Abstract

In this paper we present a sub-bandgap photodetector consisting of a metal grating on a thin metal patch on silicon, which makes use of the enhancement produced by the excitation of surface plasmon polaritons at the metal-silicon interface. The grating is defined via e-beam lithography and Au lift-off on a Au patch defined beforehand by optical lithography on doped p-type silicon. The surface plasmon polaritons are absorbed by the metal, leading to the creation of hot holes that can cross into the silicon where they are collected as the photocurrent. Physical characterization of intermediate structure is provided along with responsivity measurements at telecom wavelengths. Results are promising in terms of responsivity, with a value of 13 mA/W measured at 1550 nm - this is among the highest values reported to date for sub-bandgap detectors based on internal photoemission. The Schottky photodetector can be used in, e.g., non-contact wafer probing or in short-reach optical communications applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon waveguide Schottky detector

Ali Akbari, R. Niall Tait, and Pierre Berini
Opt. Express 18(8) 8505-8514 (2010)

Schottky-contact plasmonic dipole rectenna concept for biosensing

Mohammad Alavirad, Saba Siadat Mousavi, Langis Roy, and Pierre Berini
Opt. Express 21(4) 4328-4347 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business Media, 2007).
  2. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
    [Crossref]
  3. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express 20(11), 12599–12609 (2012).
    [Crossref] [PubMed]
  4. R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
    [Crossref] [PubMed]
  5. I. Goykhman, B. Desiatov, J. Shappir, J. B. Khurgin, and U. Levy, “Model for quantum efficiency of guided mode plasmonic enhanced silicon Schottky detectors,” arXiv: 1401.2624 (2014).
  6. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
    [Crossref] [PubMed]
  7. P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photonics Rev. 8(2), 197–220 (2014).
    [Crossref]
  8. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metaloxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
    [Crossref]
  9. M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Taw, “Sensitive detection of interleukin-6 on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53, 06JL05 (2014).
    [Crossref]
  10. A. Takeda, T. Aihara, M. Fukuhara, Y. Ishii, and M. Fukuda, “Schottky-type surface plasmon detector with nano-slit grating using enhanced resonant optical transmission,” J. Appl. Phys. 116(8), 084313 (2014).
    [Crossref]
  11. A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18(8), 8505–8514 (2010).
    [Crossref] [PubMed]
  12. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20(27), 28594–28602 (2012).
    [Crossref] [PubMed]
  13. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  14. X. Li, D. Xiao, and Z. Zhang, “Landau damping of quantum plasmons in metal nanostructures,” New J. Phys. 15(2), 023011 (2013).
    [Crossref]
  15. B. Desiatov, I. Goykhman, N. Mazurski, J. O. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335–338 (2015).
    [Crossref]
  16. M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
    [Crossref] [PubMed]
  17. M. Alavirad, S. S. Mousavi, L. Roy, and P. Berini, “Schottky-contact plasmonic dipole rectenna concept for biosensing,” Opt. Express 21(4), 4328–4347 (2013).
    [Crossref] [PubMed]
  18. A. Sellai and P. Dawson, “Quantum efficiency in GaAs Schottky photodetectors with enhancement due to surface plasmon excitations,” Solid-State Electron. 46(1), 29–33 (2002).
    [Crossref]
  19. J. W. Yoon, W. J. Park, K. J. Lee, S. H. Song, and R. Magnusson, “Surface-plasmon mediated total absorption of light into silicon,” Opt. Express 19(21), 20673–20680 (2011).
    [Crossref] [PubMed]
  20. X. G. Guo, R. Zhang, J. C. Cao, and H. Liu, “Surface plasmon-enhanced absorption in metal grating coupled terahertz quantum well photodetectors,” IEEE J. Quantum Electron. 48(9), 1113–1119 (2012).
    [Crossref]
  21. J. Hetterich, G. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE J. Quantum Electron. 43(10), 855–859 (2007).
    [Crossref]
  22. T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 704–719 (2011).
    [Crossref]
  23. M. Fukuhara, M. Ota, H. Sakai, T. Aihara, Y. Ishii, and M. Fukuda, “Low-loss waveguiding and detecting structure for surface plasmon polaritons,” Appl. Phys. Lett. 104(8), 081111 (2014).
    [Crossref]
  24. A. Olivieri, C. Chen, S. Hassan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Plasmonic nanostructured metal-oxide-semiconductor reflection modulators,” Nano Lett. 15(4), 2304–2311 (2015).
    [Crossref] [PubMed]
  25. H. Hu, X. Zeng, D. Ji, L. Zhu, and Q. Gan, “Efficient end-fire coupling of surface plasmons on flat metal surfaces for improved plasmonic Mach-Zehnder interferometer,” J. Appl. Phys. 113(5), 053101 (2013).
    [Crossref]
  26. R. Hunsperger, Integrated Optics, Theory and Technology (Springer Science + Business Media, 2009).
  27. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006).
  28. FDTD Solutions; Lumerical Solutions Inc.: Vancouver, Canada, (Accessed 2014).
  29. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
    [Crossref] [PubMed]
  30. C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
    [Crossref]
  31. P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology 23(44), 444011 (2012).
    [Crossref] [PubMed]
  32. e_LiNE; Raith nanofabrication: Dortmund Germany, www.raith.com (Accessed 2014).
  33. S. Hassan, E. Lisicka-Skrzek, A. Olivieri, R. N. Tait, and P. Berini, “Fabrication of a plasmonic modulator incorporating an overlaid grating coupler,” Nanotechnology 25(49), 495202 (2014).
    [Crossref] [PubMed]
  34. LabVIEW; National Instruments Corporation: Austin TX, United States, (Accessed 2014).
  35. P. Kramer and L. J. van Ruyven, “Position of the band edges of silicon under uniaxial stress,” Appl. Phys. Lett. 20(11), 420–422 (1972).
    [Crossref]
  36. C. D. Lien, F. C. T. So, and M. A. Nicolet, “An improved forward I-V method for nonideal Schottky diodes with high sense resistance,” IEEE Trans. Electron Dev. 31(10), 1502–1503 (1984).
    [Crossref]
  37. J. H. Werner, “Schottky barrier and pn-junction I/V plots -Small signal evaluation,” Appl. Phys., A Mater. Sci. Process. 47(3), 291–300 (1988).
    [Crossref]
  38. C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41(19), 3978–3987 (2002).
    [Crossref] [PubMed]
  39. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).
  40. S. M. Sze, C. R. Crowell, and D. J. Kahng, “Photoelectric determination of the image force dielectric constant for hot electrons in Schottky barriers,” Appl. Phys. (Berl.) 35(8), 2534 (1964).
    [Crossref]
  41. J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
    [Crossref]

