Abstract

We report on the fabrication of planar Bragg gratings in polymer substrates and study the impact of the UV dosage and a subsequent thermal annealing on the reflectivity of the gratings and the full width at half maximum bandwidth of the reflected spectra. In addition, the influence of the grating length is investigated, showing that gratings as short as 4 mm continuously exhibit good reflection properties, facilitating miniaturized sensor designs. Moreover, we highlight that the polymer Bragg gratings exhibit a remarkable stable reflected spectrum for over two years. Finally, the experimentally determined spectral characteristics of the Bragg gratings are compared to simulated results revealing excellent agreement.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of the UV dosage on planar Bragg gratings in cyclo-olefin copolymer substrates

M. Rosenberger, B. Schmauss, and R. Hellmann
Opt. Mater. Express 6(6) 2118-2127 (2016)

Compressive and tensile strain sensing using a polymer planar Bragg grating

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann
Opt. Express 22(5) 5483-5490 (2014)

Planar Bragg grating in bulk Polymethylmethacrylate

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann
Opt. Express 20(25) 27288-27296 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photonics Technol. Lett. 22(21), 1562–1564 (2010).
    [Crossref]
  2. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
    [Crossref]
  3. A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
    [Crossref]
  4. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [Crossref] [PubMed]
  5. A. Abang and D. J. Webb, “Influence of mounting on the hysteresis of polymer fiber Bragg grating strain sensors,” Opt. Lett. 38(9), 1376–1378 (2013).
    [Crossref] [PubMed]
  6. K. Bhowmik, G.-D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “Experimental study and analysis of hydrostatic pressure sensitivity of polymer fibre Bragg gratings,” J. Lightwave Technol. 33(12), 2456–2462 (2015).
    [Crossref]
  7. C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
    [Crossref]
  8. M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Planar Bragg grating in bulk polymethylmethacrylate,” Opt. Express 20(25), 27288–27296 (2012).
    [Crossref] [PubMed]
  9. M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates,” Sens. Actuators A Phys. 221, 148–153 (2015).
    [Crossref]
  10. M. Rosenberger, W. Eisenbeil, B. Schmauss, and R. Hellmann, “Simultaneous 2D strain sensing using polymer planar Bragg gratings,” Sensors (Basel) 15(2), 4264–4272 (2015).
    [Crossref] [PubMed]
  11. M. Shams-el-Din, C. Wochnowski, S. Metev, A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci. 236(1–4), 31–41 (2004).
    [Crossref]
  12. S. Hessler, M. Rosenberger, S. Belle, B. Schmauss, and R. Hellmann, “Influence of chemical polymer composition on integrated waveguide formation induced by excimer laser surface irradiation,” Appl. Surf. Sci. 356, 532–538 (2015).
    [Crossref]
  13. C. Wochnowski, S. Metev, and G. Sepold, “UV-laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154, 706–711 (2000).
    [Crossref]
  14. R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
    [Crossref] [PubMed]
  15. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  16. A. Othonos and K. Kalli, Fiber Bragg Gratings. Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3.
  17. M. Rosenberger, B. Schmauss, and R. Hellmann, “Influence of the UV dosage on planar Bragg gratings in cyclo-olefin copolymer substrates,” Opt. Express 6(6), 2118–2127 (2016).
    [Crossref]
  18. R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic, 2010), Chap. 9.
  19. S. P. Ugale and V. Mishra, “Optimization of fiber Bragg grating length for maximum reflectivity,” International Conference on Communications and Signal Processing IEEE, 28–32 (2011).
    [Crossref]
  20. G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 085606 (2015).
    [Crossref]
  21. M. Koerdt and F. Vollertsen, “Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation,” Appl. Surf. Sci. 257(12), 5237–5240 (2011).
    [Crossref]
  22. M. Rosenberger, N. Hartlaub, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Polymer planar Bragg grating for sensing applications,” Proc. SPIE 8774, 87741P (2013).
    [Crossref]

2016 (1)

M. Rosenberger, B. Schmauss, and R. Hellmann, “Influence of the UV dosage on planar Bragg gratings in cyclo-olefin copolymer substrates,” Opt. Express 6(6), 2118–2127 (2016).
[Crossref]

2015 (7)

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 085606 (2015).
[Crossref]

R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
[Crossref] [PubMed]

K. Bhowmik, G.-D. Peng, Y. Luo, E. Ambikairajah, V. Lovric, W. R. Walsh, and G. Rajan, “Experimental study and analysis of hydrostatic pressure sensitivity of polymer fibre Bragg gratings,” J. Lightwave Technol. 33(12), 2456–2462 (2015).
[Crossref]

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates,” Sens. Actuators A Phys. 221, 148–153 (2015).
[Crossref]

