Abstract

We investigate strip line photoconductive terahertz (THz) emitters in a regime where both the direct emission of accelerated carriers in the semiconductor and the antenna-mediated emission from the strip line play a significant role. In particular, asymmetric strip line structures are studied. The widths of the two electrodes have been varied from 2 µm to 50 µm. The THz emission efficiency is observed to increase linearly with the width of the anode, which acts here as a plasmonic antenna giving rise to enhanced THz emission. In contrast, the cathode width does not play any significant role on THz emission efficiency.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz emission from electric field singularities in biased semiconductors

I. Brener, M. C. Nuss, D. Dykaar, A. Frommer, L. N. Pfeiffer, J. Lopata, J. Wynn, and K. West
Opt. Lett. 21(23) 1924-1926 (1996)

Terahertz emission from lateral photo-Dember currents

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M.B. Johnston, M. Fischer, J. Faist, and T. Dekorsy
Opt. Express 18(5) 4939-4947 (2010)

Terahertz generation mechanism in nano-grating electrode photomixers on Fe-doped InGaAsP

Reshma A. Mohandas, Joshua R. Freeman, Michele Natrella, Mark C. Rosamond, Lalitha Ponnampalam, Martyn J. Fice, Alwyn J. Seeds, Paul. J. Cannard, Michael. J. Robertson, David. G. Moodie, A. Giles Davies, Edmund H. Linfield, and Paul Dean
Opt. Express 25(9) 10177-10188 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
    [Crossref]
  3. C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104(4), 1759–1779 (2004).
    [Crossref] [PubMed]
  4. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  5. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
    [Crossref] [PubMed]
  6. M. Jarrahi, ““Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. THz Sci,” Technol. 5, 391–397 (2015).
  7. A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
    [Crossref]
  8. A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
    [Crossref] [PubMed]
  9. X.-C. Zhang, “Generation and detection of terahertz electromagnetic pulses from semiconductors with femtosecond optics,” J. Lumin. 66, 488–492 (1995).
    [Crossref]
  10. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
    [Crossref]
  11. G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Micro lens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93(9), 091110 (2008).
    [Crossref]
  12. M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
    [Crossref]
  13. W. Shi, L. Hou, Z. Liu, and T. Tongue, “Terahertz generation from SI-GaAs stripline antenna with different structural parameters,” J. Opt. Soc. Am. B 26(9), A107 (2009).
    [Crossref]
  14. X. C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).
  15. J. S. Blakemore, “Semiconducting and other major properties of GaAs,” J. Appl. Phys. 53(10), R123 (1982).
    [Crossref]
  16. J. Wallauer, C. Grumber, and M. Walther, “Mapping the coupling between a photo-induced local dipole and the eigenmodes of a terahertz metamaterial,” Opt. Lett. 39(21), 6138–6141 (2014).
    [Crossref] [PubMed]
  17. R. Chatterjee, Antenna Theory and Practice, 2nd ed. (New Age International, 1996).
  18. S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: The role of electrical and optical carrier injection,” Appl. Phys. Lett. 59(16), 1972–1974 (1991).
    [Crossref]
  19. P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, “Polarization-dependent efficiency of photoconducting THz transmitters and receivers,” Appl. Phys. Lett. 72(17), 2069–2071 (1998).
    [Crossref]
  20. R. L. Olmon and M. B. Raschke, “Antenna-load interactions at optical frequencies: impedance matching to quantum systems,” Nanotechnology 23(44), 444001 (2012).
    [Crossref] [PubMed]
  21. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997).
    [Crossref]
  22. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
    [Crossref] [PubMed]

2015 (2)

M. Jarrahi, ““Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. THz Sci,” Technol. 5, 391–397 (2015).

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref] [PubMed]

2014 (2)

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

J. Wallauer, C. Grumber, and M. Walther, “Mapping the coupling between a photo-induced local dipole and the eigenmodes of a terahertz metamaterial,” Opt. Lett. 39(21), 6138–6141 (2014).
[Crossref] [PubMed]

2013 (1)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

2012 (1)

