Abstract

We demonstrate swept-wavelength operation of an erbium-doped fiber laser using a tunable silicon microring cavity. The microring cavity is designed to have 35 nm free spectral range, a high Q of 1.5 × 105, and low insertion loss of <0.05 dB. The resonance wavelength of the cavity is tuned efficiently (8.1μW/GHz) and rapidly (τr,f~2.2μs) using an embedded Si heater. The laser achieves single-mode continuous-wave emission over the C-band (1530 nm-to-1560 nm). A mean swept-wavelength rate of 22,600 nm/s or 3106 THz/s is demonstrated within 1532 nm-to-1542 nm wavelength range. Its linewidth is measured to be 16 kHz using loss-compensated circulating delayed self-heterodyne detection.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform

Nanxi Li, Diedrik Vermeulen, Zhan Su, Emir Salih Magden, Ming Xin, Neetesh Singh, Alfonso Ruocco, Jelena Notaros, Christopher V. Poulton, Erman Timurdogan, Christopher Baiocco, and Michael R. Watts
Opt. Express 26(13) 16200-16211 (2018)

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Xinyong Dong, Nam Quoc Ngo, Ping Shum, Hwa-Yaw Tam, and Xiaoyi Dong
Opt. Express 11(14) 1689-1694 (2003)

Large-region tunable optical bistability in saturable absorber-based single-frequency Brillouin fiber lasers

Liang Zhang, Li Zhan, Minglei Qin, Zhixin Zou, Zhiqiang Wang, and Jinmei Liu
J. Opt. Soc. Am. B 32(6) 1113-1119 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Purnawirman, T. N. Sun, G. Adam, D. Leake, J. D. Coolbaugh, E. Bradley, Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
    [Crossref] [PubMed]
  2. E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
    [Crossref] [PubMed]
  3. M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22(9), 10655–10660 (2014).
    [Crossref] [PubMed]
  4. Purnawirman, Z. Su, J. D. B. Bradley, E. S. Hosseini, A. Baldycheva, G. Singh, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Compact rare-earth-doped microring lasers monolithically integrated on silicon chips,” in CLEO Europe:2015 (Optical Society of America, 2015), paper CK_12_2.
  5. N. Libatique, L. Wang, and R. Jain, “Single-longitudinal-mode tunable WDM-channel-selectable fiber laser,” Opt. Express 10(25), 1503–1507 (2002).
    [Crossref] [PubMed]
  6. D. A. Smith, M. W. Maeda, J. J. Johnson, J. S. Patel, M. A. Saifi, and A. Von Lehman, “Acoustically tuned erbium-doped fiber ring laser,” Opt. Lett. 16(6), 387–389 (1991).
    [Crossref] [PubMed]
  7. F. Xiao, K. Alameh, and T. Lee, “Opto-VLSI-based tunable single-mode fiber laser,” Opt. Express 17(21), 18676–18680 (2009).
    [Crossref] [PubMed]
  8. L. G. Yang, C. H. Yeh, C. Y. Wong, C. W. Chow, F. G. Tseng, and H. K. Tsang, “Stable and wavelength-tunable silicon-micro-ring-resonator based erbium-doped fiber laser,” Opt. Express 21(3), 2869–2874 (2013).
    [Crossref] [PubMed]
  9. Y. Qiu, “Tunable, narrow line-width silicon micro-ring laser source for coherent optical communications,” in CLEO:2015, OSA Technical Digest (Optical Society of America, 2015), paper JTh2A.57.
  10. F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, “Nanophotonic coherent imager,” Opt. Express 23(4), 5117–5125 (2015).
    [Crossref] [PubMed]
  11. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier Domain Mode Locked lasers for optical coherence tomograpy: imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophotonics 2, 357–363 (2009).
    [Crossref] [PubMed]
  12. Y. Mao, S. Chang, E. Murdock, and C. Flueraru, “Simultaneous dual-wavelength-band common-path swept-source optical coherence tomography with single polygon mirror scanner,” Opt. Lett. 36(11), 1990–1992 (2011).
    [Crossref] [PubMed]
  13. E. Timurdogan, Z. Su, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “A high-Q tunable interior-ridge microring filter,” in CLEO:2014, OSA Technocal Digest (Optical Society of America, 2014), paper SF2O.3.
  14. E. Desurvire, Erbium-Doped Fiber Amplifiers (John Wiley and Sons, Inc. Publication, 2002).
  15. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
    [Crossref]
  16. N. Li, J. Xue, C. Ouyang, K. Wu, J. H. Wong, S. Aditya, and P. P. Shum, “Cavity-length optimization for high energy pulse generation in a long cavity passively mode-locked all-fiber ring laser,” Appl. Opt. 51(17), 3726–3730 (2012).
    [Crossref] [PubMed]
  17. Thorlabs. Available: http://www.thorlabs.de/thorproduct.cfm?partnumber=ER110-4/125
  18. A. E. Siegman, “Ch. 12 Fundamentals of Laser Oscillation,” in LASERS (University Science Books, 1986).
  19. C. Yew Tai, G. J. Cowle, and R. A. Minasian, “Optimization of wavelength tuning of erbium-doped fiber ring lasers,” J. Lightwave Technol. 14(7), 1730–1739 (1996).
    [Crossref]
  20. M. Y. Frankel, R. D. Esman, and J. F. Weller, “Rapid continuous tuning of a single-polarization fiber ring laser,” IEEE Photonics Technol. Lett. 6(5), 591–593 (1994).
    [Crossref]
  21. C. Yew Tai and G. J. Cowle, “Suppression of relaxation oscillations in tunable fiber lasers with a nonlinear amplified loop mirror,” IEEE Photonics Technol. Lett. 7(5), 485–487 (1995).
    [Crossref]
  22. J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett. 4, 1063–1066 (1992).
    [Crossref]