M. Rosenberger, W. Eisenbeil, B. Schmauss, and R. Hellmann, “Simultaneous 2D strain sensing using polymer planar Bragg gratings,” Sensors (Basel) 15(2), 4264–4272 (2015).
[Crossref] [PubMed]

S. Hessler, M. Rosenberger, S. Belle, B. Schmauss, and R. Hellmann, “Influence of chemical polymer composition on integrated waveguide formation induced by excimer laser surface irradiation,” Appl. Surf. Sci. 356, 532–538 (2015).
[Crossref]

2013 (3)

2012 (1)

2011 (2)

M. Koerdt and F. Vollertsen, “Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation,” Appl. Surf. Sci. 257(12), 5237–5240 (2011).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

2010 (2)

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photonics Technol. Lett. 22(21), 1562–1564 (2010).
[Crossref]

C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

2004 (1)

M. Shams-el-Din, C. Wochnowski, S. Metev, A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci. 236(1–4), 31–41 (2004).
[Crossref]

2000 (1)

C. Wochnowski, S. Metev, and G. Sepold, “UV-laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154, 706–711 (2000).
[Crossref]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Abang, A.

Ambikairajah, E.

Bang, O.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

Belle, S.

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates,” Sens. Actuators A Phys. 221, 148–153 (2015).
[Crossref]

S. Hessler, M. Rosenberger, S. Belle, B. Schmauss, and R. Hellmann, “Influence of chemical polymer composition on integrated waveguide formation induced by excimer laser surface irradiation,” Appl. Surf. Sci. 356, 532–538 (2015).
[Crossref]

M. Rosenberger, N. Hartlaub, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Polymer planar Bragg grating for sensing applications,” Proc. SPIE 8774, 87741P (2013).
[Crossref]

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Planar Bragg grating in bulk polymethylmethacrylate,” Opt. Express 20(25), 27288–27296 (2012).
[Crossref] [PubMed]

Bhowmik, K.

Bilro, L.

Eisenbeil, W.

M. Rosenberger, W. Eisenbeil, B. Schmauss, and R. Hellmann, “Simultaneous 2D strain sensing using polymer planar Bragg gratings,” Sensors (Basel) 15(2), 4264–4272 (2015).
[Crossref] [PubMed]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Hamza, A.

M. Shams-el-Din, C. Wochnowski, S. Metev, A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci. 236(1–4), 31–41 (2004).
[Crossref]

Hartlaub, N.

M. Rosenberger, N. Hartlaub, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Polymer planar Bragg grating for sensing applications,” Proc. SPIE 8774, 87741P (2013).
[Crossref]

Hellmann, R.

M. Rosenberger, B. Schmauss, and R. Hellmann, “Influence of the UV dosage on planar Bragg gratings in cyclo-olefin copolymer substrates,” Opt. Express 6(6), 2118–2127 (2016).
[Crossref]

S. Hessler, M. Rosenberger, S. Belle, B. Schmauss, and R. Hellmann, “Influence of chemical polymer composition on integrated waveguide formation induced by excimer laser surface irradiation,” Appl. Surf. Sci. 356, 532–538 (2015).
[Crossref]

M. Rosenberger, W. Eisenbeil, B. Schmauss, and R. Hellmann, “Simultaneous 2D strain sensing using polymer planar Bragg gratings,” Sensors (Basel) 15(2), 4264–4272 (2015).
[Crossref] [PubMed]

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates,” Sens. Actuators A Phys. 221, 148–153 (2015).
[Crossref]

M. Rosenberger, N. Hartlaub, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Polymer planar Bragg grating for sensing applications,” Proc. SPIE 8774, 87741P (2013).
[Crossref]

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Planar Bragg grating in bulk polymethylmethacrylate,” Opt. Express 20(25), 27288–27296 (2012).
[Crossref] [PubMed]

Hessler, S.

S. Hessler, M. Rosenberger, S. Belle, B. Schmauss, and R. Hellmann, “Influence of chemical polymer composition on integrated waveguide formation induced by excimer laser surface irradiation,” Appl. Surf. Sci. 356, 532–538 (2015).
[Crossref]

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates,” Sens. Actuators A Phys. 221, 148–153 (2015).
[Crossref]

Johnson, I. P.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

Jüptner, W.

M. Shams-el-Din, C. Wochnowski, S. Metev, A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci. 236(1–4), 31–41 (2004).
[Crossref]

Kalli, K.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

Khan, L.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

Koerdt, M.

M. Koerdt and F. Vollertsen, “Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation,” Appl. Surf. Sci. 257(12), 5237–5240 (2011).
[Crossref]

Koller, G.