2015 (4)

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

A. Olivieri, C. Chen, S. Hassan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Plasmonic nanostructured metal-oxide-semiconductor reflection modulators,” Nano Lett. 15(4), 2304–2311 (2015).
[Crossref] [PubMed]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

B. Desiatov, I. Goykhman, N. Mazurski, J. O. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335–338 (2015).
[Crossref]

2014 (8)

S. Hassan, E. Lisicka-Skrzek, A. Olivieri, R. N. Tait, and P. Berini, “Fabrication of a plasmonic modulator incorporating an overlaid grating coupler,” Nanotechnology 25(49), 495202 (2014).
[Crossref] [PubMed]

M. Fukuhara, M. Ota, H. Sakai, T. Aihara, Y. Ishii, and M. Fukuda, “Low-loss waveguiding and detecting structure for surface plasmon polaritons,” Appl. Phys. Lett. 104(8), 081111 (2014).
[Crossref]

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photonics Rev. 8(2), 197–220 (2014).
[Crossref]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metaloxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Taw, “Sensitive detection of interleukin-6 on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53, 06JL05 (2014).
[Crossref]

A. Takeda, T. Aihara, M. Fukuhara, Y. Ishii, and M. Fukuda, “Schottky-type surface plasmon detector with nano-slit grating using enhanced resonant optical transmission,” J. Appl. Phys. 116(8), 084313 (2014).
[Crossref]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

2013 (3)

H. Hu, X. Zeng, D. Ji, L. Zhu, and Q. Gan, “Efficient end-fire coupling of surface plasmons on flat metal surfaces for improved plasmonic Mach-Zehnder interferometer,” J. Appl. Phys. 113(5), 053101 (2013).
[Crossref]

X. Li, D. Xiao, and Z. Zhang, “Landau damping of quantum plasmons in metal nanostructures,” New J. Phys. 15(2), 023011 (2013).
[Crossref]

M. Alavirad, S. S. Mousavi, L. Roy, and P. Berini, “Schottky-contact plasmonic dipole rectenna concept for biosensing,” Opt. Express 21(4), 4328–4347 (2013).
[Crossref] [PubMed]