R. L. Olmon and M. B. Raschke, “Antenna-load interactions at optical frequencies: impedance matching to quantum systems,” Nanotechnology 23(44), 444001 (2012).
[Crossref] [PubMed]

2009 (1)

2008 (1)

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Micro lens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93(9), 091110 (2008).
[Crossref]

2007 (2)

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2005 (1)

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

2004 (2)

P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104(4), 1759–1779 (2004).
[Crossref] [PubMed]

2002 (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

1998 (1)

P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, “Polarization-dependent efficiency of photoconducting THz transmitters and receivers,” Appl. Phys. Lett. 72(17), 2069–2071 (1998).
[Crossref]

1997 (2)

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
[Crossref] [PubMed]

1995 (1)

X.-C. Zhang, “Generation and detection of terahertz electromagnetic pulses from semiconductors with femtosecond optics,” J. Lumin. 66, 488–492 (1995).
[Crossref]

1991 (1)

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: The role of electrical and optical carrier injection,” Appl. Phys. Lett. 59(16), 1972–1974 (1991).
[Crossref]

1982 (1)

J. S. Blakemore, “Semiconducting and other major properties of GaAs,” J. Appl. Phys. 53(10), R123 (1982).
[Crossref]

Andrews, S. R.

P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, “Polarization-dependent efficiency of photoconducting THz transmitters and receivers,” Appl. Phys. Lett. 72(17), 2069–2071 (1998).
[Crossref]

Awad, M.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

Bahrami-Yekta, V.

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref] [PubMed]

Berry, C. W.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Blakemore, J. S.

J. S. Blakemore, “Semiconducting and other major properties of GaAs,” J. Appl. Phys. 53(10), R123 (1982).
[Crossref]

Cluff, J. A.

P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, “Polarization-dependent efficiency of photoconducting THz transmitters and receivers,” Appl. Phys. Lett. 72(17), 2069–2071 (1998).
[Crossref]

Darcie, T. E.

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref] [PubMed]

Dekorsy, T.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Dreyhaupt, A.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Gordon, R.

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref] [PubMed]

Grischkowsky, D.

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: The role of electrical and optical carrier injection,” Appl. Phys. Lett. 59(16), 1972–1974 (1991).
[Crossref]

Grumber, C.

Hashemi, M. R.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Helm, M.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Herfort, J.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

Hohmuth, R.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Micro lens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93(9), 091110 (2008).
[Crossref]

Hou, L.

Huggard, P. G.

P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, “Polarization-dependent efficiency of photoconducting THz transmitters and receivers,” Appl. Phys. Lett. 72(17), 2069–2071 (1998).
[Crossref]

Jarrahi, M.

M. Jarrahi, ““Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. THz Sci,” Technol. 5, 391–397 (2015).

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Jooshesh, A.

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref] [PubMed]

Kurz, H.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

Liu, Z.

Matsuura, S.

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
[Crossref] [PubMed]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997).
[Crossref]

Matthäus, G.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Micro lens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93(9), 091110 (2008).
[Crossref]

Nagel, M.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

Nakashima, S.

Nanal, V.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Nolte, S.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Micro lens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93(9), 091110 (2008).
[Crossref]

Notni, G.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Micro lens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93(9), 091110 (2008).
[Crossref]

Olmon, R. L.

R. L. Olmon and M. B. Raschke, “Antenna-load interactions at optical frequencies: impedance matching to quantum systems,” Nanotechnology 23(44), 444001 (2012).
[Crossref] [PubMed]

Pal, S.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Pillay, R. G.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Ploog, K.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

Prabhu, S. S.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Pradarutti, B.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Micro lens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93(9), 091110 (2008).
[Crossref]

Ralph, S. E.

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: The role of electrical and optical carrier injection,” Appl. Phys. Lett. 59(16), 1972–1974 (1991).
[Crossref]

Raschke, M. B.

R. L. Olmon and M. B. Raschke, “Antenna-load interactions at optical frequencies: impedance matching to quantum systems,” Nanotechnology 23(44), 444001 (2012).
[Crossref] [PubMed]

Richter, W.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Micro lens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93(9), 091110 (2008).
[Crossref]

Riehemann, S.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Micro lens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93(9), 091110 (2008).
[Crossref]

Sakai, K.