M. Rosenberger, N. Hartlaub, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Polymer planar Bragg grating for sensing applications,” Proc. SPIE 8774, 87741P (2013).
[Crossref]

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Planar Bragg grating in bulk polymethylmethacrylate,” Opt. Express 20(25), 27288–27296 (2012).
[Crossref] [PubMed]

Koutsides, C.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Kowal, D.

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 085606 (2015).
[Crossref]

Lacraz, A.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Lovric, V.

Luo, Y.

Markos, C.

Mergo, P.

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 085606 (2015).
[Crossref]

Metev, S.

M. Shams-el-Din, C. Wochnowski, S. Metev, A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci. 236(1–4), 31–41 (2004).
[Crossref]

C. Wochnowski, S. Metev, and G. Sepold, “UV-laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154, 706–711 (2000).
[Crossref]

Mishra, V.

S. P. Ugale and V. Mishra, “Optimization of fiber Bragg grating length for maximum reflectivity,” International Conference on Communications and Signal Processing IEEE, 28–32 (2011).
[Crossref]

Nielsen, K.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

Nogueira, R.

Oliveira, R.

Peng, G. D.

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photonics Technol. Lett. 22(21), 1562–1564 (2010).
[Crossref]

Peng, G.-D.

Polis, M.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Rajan, G.

Rasmussen, H. K.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

Rosenberger, M.

M. Rosenberger, B. Schmauss, and R. Hellmann, “Influence of the UV dosage on planar Bragg gratings in cyclo-olefin copolymer substrates,” Opt. Express 6(6), 2118–2127 (2016).
[Crossref]

S. Hessler, M. Rosenberger, S. Belle, B. Schmauss, and R. Hellmann, “Influence of chemical polymer composition on integrated waveguide formation induced by excimer laser surface irradiation,” Appl. Surf. Sci. 356, 532–538 (2015).
[Crossref]

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates,” Sens. Actuators A Phys. 221, 148–153 (2015).
[Crossref]

M. Rosenberger, W. Eisenbeil, B. Schmauss, and R. Hellmann, “Simultaneous 2D strain sensing using polymer planar Bragg gratings,” Sensors (Basel) 15(2), 4264–4272 (2015).
[Crossref] [PubMed]

M. Rosenberger, N. Hartlaub, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Polymer planar Bragg grating for sensing applications,” Proc. SPIE 8774, 87741P (2013).
[Crossref]

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Planar Bragg grating in bulk polymethylmethacrylate,” Opt. Express 20(25), 27288–27296 (2012).
[Crossref] [PubMed]

Schmauss, B.

M. Rosenberger, B. Schmauss, and R. Hellmann, “Influence of the UV dosage on planar Bragg gratings in cyclo-olefin copolymer substrates,” Opt. Express 6(6), 2118–2127 (2016).
[Crossref]

S. Hessler, M. Rosenberger, S. Belle, B. Schmauss, and R. Hellmann, “Influence of chemical polymer composition on integrated waveguide formation induced by excimer laser surface irradiation,” Appl. Surf. Sci. 356, 532–538 (2015).
[Crossref]

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates,” Sens. Actuators A Phys. 221, 148–153 (2015).
[Crossref]

M. Rosenberger, W. Eisenbeil, B. Schmauss, and R. Hellmann, “Simultaneous 2D strain sensing using polymer planar Bragg gratings,” Sensors (Basel) 15(2), 4264–4272 (2015).
[Crossref] [PubMed]

M. Rosenberger, N. Hartlaub, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Polymer planar Bragg grating for sensing applications,” Proc. SPIE 8774, 87741P (2013).
[Crossref]

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Planar Bragg grating in bulk polymethylmethacrylate,” Opt. Express 20(25), 27288–27296 (2012).
[Crossref] [PubMed]

Sepold, G.

C. Wochnowski, S. Metev, and G. Sepold, “UV-laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154, 706–711 (2000).
[Crossref]

Shams-el-Din, M.

M. Shams-el-Din, C. Wochnowski, S. Metev, A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci. 236(1–4), 31–41 (2004).
[Crossref]

Statkiewicz-Barabach, G.

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 085606 (2015).
[Crossref]

Stefani, A.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

Tao, X. M.

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photonics Technol. Lett. 22(21), 1562–1564 (2010).
[Crossref]

Theodosiou, A.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Ugale, S. P.

S. P. Ugale and V. Mishra, “Optimization of fiber Bragg grating length for maximum reflectivity,” International Conference on Communications and Signal Processing IEEE, 28–32 (2011).
[Crossref]

Urbanczyk, W.

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 085606 (2015).
[Crossref]

Vollertsen, F.

M. Koerdt and F. Vollertsen, “Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation,” Appl. Surf. Sci. 257(12), 5237–5240 (2011).
[Crossref]

Walsh, W. R.

Wang, G. F.

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photonics Technol. Lett. 22(21), 1562–1564 (2010).
[Crossref]

Webb, D. J.