2012 (4)

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express 20(11), 12599–12609 (2012).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20(27), 28594–28602 (2012).
[Crossref] [PubMed]

P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology 23(44), 444011 (2012).
[Crossref] [PubMed]

X. G. Guo, R. Zhang, J. C. Cao, and H. Liu, “Surface plasmon-enhanced absorption in metal grating coupled terahertz quantum well photodetectors,” IEEE J. Quantum Electron. 48(9), 1113–1119 (2012).
[Crossref]

2011 (3)

T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 704–719 (2011).
[Crossref]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

J. W. Yoon, W. J. Park, K. J. Lee, S. H. Song, and R. Magnusson, “Surface-plasmon mediated total absorption of light into silicon,” Opt. Express 19(21), 20673–20680 (2011).
[Crossref] [PubMed]

2010 (2)

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18(8), 8505–8514 (2010).
[Crossref] [PubMed]

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

2009 (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

2007 (1)

J. Hetterich, G. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE J. Quantum Electron. 43(10), 855–859 (2007).
[Crossref]

2002 (2)

A. Sellai and P. Dawson, “Quantum efficiency in GaAs Schottky photodetectors with enhancement due to surface plasmon excitations,” Solid-State Electron. 46(1), 29–33 (2002).
[Crossref]

C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41(19), 3978–3987 (2002).
[Crossref] [PubMed]

1996 (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

1988 (1)

J. H. Werner, “Schottky barrier and pn-junction I/V plots -Small signal evaluation,” Appl. Phys., A Mater. Sci. Process. 47(3), 291–300 (1988).
[Crossref]

1984 (1)

C. D. Lien, F. C. T. So, and M. A. Nicolet, “An improved forward I-V method for nonideal Schottky diodes with high sense resistance,” IEEE Trans. Electron Dev. 31(10), 1502–1503 (1984).
[Crossref]

1972 (1)

P. Kramer and L. J. van Ruyven, “Position of the band edges of silicon under uniaxial stress,” Appl. Phys. Lett. 20(11), 420–422 (1972).
[Crossref]

1964 (1)

S. M. Sze, C. R. Crowell, and D. J. Kahng, “Photoelectric determination of the image force dielectric constant for hot electrons in Schottky barriers,” Appl. Phys. (Berl.) 35(8), 2534 (1964).
[Crossref]

Ackert, J. J.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Aihara, T.

A. Takeda, T. Aihara, M. Fukuhara, Y. Ishii, and M. Fukuda, “Schottky-type surface plasmon detector with nano-slit grating using enhanced resonant optical transmission,” J. Appl. Phys. 116(8), 084313 (2014).
[Crossref]

M. Fukuhara, M. Ota, H. Sakai, T. Aihara, Y. Ishii, and M. Fukuda, “Low-loss waveguiding and detecting structure for surface plasmon polaritons,” Appl. Phys. Lett. 104(8), 081111 (2014).
[Crossref]

Akbari, A.

Alavirad, M.

Atar, F. B.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Atwater, H. A.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Bastian, G.

J. Hetterich, G. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE J. Quantum Electron. 43(10), 855–859 (2007).
[Crossref]

Berini, P.

A. Olivieri, C. Chen, S. Hassan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Plasmonic nanostructured metal-oxide-semiconductor reflection modulators,” Nano Lett. 15(4), 2304–2311 (2015).
[Crossref] [PubMed]

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photonics Rev. 8(2), 197–220 (2014).
[Crossref]

S. Hassan, E. Lisicka-Skrzek, A. Olivieri, R. N. Tait, and P. Berini, “Fabrication of a plasmonic modulator incorporating an overlaid grating coupler,” Nanotechnology 25(49), 495202 (2014).
[Crossref] [PubMed]

M. Alavirad, S. S. Mousavi, L. Roy, and P. Berini, “Schottky-contact plasmonic dipole rectenna concept for biosensing,” Opt. Express 21(4), 4328–4347 (2013).
[Crossref] [PubMed]

P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology 23(44), 444011 (2012).
[Crossref] [PubMed]

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18(8), 8505–8514 (2010).
[Crossref] [PubMed]

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Brongersma, M. L.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

Cao, J. C.

X. G. Guo, R. Zhang, J. C. Cao, and H. Liu, “Surface plasmon-enhanced absorption in metal grating coupled terahertz quantum well photodetectors,” IEEE J. Quantum Electron. 48(9), 1113–1119 (2012).
[Crossref]

Casalino, M.