2015 (1)

2014 (1)

2013 (2)

2012 (1)

2011 (1)

2010 (1)

2009 (2)

F. Xiao, K. Alameh, and T. Lee, “Opto-VLSI-based tunable single-mode fiber laser,” Opt. Express 17(21), 18676–18680 (2009).
[Crossref] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier Domain Mode Locked lasers for optical coherence tomograpy: imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophotonics 2, 357–363 (2009).
[Crossref] [PubMed]

2002 (1)

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

1996 (1)

C. Yew Tai, G. J. Cowle, and R. A. Minasian, “Optimization of wavelength tuning of erbium-doped fiber ring lasers,” J. Lightwave Technol. 14(7), 1730–1739 (1996).
[Crossref]

1995 (1)

C. Yew Tai and G. J. Cowle, “Suppression of relaxation oscillations in tunable fiber lasers with a nonlinear amplified loop mirror,” IEEE Photonics Technol. Lett. 7(5), 485–487 (1995).
[Crossref]

1994 (1)

M. Y. Frankel, R. D. Esman, and J. F. Weller, “Rapid continuous tuning of a single-polarization fiber ring laser,” IEEE Photonics Technol. Lett. 6(5), 591–593 (1994).
[Crossref]

1992 (1)

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett. 4, 1063–1066 (1992).
[Crossref]

1991 (1)

Abiri, B.

Adam, G.

Aditya, S.

Aflatouni, F.

Agazzi, L.

Alameh, K.

Belt, M.

Bernhardi, E. H.

Biedermann, B. R.

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier Domain Mode Locked lasers for optical coherence tomograpy: imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophotonics 2, 357–363 (2009).
[Crossref] [PubMed]

Blumenthal, D. J.

Bradley, E.

Chang, S.

Chow, C. W.

Coolbaugh, J. D.

Cowle, G. J.

C. Yew Tai, G. J. Cowle, and R. A. Minasian, “Optimization of wavelength tuning of erbium-doped fiber ring lasers,” J. Lightwave Technol. 14(7), 1730–1739 (1996).
[Crossref]

C. Yew Tai and G. J. Cowle, “Suppression of relaxation oscillations in tunable fiber lasers with a nonlinear amplified loop mirror,” IEEE Photonics Technol. Lett. 7(5), 485–487 (1995).
[Crossref]

Dawson, J. W.

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett. 4, 1063–1066 (1992).
[Crossref]

de Ridder, R. M.

Eigenwillig, C. M.

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier Domain Mode Locked lasers for optical coherence tomograpy: imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophotonics 2, 357–363 (2009).
[Crossref] [PubMed]

Esman, R. D.

M. Y. Frankel, R. D. Esman, and J. F. Weller, “Rapid continuous tuning of a single-polarization fiber ring laser,” IEEE Photonics Technol. Lett. 6(5), 591–593 (1994).
[Crossref]

Flueraru, C.

Frankel, M. Y.

M. Y. Frankel, R. D. Esman, and J. F. Weller, “Rapid continuous tuning of a single-polarization fiber ring laser,” IEEE Photonics Technol. Lett. 6(5), 591–593 (1994).
[Crossref]

Hajimiri, A.

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Huber, R.

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier Domain Mode Locked lasers for optical coherence tomograpy: imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophotonics 2, 357–363 (2009).
[Crossref] [PubMed]

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Jain, R.

Johnson, J. J.

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Khan, M. R. H.

Leake, D.

Lee, T.

Li, N.

Libatique, N.

Maeda, M. W.

Mao, Y.

Minasian, R. A.

C. Yew Tai, G. J. Cowle, and R. A. Minasian, “Optimization of wavelength tuning of erbium-doped fiber ring lasers,” J. Lightwave Technol. 14(7), 1730–1739 (1996).
[Crossref]

Murdock, E.

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Ouyang, C.

Park, N.

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett. 4, 1063–1066 (1992).
[Crossref]

Patel, J. S.

Pollnau, M.

Purnawirman, J.

Rekhi, A.

Roeloffzen, C. G. H.

Saifi, M. A.

