEEE Access 2, 1196–1204 (2014).
[Crossref]

Chen, J.

Chen, J. J.

Chen, L.

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

F. Li, J. Yu, Y. Fang, Z. Dong, X. Li, and L. Chen, “Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser,” Opt. Express 22(7), 8742–8748 (2014).
[Crossref] [PubMed]

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photonics Technol. Lett. 24(10), 827–829 (2012).
[Crossref]

Chen, Y. H.

Chen, Z.

. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF System With Multi-Gb/s-QAM OFDM Single-Sideband Modulation Based on Injection-Locked Lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

Chi, S.

Cho, H. H.

H. H. Cho, C. F. Lai, T. K. Shih, and H. C. Chao, “Integration of SDR and SDN for 5G,” IEEE Access 2, 1196–1204 (2014).
[Crossref]

Dong, Z.

Duan, J.

. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF System With Multi-Gb/s-QAM OFDM Single-Sideband Modulation Based on Injection-Locked Lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

Fang, Y.

Gamage, P.

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Optical tandem single-sideband-based wdm interface for millimeterwave fiber-radio multisector antenna base station,” IEEE Microwave Theory Tech. Trans. 57(3), 725–732 (2009).
[Crossref]

Guo, P.

. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF System With Multi-Gb/s-QAM OFDM Single-Sideband Modulation Based on Injection-Locked Lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

Hong, C.

. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF System With Multi-Gb/s-QAM OFDM Single-Sideband Modulation Based on Injection-Locked Lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

Hu, J.

J. Yu, J. Hu, D. Qian, Z. Jia, G. K. Chang, and T. Wang, “16 Gbit/s super broadband OFDM-radio-over-fibre system,” Electron. Lett. 44(6), 450 (2008).
[Crossref]

Hu, W.

. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF System With Multi-Gb/s-QAM OFDM Single-Sideband Modulation Based on Injection-Locked Lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

Jia, Z.

J. Yu, J. Hu, D. Qian, Z. Jia, G. K. Chang, and T. Wang, “16 Gbit/s super broadband OFDM-radio-over-fibre system,” Electron. Lett. 44(6), 450 (2008).
[Crossref]

Jiang, W. J.

Khalily, M.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6, 19891 (2016).
[Crossref] [PubMed]

Kitayama, K.

K. Kitayama, “Highly spectral efficient OFDM wireless networks by using optical SSB modulation,” in International Topical Meeting on Microwave Photonics (Academic, 1997), pp.231–234.
[Crossref]

Lai, C. F.

H. H. Cho, C. F. Lai, T. K. Shih, and H. C. Chao, “Integration of SDR and SDN for 5G,” IEEE Access 2, 1196–1204 (2014).
[Crossref]

Li, F.

Li, H.

. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF System With Multi-Gb/s-QAM OFDM Single-Sideband Modulation Based on Injection-Locked Lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

Li, X.

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

F. Li, J. Yu, Y. Fang, Z. Dong, X. Li, and L. Chen, “Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser,” Opt. Express 22(7), 8742–8748 (2014).
[Crossref] [PubMed]

Lim, C.

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Optical tandem single-sideband-based wdm interface for millimeterwave fiber-radio multisector antenna base station,” IEEE Microwave Theory Tech. Trans. 57(3), 725–732 (2009).
[Crossref]

Lin, C. T.

Ma, J.

J. Ma, “Dual-tone QPSK optical millimeter wave signal generation by frequency-nonupling the RF signal without phase precoding,” IEEE Photonics J. 8(4), 7803407 (2016).
[Crossref]

J. Ma and W. Zhou, “Joint influence of the optical carrier-to-sideband ratio and guard band on direct-detection SSB-OOFDM system,” IEEE Photonics J. 7(5), 7801713 (2015).
[Crossref]

Nirmalathas, A.

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Optical tandem single-sideband-based wdm interface for millimeterwave fiber-radio multisector antenna base station,” IEEE Microwave Theory Tech. Trans. 57(3), 725–732 (2009).
[Crossref]

Novak, D.

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Optical tandem single-sideband-based wdm interface for millimeterwave fiber-radio multisector antenna base station,” IEEE Microwave Theory Tech. Trans. 57(3), 725–732 (2009).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

Qian, D.

J. Yu, J. Hu, D. Qian, Z. Jia, G. K. Chang, and T. Wang, “16 Gbit/s super broadband OFDM-radio-over-fibre system,” Electron. Lett. 44(6), 450 (2008).
[Crossref]

Shih, P. T.

Shih, T. K.

H. H. Cho, C. F. Lai, T. K. Shih, and H. C. Chao, “Integration of SDR and SDN for 5G,” IEEE Access 2, 1196–1204 (2014).
[Crossref]

Shu, Q.

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photonics Technol. Lett. 24(10), 827–829 (2012).
[Crossref]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

Soltanian, M. R. K.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6, 19891 (2016).
[Crossref] [PubMed]

Supa’at, A. S. M.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6, 19891 (2016).
[Crossref] [PubMed]

Wang, T.

J. Yu, J. Hu, D. Qian, Z. Jia, G. K. Chang, and T. Wang, “16 Gbit/s super broadband OFDM-radio-over-fibre system,” Electron. Lett. 44(6), 450 (2008).
[Crossref]

Waterhouse, R.