Chen, C.

A. Olivieri, C. Chen, S. Hassan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Plasmonic nanostructured metal-oxide-semiconductor reflection modulators,” Nano Lett. 15(4), 2304–2311 (2015).
[Crossref] [PubMed]

P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology 23(44), 444011 (2012).
[Crossref] [PubMed]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metaloxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Coppola, G.

Crowell, C. R.

S. M. Sze, C. R. Crowell, and D. J. Kahng, “Photoelectric determination of the image force dielectric constant for hot electrons in Schottky barriers,” Appl. Phys. (Berl.) 35(8), 2534 (1964).
[Crossref]

Dawson, P.

A. Sellai and P. Dawson, “Quantum efficiency in GaAs Schottky photodetectors with enhancement due to surface plasmon excitations,” Solid-State Electron. 46(1), 29–33 (2002).
[Crossref]

Desiatov, B.

Fukuda, M.

A. Takeda, T. Aihara, M. Fukuhara, Y. Ishii, and M. Fukuda, “Schottky-type surface plasmon detector with nano-slit grating using enhanced resonant optical transmission,” J. Appl. Phys. 116(8), 084313 (2014).
[Crossref]

M. Fukuhara, M. Ota, H. Sakai, T. Aihara, Y. Ishii, and M. Fukuda, “Low-loss waveguiding and detecting structure for surface plasmon polaritons,” Appl. Phys. Lett. 104(8), 081111 (2014).
[Crossref]

Fukuhara, M.

M. Fukuhara, M. Ota, H. Sakai, T. Aihara, Y. Ishii, and M. Fukuda, “Low-loss waveguiding and detecting structure for surface plasmon polaritons,” Appl. Phys. Lett. 104(8), 081111 (2014).
[Crossref]

A. Takeda, T. Aihara, M. Fukuhara, Y. Ishii, and M. Fukuda, “Schottky-type surface plasmon detector with nano-slit grating using enhanced resonant optical transmission,” J. Appl. Phys. 116(8), 084313 (2014).
[Crossref]

Gan, Q.

H. Hu, X. Zeng, D. Ji, L. Zhu, and Q. Gan, “Efficient end-fire coupling of surface plasmons on flat metal surfaces for improved plasmonic Mach-Zehnder interferometer,” J. Appl. Phys. 113(5), 053101 (2013).
[Crossref]

Gippius, N. A.

J. Hetterich, G. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE J. Quantum Electron. 43(10), 855–859 (2007).
[Crossref]

Goddard, W. A.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Goykhman, I.

Guo, X. G.

X. G. Guo, R. Zhang, J. C. Cao, and H. Liu, “Surface plasmon-enhanced absorption in metal grating coupled terahertz quantum well photodetectors,” IEEE J. Quantum Electron. 48(9), 1113–1119 (2012).
[Crossref]

Halas, N. J.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Hassan, S.

A. Olivieri, C. Chen, S. Hassan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Plasmonic nanostructured metal-oxide-semiconductor reflection modulators,” Nano Lett. 15(4), 2304–2311 (2015).
[Crossref] [PubMed]

S. Hassan, E. Lisicka-Skrzek, A. Olivieri, R. N. Tait, and P. Berini, “Fabrication of a plasmonic modulator incorporating an overlaid grating coupler,” Nanotechnology 25(49), 495202 (2014).
[Crossref] [PubMed]

Hecht, B.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Hetterich, J.

J. Hetterich, G. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE J. Quantum Electron. 43(10), 855–859 (2007).
[Crossref]

Hu, H.

H. Hu, X. Zeng, D. Ji, L. Zhu, and Q. Gan, “Efficient end-fire coupling of surface plasmons on flat metal surfaces for improved plasmonic Mach-Zehnder interferometer,” J. Appl. Phys. 113(5), 053101 (2013).
[Crossref]

Inouye, Y.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Iodice, M.

Ishii, Y.

M. Fukuhara, M. Ota, H. Sakai, T. Aihara, Y. Ishii, and M. Fukuda, “Low-loss waveguiding and detecting structure for surface plasmon polaritons,” Appl. Phys. Lett. 104(8), 081111 (2014).
[Crossref]

A. Takeda, T. Aihara, M. Fukuhara, Y. Ishii, and M. Fukuda, “Schottky-type surface plasmon detector with nano-slit grating using enhanced resonant optical transmission,” J. Appl. Phys. 116(8), 084313 (2014).
[Crossref]

Jermyn, A. S.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Jessop, P. E.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Ji, D.