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
[Crossref] [PubMed]

Schmuttenmaer, C. A.

C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104(4), 1759–1779 (2004).
[Crossref] [PubMed]

Shaw, C. J.

P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, “Polarization-dependent efficiency of photoconducting THz transmitters and receivers,” Appl. Phys. Lett. 72(17), 2069–2071 (1998).
[Crossref]

Shi, W.

Siegel, P.

P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Singh, A.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Surdi, H.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Tani, M.

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
[Crossref] [PubMed]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997).
[Crossref]

Tiedje, T.

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref] [PubMed]

Tongue, T.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tünnermann, A.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Micro lens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93(9), 091110 (2008).
[Crossref]

Unlu, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Voitsch, M.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Micro lens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93(9), 091110 (2008).
[Crossref]

Wallauer, J.

Walther, M.

Wang, N.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Winnerl, S.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Zhang, J.

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref] [PubMed]

Zhang, X.-C.

X.-C. Zhang, “Generation and detection of terahertz electromagnetic pulses from semiconductors with femtosecond optics,” J. Lumin. 66, 488–492 (1995).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997).
[Crossref]

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Micro lens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93(9), 091110 (2008).
[Crossref]

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: The role of electrical and optical carrier injection,” Appl. Phys. Lett. 59(16), 1972–1974 (1991).
[Crossref]

P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, “Polarization-dependent efficiency of photoconducting THz transmitters and receivers,” Appl. Phys. Lett. 72(17), 2069–2071 (1998).
[Crossref]

Chem. Rev. (1)

C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104(4), 1759–1779 (2004).
[Crossref] [PubMed]

IEEE Trans. Microw. Theory Tech. (2)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

J. Appl. Phys. (1)

J. S. Blakemore, “Semiconducting and other major properties of GaAs,” J. Appl. Phys. 53(10), R123 (1982).
[Crossref]

J. Lumin. (1)

X.-C. Zhang, “Generation and detection of terahertz electromagnetic pulses from semiconductors with femtosecond optics,” J. Lumin. 66, 488–492 (1995).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

R. L. Olmon and M. B. Raschke, “Antenna-load interactions at optical frequencies: impedance matching to quantum systems,” Nanotechnology 23(44), 444001 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Lett. (1)

Technol. (1)

M. Jarrahi, ““Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. THz Sci,” Technol. 5, 391–397 (2015).

Other (2)

R. Chatterjee, Antenna Theory and Practice, 2nd ed. (New Age International, 1996).

X. C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Microscope images of the strip line electrodes with (a) symmetrical widths of 20 µm and (b) asymmetrical widths of 2 µm and 20 µm. The gap between two electrodes is 10 µm for both emitters. Strip line width will act as antenna length in these emitters.

Fig. 2
Fig. 2

Current-voltage characteristics of all the emitters under pulsed illumination. Photocurrent does not depend significantly on the electrode widths.

Fig. 3
Fig. 3

(a) THz electric field from strip line emitters with symmetrical electrode widths of 2 µm, 5 µm, 10 µm, 20 µm and 50 µm. THz field amplitude increases with the electrode width. In (b) Electric field at the peak of THz pulse is plotted with anode width. Saturation-like curve fitting the experimental data is a guide to eyes.

Fig. 4
Fig. 4

THz electric field from strip line emitters with symmetric and asymmetrical electrode widths. The THz pulse amplitude and the pulse shape is similar for the similar anode widths independent of the cathode widths.

Fig. 5
Fig. 5

FFT of THz pulses from symmetric strip line emitters with varying electrode widths from 2 µm to 50 µm.

Fig. 6
Fig. 6

Simulated radiation efficiency of different strip line geometries using CST Microwave software. (a) For smaller strip line length (10 µm) resonance peaks corresponding to strip line widths are more prominent. But in (b), when strip line length is longer (800 µm) resonance peaks are not so prominent. Periodic oscillations in the spectrum are due to Fabry-Perot modes arising from the reflections from the surfaces of the substrate cuboid considered in the simulation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E THz = iωsinθ 4π ε 0 I 0 l c 2 e iω(t r c ) r

Metrics