Shah Hosseini,

Shum, P. P.

Smith, D. A.

Sun, T. N.

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Tsang, H. K.

Tseng, F. G.

Vahala, K. J.

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett. 4, 1063–1066 (1992).
[Crossref]

van Wolferen, H. A. G. M.

Von Lehman, A.

Wang, L.

Watts, M. R.

Weller, J. F.

M. Y. Frankel, R. D. Esman, and J. F. Weller, “Rapid continuous tuning of a single-polarization fiber ring laser,” IEEE Photonics Technol. Lett. 6(5), 591–593 (1994).
[Crossref]

Wieser, W.

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier Domain Mode Locked lasers for optical coherence tomograpy: imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophotonics 2, 357–363 (2009).
[Crossref] [PubMed]

Wong, C. Y.

Wong, J. H.

Wörhoff, K.

Wu, K.

Xiao, F.

Xue, J.

Yang, L. G.

Yeh, C. H.

Yew Tai, C.

C. Yew Tai, G. J. Cowle, and R. A. Minasian, “Optimization of wavelength tuning of erbium-doped fiber ring lasers,” J. Lightwave Technol. 14(7), 1730–1739 (1996).
[Crossref]

C. Yew Tai and G. J. Cowle, “Suppression of relaxation oscillations in tunable fiber lasers with a nonlinear amplified loop mirror,” IEEE Photonics Technol. Lett. 7(5), 485–487 (1995).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. Y. Frankel, R. D. Esman, and J. F. Weller, “Rapid continuous tuning of a single-polarization fiber ring laser,” IEEE Photonics Technol. Lett. 6(5), 591–593 (1994).
[Crossref]

C. Yew Tai and G. J. Cowle, “Suppression of relaxation oscillations in tunable fiber lasers with a nonlinear amplified loop mirror,” IEEE Photonics Technol. Lett. 7(5), 485–487 (1995).
[Crossref]

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett. 4, 1063–1066 (1992).
[Crossref]

J. Biophotonics (1)

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier Domain Mode Locked lasers for optical coherence tomograpy: imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophotonics 2, 357–363 (2009).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

C. Yew Tai, G. J. Cowle, and R. A. Minasian, “Optimization of wavelength tuning of erbium-doped fiber ring lasers,” J. Lightwave Technol. 14(7), 1730–1739 (1996).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Other (6)

E. Timurdogan, Z. Su, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “A high-Q tunable interior-ridge microring filter,” in CLEO:2014, OSA Technocal Digest (Optical Society of America, 2014), paper SF2O.3.

E. Desurvire, Erbium-Doped Fiber Amplifiers (John Wiley and Sons, Inc. Publication, 2002).

Thorlabs. Available: http://www.thorlabs.de/thorproduct.cfm?partnumber=ER110-4/125

A. E. Siegman, “Ch. 12 Fundamentals of Laser Oscillation,” in LASERS (University Science Books, 1986).

Purnawirman, Z. Su, J. D. B. Bradley, E. S. Hosseini, A. Baldycheva, G. Singh, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Compact rare-earth-doped microring lasers monolithically integrated on silicon chips,” in CLEO Europe:2015 (Optical Society of America, 2015), paper CK_12_2.

Y. Qiu, “Tunable, narrow line-width silicon micro-ring laser source for coherent optical communications,” in CLEO:2015, OSA Technical Digest (Optical Society of America, 2015), paper JTh2A.57.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Quality factor scaling as a function of bend radius for conventional ridge and interior ridge resonators. (b) The simulated quality factor as a function of doping offset under 3 μm bend radius (c) 3D-sketch of the interior-ridge silicon microring cavity. (d) The spectral response of the cavity as a function of heater power.
Fig. 2
Fig. 2 (a) The erbium-doped fiber laser with the on-chip cavity setup. (b) The loss budget for the laser cavity. (c) Laser efficiency curve based on lightly coupled laser oscillator model.
Fig. 3
Fig. 3 (a) Laser output wavelengths at different microring heater levels showing operation across C band. (b) Measured lasing efficiency curve with no thermal power applied to the microring.
Fig. 4
Fig. 4 (a) Sweep rate measurement setup (b) The measured swept-wavelength response with an optical spectrum analyzer using maximum hold setting to show wavelength tuning range. (c) The passive spectrum of the reference SiN resonator with 2.1nm free-spectral-range. (d)/(f) Time domain signal after the microring resonator at 100 Hz and 800 Hz modulation frequency. (e)/(g) Swept wavelength with respect to time at 100 Hz and 800 Hz modulation frequency.
Fig. 5
Fig. 5 (a) Linewidth measurement setup: loss-compensated circulating delayed self-heterodyne detection (b) The beating signal of 20 harmonics (c) Linewidth measurement for different harmonics (d) Self-heterodyne spectrum with Lorentzian fitting showing a combined linewidth of 16 kHz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P out = δ e ( g δ e + δ o 1 ) P sat

Metrics