H. Hu, X. Zeng, D. Ji, L. Zhu, and Q. Gan, “Efficient end-fire coupling of surface plasmons on flat metal surfaces for improved plasmonic Mach-Zehnder interferometer,” J. Appl. Phys. 113(5), 053101 (2013).
[Crossref]

Kahng, D. J.

S. M. Sze, C. R. Crowell, and D. J. Kahng, “Photoelectric determination of the image force dielectric constant for hot electrons in Schottky barriers,” Appl. Phys. (Berl.) 35(8), 2534 (1964).
[Crossref]

Katsidis, C. C.

Khurgin, J.

Khurgin, J. B.

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Knights, A. P.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Kramer, P.

P. Kramer and L. J. van Ruyven, “Position of the band edges of silicon under uniaxial stress,” Appl. Phys. Lett. 20(11), 420–422 (1972).
[Crossref]

Lee, K. J.

Lemmer, U.

J. Hetterich, G. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE J. Quantum Electron. 43(10), 855–859 (2007).
[Crossref]

Levy, U.

Li, X.

X. Li, D. Xiao, and Z. Zhang, “Landau damping of quantum plasmons in metal nanostructures,” New J. Phys. 15(2), 023011 (2013).
[Crossref]

Lien, C. D.

C. D. Lien, F. C. T. So, and M. A. Nicolet, “An improved forward I-V method for nonideal Schottky diodes with high sense resistance,” IEEE Trans. Electron Dev. 31(10), 1502–1503 (1984).
[Crossref]

Lisicka-Skrzek, E.

A. Olivieri, C. Chen, S. Hassan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Plasmonic nanostructured metal-oxide-semiconductor reflection modulators,” Nano Lett. 15(4), 2304–2311 (2015).
[Crossref] [PubMed]

S. Hassan, E. Lisicka-Skrzek, A. Olivieri, R. N. Tait, and P. Berini, “Fabrication of a plasmonic modulator incorporating an overlaid grating coupler,” Nanotechnology 25(49), 495202 (2014).
[Crossref] [PubMed]

Liu, H.

X. G. Guo, R. Zhang, J. C. Cao, and H. Liu, “Surface plasmon-enhanced absorption in metal grating coupled terahertz quantum well photodetectors,” IEEE J. Quantum Electron. 48(9), 1113–1119 (2012).
[Crossref]

Magnusson, R.

Mashanovich, G. Z.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Mazurski, N.

Mousavi, S. S.

Narang, P.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Naruishi, N.

M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Taw, “Sensitive detection of interleukin-6 on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53, 06JL05 (2014).
[Crossref]

Nazirzadeh, M. A.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Nicolet, M. A.

C. D. Lien, F. C. T. So, and M. A. Nicolet, “An improved forward I-V method for nonideal Schottky diodes with high sense resistance,” IEEE Trans. Electron Dev. 31(10), 1502–1503 (1984).
[Crossref]

Nordlander, P.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Novotny, L.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Okyay, A. K.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Olivieri, A.

A. Olivieri, C. Chen, S. Hassan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Plasmonic nanostructured metal-oxide-semiconductor reflection modulators,” Nano Lett. 15(4), 2304–2311 (2015).
[Crossref] [PubMed]

S. Hassan, E. Lisicka-Skrzek, A. Olivieri, R. N. Tait, and P. Berini, “Fabrication of a plasmonic modulator incorporating an overlaid grating coupler,” Nanotechnology 25(49), 495202 (2014).
[Crossref] [PubMed]

P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology 23(44), 444011 (2012).
[Crossref] [PubMed]

Ota, M.

M. Fukuhara, M. Ota, H. Sakai, T. Aihara, Y. Ishii, and M. Fukuda, “Low-loss waveguiding and detecting structure for surface plasmon polaritons,” Appl. Phys. Lett. 104(8), 081111 (2014).
[Crossref]

Park, W. J.

Peacock, A. C.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Pohl, D. W.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Reed, G. T.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Rendina, I.

Roy, L.

Sakai, H.

M. Fukuhara, M. Ota, H. Sakai, T. Aihara, Y. Ishii, and M. Fukuda, “Low-loss waveguiding and detecting structure for surface plasmon polaritons,” Appl. Phys. Lett. 104(8), 081111 (2014).
[Crossref]

Sasakawa, C.