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Optical tandem single-sideband-based wdm interface for millimeterwave fiber-radio multisector antenna base station,” IEEE Microwave Theory Tech. Trans. 57(3), 725–732 (2009).
[Crossref]

Wu, H.

. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF System With Multi-Gb/s-QAM OFDM Single-Sideband Modulation Based on Injection-Locked Lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

Xiao, J.

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

Xu, Y.

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

Yu, J.

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

F. Li, J. Yu, Y. Fang, Z. Dong, X. Li, and L. Chen, “Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser,” Opt. Express 22(7), 8742–8748 (2014).
[Crossref] [PubMed]

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photonics Technol. Lett. 24(10), 827–829 (2012).
[Crossref]

J. Yu, J. Hu, D. Qian, Z. Jia, G. K. Chang, and T. Wang, “16 Gbit/s super broadband OFDM-radio-over-fibre system,” Electron. Lett. 44(6), 450 (2008).
[Crossref]

Zhang, .

. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF System With Multi-Gb/s-QAM OFDM Single-Sideband Modulation Based on Injection-Locked Lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

Zhang, J.

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

Zhang, Z.

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

Zhou, W.

J. Ma and W. Zhou, “Joint influence of the optical carrier-to-sideband ratio and guard band on direct-detection SSB-OOFDM system,” IEEE Photonics J. 7(5), 7801713 (2015).
[Crossref]

Electron. Lett. (2)

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

J. Yu, J. Hu, D. Qian, Z. Jia, G. K. Chang, and T. Wang, “16 Gbit/s super broadband OFDM-radio-over-fibre system,” Electron. Lett. 44(6), 450 (2008).
[Crossref]

IEEE Access (1)

H. H. Cho, C. F. Lai, T. K. Shih, and H. C. Chao, “Integration of SDR and SDN for 5G,” IEEE Access 2, 1196–1204 (2014).
[Crossref]

IEEE Microwave Theory Tech. Trans. (1)

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Optical tandem single-sideband-based wdm interface for millimeterwave fiber-radio multisector antenna base station,” IEEE Microwave Theory Tech. Trans. 57(3), 725–732 (2009).
[Crossref]

IEEE Photonics J. (2)

J. Ma and W. Zhou, “Joint influence of the optical carrier-to-sideband ratio and guard band on direct-detection SSB-OOFDM system,” IEEE Photonics J. 7(5), 7801713 (2015).
[Crossref]

J. Ma, “Dual-tone QPSK optical millimeter wave signal generation by frequency-nonupling the RF signal without phase precoding,” IEEE Photonics J. 8(4), 7803407 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

. Zhang, J. Duan, C. Hong, P. Guo, W. Hu, Z. Chen, H. Li, and H. Wu, “Bidirectional 60-GHz RoF System With Multi-Gb/s-QAM OFDM Single-Sideband Modulation Based on Injection-Locked Lasers,” IEEE Photonics Technol. Lett. 23(4), 245–247 (2011).
[Crossref]

X. Li, J. Yu, J. Zhang, J. Xiao, Z. Zhang, Y. Xu, and L. Chen, “QAM vector signal generation by optical carrier suppression and precoding techniques,” IEEE Photonics Technol. Lett. 27(18), 1977–1980 (2015).
[Crossref]

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photonics Technol. Lett. 24(10), 827–829 (2012).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (2)

Sci. Rep. (1)

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6, 19891 (2016).
[Crossref] [PubMed]

Other (2)

K. Kitayama, “Highly spectral efficient OFDM wireless networks by using optical SSB modulation,” in International Topical Meeting on Microwave Photonics (Academic, 1997), pp.231–234.
[Crossref]

IMT-2020, (5G) Promotion Group white paper, “5G Air Interface Technical Framework,” (IMT-2020, 2015), http://www.imt-2020.org.cn/zh/documents/download/63

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The scheme of the proposed SSB-OFDM RoF System.
Fig. 2
Fig. 2 The experimental setup of SSB-OFDM RoF system.
Fig. 3
Fig. 3 (a) Block diagram of the DFT-S OFDM modulation and (b) DFT-S OFDM demodulation.
Fig. 4
Fig. 4 The calculated spectrum of transmitted signal: (a) 4-GHz bandwidth SSB-OFDM and RF carrier with 21-GHz frequency spacing; (b) 6-GHz bandwidth SSB-OFDM and RF carrier with 38-GHz frequency spacing.
Fig. 5
Fig. 5 Measured optical spectrum of SSB-OFDM RoF signal (0.02-nm resolution): (a) 21-GHz RF with 4-GHz bandwidth SSB-OFDM signal; (b) 38-GHz RF with 6-GHz bandwidth SSB-OFDM signal.
Fig. 6
Fig. 6 Measured BER versus input power into PD for the 21-GHz RF signal.
Fig. 7
Fig. 7 (a) The electrical spectrum of 38-GHz SSB-OFDM signal with 6-GHz bandwidth; the constellation of 38-GHz SSB-OFDM signal with 6-GHz bandwidth: (b) BTB transmission; (c) 80-km SMF and 0.5-m wireless transmission; (d) measured BER versus input power into PD for the 38-GHz SSB-OFDM signal.

Metrics