A. Abang and D. J. Webb, “Influence of mounting on the hysteresis of polymer fiber Bragg grating strain sensors,” Opt. Lett. 38(9), 1376–1378 (2013).
[Crossref] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

Wochnowski, C.

M. Shams-el-Din, C. Wochnowski, S. Metev, A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci. 236(1–4), 31–41 (2004).
[Crossref]

C. Wochnowski, S. Metev, and G. Sepold, “UV-laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154, 706–711 (2000).
[Crossref]

Yuan, W.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

Zhang, C.

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photonics Technol. Lett. 22(21), 1562–1564 (2010).
[Crossref]

C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

Zhang, W.

C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

Zhang, Z. F.

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photonics Technol. Lett. 22(21), 1562–1564 (2010).
[Crossref]

Appl. Surf. Sci. (4)

M. Shams-el-Din, C. Wochnowski, S. Metev, A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci. 236(1–4), 31–41 (2004).
[Crossref]

S. Hessler, M. Rosenberger, S. Belle, B. Schmauss, and R. Hellmann, “Influence of chemical polymer composition on integrated waveguide formation induced by excimer laser surface irradiation,” Appl. Surf. Sci. 356, 532–538 (2015).
[Crossref]

C. Wochnowski, S. Metev, and G. Sepold, “UV-laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154, 706–711 (2000).
[Crossref]

M. Koerdt and F. Vollertsen, “Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation,” Appl. Surf. Sci. 257(12), 5237–5240 (2011).
[Crossref]

Electron. Lett. (2)

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photonics Technol. Lett. 22(21), 1562–1564 (2010).
[Crossref]

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

G. Statkiewicz-Barabach, D. Kowal, P. Mergo, and W. Urbanczyk, “Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types,” J. Opt. 17(8), 085606 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (1)

M. Rosenberger, N. Hartlaub, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Polymer planar Bragg grating for sensing applications,” Proc. SPIE 8774, 87741P (2013).
[Crossref]

Sens. Actuators A Phys. (1)

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Fabrication and characterization of planar Bragg gratings in TOPAS polymer substrates,” Sens. Actuators A Phys. 221, 148–153 (2015).
[Crossref]

Sensors (Basel) (1)

M. Rosenberger, W. Eisenbeil, B. Schmauss, and R. Hellmann, “Simultaneous 2D strain sensing using polymer planar Bragg gratings,” Sensors (Basel) 15(2), 4264–4272 (2015).
[Crossref] [PubMed]

Other (3)

A. Othonos and K. Kalli, Fiber Bragg Gratings. Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3.

R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic, 2010), Chap. 9.

S. P. Ugale and V. Mishra, “Optimization of fiber Bragg grating length for maximum reflectivity,” International Conference on Communications and Signal Processing IEEE, 28–32 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic illustration of the setup (vertically exploded assembly drawing) with an amplitude and a phase mask positioned above the polymer substrate for the fabrication of PPBGs in a single writing step. During the exposure the phase mask is in contact with both the polymer and the amplitude mask.
Fig. 2
Fig. 2 Refractive index of the polymer substrate as a function of the applied UV dosage (circle: substrates processed only by UV laser radiation, square: substrates after UV radiation and subsequent tempering)
Fig. 3
Fig. 3 (a) Exemplification of the increasing surface compaction due to tempering, (b) Polymer surface after the fabrication of a PPBG with 18 mJ/cm2 as measured by a confocal laser scanning microscope (c) Depth of the surface compacted zone along the generated optical waveguide after the fabrication of Bragg gratings in a single writing step with different numbers of pulses prior to and after thermal annealing..
Fig. 4
Fig. 4 Reflected and transmitted spectra of polymer planar Bragg gratings fabricated with a different UV dosage (realized by a different number of laser pulses). The chosen parameters result in distinct Bragg wavelength signals.
Fig. 5
Fig. 5 (a) Full width at half maximum of the Bragg gratings based on their reflected intensity against the number of pulses, (b) reflectivity of the PPBGs based on their transmission spectra.
Fig. 6
Fig. 6 Transmitted power through the integrated structures fabricated with different number of Excimer laser pulses prior and after thermal annealing.
Fig. 7
Fig. 7 (a) Influence of the Bragg grating length on the reflected power (normalized on the reflected power of Lg = 10 mm) and the FWHM compared to the simulation results. (b) Reflected spectra of a PPBG during the cut back method at four different grating length.
Fig. 8
Fig. 8 (a) Reflected spectrum of a polymer planar Bragg grating immediately and (b) two years after fabrication with the single writing step technique.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R=tanh²( πΔn λ B l BG M ),
Δλ= λ B S ( Δn 2 n 0 ) 2 + ( 1 N ) 2 ,
R=1- 10 - T d 10 ,

Metrics