M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Taw, “Sensitive detection of interleukin-6 on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53, 06JL05 (2014).
[Crossref]

Scales, C.

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

Sellai, A.

A. Sellai and P. Dawson, “Quantum efficiency in GaAs Schottky photodetectors with enhancement due to surface plasmon excitations,” Solid-State Electron. 46(1), 29–33 (2002).
[Crossref]

Shappir, J.

Shappir, J. O.

Shen, L.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Siapkas, D. I.

Sirleto, L.

So, F. C. T.

C. D. Lien, F. C. T. So, and M. A. Nicolet, “An improved forward I-V method for nonideal Schottky diodes with high sense resistance,” IEEE Trans. Electron Dev. 31(10), 1502–1503 (1984).
[Crossref]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Song, S. H.

Sundararaman, R.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Sze, S. M.

S. M. Sze, C. R. Crowell, and D. J. Kahng, “Photoelectric determination of the image force dielectric constant for hot electrons in Schottky barriers,” Appl. Phys. (Berl.) 35(8), 2534 (1964).
[Crossref]

Tait, R. N.

A. Olivieri, C. Chen, S. Hassan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Plasmonic nanostructured metal-oxide-semiconductor reflection modulators,” Nano Lett. 15(4), 2304–2311 (2015).
[Crossref] [PubMed]

S. Hassan, E. Lisicka-Skrzek, A. Olivieri, R. N. Tait, and P. Berini, “Fabrication of a plasmonic modulator incorporating an overlaid grating coupler,” Nanotechnology 25(49), 495202 (2014).
[Crossref] [PubMed]

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18(8), 8505–8514 (2010).
[Crossref] [PubMed]

Takeda, A.

A. Takeda, T. Aihara, M. Fukuhara, Y. Ishii, and M. Fukuda, “Schottky-type surface plasmon detector with nano-slit grating using enhanced resonant optical transmission,” J. Appl. Phys. 116(8), 084313 (2014).
[Crossref]

Tanaka, Y.

M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Taw, “Sensitive detection of interleukin-6 on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53, 06JL05 (2014).
[Crossref]

Taw, K.

M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Taw, “Sensitive detection of interleukin-6 on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53, 06JL05 (2014).
[Crossref]

Tekin, T.

T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 704–719 (2011).
[Crossref]

Thomson, D. J.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Tikhodeev, S. G.

J. Hetterich, G. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE J. Quantum Electron. 43(10), 855–859 (2007).
[Crossref]

Tsuneyasu, M.

M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Taw, “Sensitive detection of interleukin-6 on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53, 06JL05 (2014).
[Crossref]

Turgut, B. B.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

van Ruyven, L. J.

P. Kramer and L. J. van Ruyven, “Position of the band edges of silicon under uniaxial stress,” Appl. Phys. Lett. 20(11), 420–422 (1972).
[Crossref]

von Plessen, G.

J. Hetterich, G. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE J. Quantum Electron. 43(10), 855–859 (2007).
[Crossref]

Werner, J. H.

J. H. Werner, “Schottky barrier and pn-junction I/V plots -Small signal evaluation,” Appl. Phys., A Mater. Sci. Process. 47(3), 291–300 (1988).
[Crossref]

Xiao, D.

X. Li, D. Xiao, and Z. Zhang, “Landau damping of quantum plasmons in metal nanostructures,” New J. Phys. 15(2), 023011 (2013).
[Crossref]

Yoon, J. W.

Yoshida, Y.

M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Taw, “Sensitive detection of interleukin-6 on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53, 06JL05 (2014).
[Crossref]

Zeng, X.

H. Hu, X. Zeng, D. Ji, L. Zhu, and Q. Gan, “Efficient end-fire coupling of surface plasmons on flat metal surfaces for improved plasmonic Mach-Zehnder interferometer,” J. Appl. Phys. 113(5), 053101 (2013).
[Crossref]

Zhang, R.

X. G. Guo, R. Zhang, J. C. Cao, and H. Liu, “Surface plasmon-enhanced absorption in metal grating coupled terahertz quantum well photodetectors,” IEEE J. Quantum Electron. 48(9), 1113–1119 (2012).
[Crossref]

Zhang, Z.

X. Li, D. Xiao, and Z. Zhang, “Landau damping of quantum plasmons in metal nanostructures,” New J. Phys. 15(2), 023011 (2013).
[Crossref]

Zhu, L.

H. Hu, X. Zeng, D. Ji, L. Zhu, and Q. Gan, “Efficient end-fire coupling of surface plasmons on flat metal surfaces for improved plasmonic Mach-Zehnder interferometer,” J. Appl. Phys. 113(5), 053101 (2013).
[Crossref]

Adv. Opt. Photonics (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. (Berl.) (1)

S. M. Sze, C. R. Crowell, and D. J. Kahng, “Photoelectric determination of the image force dielectric constant for hot electrons in Schottky barriers,” Appl. Phys. (Berl.) 35(8), 2534 (1964).
[Crossref]

Appl. Phys. Lett. (2)

P. Kramer and L. J. van Ruyven, “Position of the band edges of silicon under uniaxial stress,” Appl. Phys. Lett. 20(11), 420–422 (1972).
[Crossref]

M. Fukuhara, M. Ota, H. Sakai, T. Aihara, Y. Ishii, and M. Fukuda, “Low-loss waveguiding and detecting structure for surface plasmon polaritons,” Appl. Phys. Lett. 104(8), 081111 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. H. Werner, “Schottky barrier and pn-junction I/V plots -Small signal evaluation,” Appl. Phys., A Mater. Sci. Process. 47(3), 291–300 (1988).
[Crossref]

IEEE J. Quantum Electron. (3)

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

X. G. Guo, R. Zhang, J. C. Cao, and H. Liu, “Surface plasmon-enhanced absorption in metal grating coupled terahertz quantum well photodetectors,” IEEE J. Quantum Electron. 48(9), 1113–1119 (2012).
[Crossref]

J. Hetterich, G. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer, “Optimized design of plasmonic MSM photodetector,” IEEE J. Quantum Electron. 43(10), 855–859 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 704–719 (2011).
[Crossref]

IEEE Trans. Electron Dev. (1)

C. D. Lien, F. C. T. So, and M. A. Nicolet, “An improved forward I-V method for nonideal Schottky diodes with high sense resistance,” IEEE Trans. Electron Dev. 31(10), 1502–1503 (1984).
[Crossref]

J. Appl. Phys. (2)

H. Hu, X. Zeng, D. Ji, L. Zhu, and Q. Gan, “Efficient end-fire coupling of surface plasmons on flat metal surfaces for improved plasmonic Mach-Zehnder interferometer,” J. Appl. Phys. 113(5), 053101 (2013).
[Crossref]

A. Takeda, T. Aihara, M. Fukuhara, Y. Ishii, and M. Fukuda, “Schottky-type surface plasmon detector with nano-slit grating using enhanced resonant optical transmission,” J. Appl. Phys. 116(8), 084313 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Taw, “Sensitive detection of interleukin-6 on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53, 06JL05 (2014).
[Crossref]

Laser Photonics Rev. (1)

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photonics Rev. 8(2), 197–220 (2014).
[Crossref]

Nano Lett. (1)

A. Olivieri, C. Chen, S. Hassan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Plasmonic nanostructured metal-oxide-semiconductor reflection modulators,” Nano Lett. 15(4), 2304–2311 (2015).
[Crossref] [PubMed]

Nanotechnology (2)

P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology 23(44), 444011 (2012).
[Crossref] [PubMed]

S. Hassan, E. Lisicka-Skrzek, A. Olivieri, R. N. Tait, and P. Berini, “Fabrication of a plasmonic modulator incorporating an overlaid grating coupler,” Nanotechnology 25(49), 495202 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metaloxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

New J. Phys. (1)

X. Li, D. Xiao, and Z. Zhang, “Landau damping of quantum plasmons in metal nanostructures,” New J. Phys. 15(2), 023011 (2013).
[Crossref]

Opt. Express (5)

Optica (1)

Phys. Rev. Lett. (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Sci. Rep. (1)

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Solid-State Electron. (1)

A. Sellai and P. Dawson, “Quantum efficiency in GaAs Schottky photodetectors with enhancement due to surface plasmon excitations,” Solid-State Electron. 46(1), 29–33 (2002).
[Crossref]

Other (8)

I. Goykhman, B. Desiatov, J. Shappir, J. B. Khurgin, and U. Levy, “Model for quantum efficiency of guided mode plasmonic enhanced silicon Schottky detectors,” arXiv: 1401.2624 (2014).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business Media, 2007).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

LabVIEW; National Instruments Corporation: Austin TX, United States, (Accessed 2014).

e_LiNE; Raith nanofabrication: Dortmund Germany, www.raith.com (Accessed 2014).

R. Hunsperger, Integrated Optics, Theory and Technology (Springer Science + Business Media, 2009).

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006).

FDTD Solutions; Lumerical Solutions Inc.: Vancouver, Canada, (Accessed 2014).

Supplementary Material (2)

NameDescription
» Visualization 1: MPG (1222 KB)      A movie of |Re{Ex}|, showing light propagation and scattering in the device
» Visualization 2: MPG (846 KB)      A movie of |Re{Ez}|, showing light propagation and scattering in the device

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Cross-sectional sketch of the proposed Au/Si Schottky surface plasmon photodetector. The structure comprises a metal patch of thickness t on p-Si, with a metal grating consisting of rectangular ridges of width W and thickness H arranged periodically in pitch Λ. The materials considered are Au for the metal, p-Si for the epitaxial layer and p+-Si for the substrate. The device is illuminated from the top with polarised infrared light perpendicular to the grating. (b) Energy band diagram of a metal contact to a p-type semiconductor and the 3-steps of the internal photoemission process: p: photoexcitation, t: transport, e: emission. EC and EV are the conduction and valence band edges, respectively, EF is the Fermi level, Eg is the energy bandgap of Si, and ΦB is the Schottky barrier height. (c) Hot hole photoemission across the Schottky junction between a metal and a p-type semiconductor.
Fig. 2
Fig. 2 Power ratios (absorptance A0; transmittance T0; reflectance R0; and coupling coefficient C0) of grating photodetectors operating near 1550 nm, with a duty cycle of 60% and t = 20 nm (solid lines), and a duty cycle of 62% and t = 28.9 nm (dashed lines) for grating designs having W = 200 nm, H = 80 nm and (a) Λ = 390 nm, (b) Λ = 400 nm, and (c) Λ = 410 nm. The resonance red-shifts with increasing pitch. Electric field distribution of the gratings corresponding to Λ = 400 nm, t = 20 nm, computed on resonance (λ0 = 1560 nm); (d) Re{Ex}, (e) Re{Ez} and (f) |E| (also see Visualization 1 and Visualization 2). The incident electric field strength was 1 V/m.
Fig. 3
Fig. 3 (a), (b) SEM and AFM images, respectively, of an uncoated Au/p-Si grating photodetector. The pitch of the device is measured as 406 nm (400 nm designed) and the thickness of the Au patch is measured as 28.9 nm (20 nm designed). The duty cycle of this device is 60%. (c) Optical microscope image of photodetectors of varying grating period, e-beam energy dose factors and duty cycles. Each color spot corresponds to one detector. The area shown is about 8 mm2 and contains ~170 detectors.
Fig. 4
Fig. 4 (a) The red curve shows an average of five dark I-V characteristics for a grating photodetector of diameter 28 μm and Λ = 400 nm. The purple curve is obtained after removing the effects of the shunt and series resistors shown in the non-ideal model in inset. (b) Measured photocurrent response of three grating photodetectors; VB = −100 mV, Λ = 390, 400 and 410 nm, duty cycle of 62% and patch diameter of 25 μm. A 4-period moving average is plotted on each response as the bold curve. The rapid wavelength variations correspond to Fabry-Perot resonances - the upper right inset is an enlarged response showing such resonances and the lower right inset shows a response calculated using the TMM method, (c) Deep traps formed by the diffusion of Au into p-Si .
Fig. 5
Fig. 5 (a) Photocurrent generated by grating detectors vs. incident power Pinc,d measured for three different pitches: Λ = 390 nm (λ01 = 1537 nm), Λ = 400 nm (λ02 = 1548 nm) and Λ = 410 nm (λ03 = 1570 nm). A linear fit is applied to the data and the slope corresponds to the responsivity of the device. (b) Responsivity vs. reverse bias measured for the photodetector with Λ = 400 nm at λ0 = 1548 nm; the dashed curve shows a trend curve for the responsivity obtained by taking into account the Schottky barrier lowering effect.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

k spp = k 0 sin( θ i )+M 2π Λ
Λ= 2π k spp = λ 0 n eff
A 0 =1 R 0 T 0
C 0 = T 0 (z=t) T 0 (z=0)
Δν= c 0 λ 0 2 Δλ
η i = 1 2 ( 1 q φ B hν ) 2
R esp =κ Aq η i hν = I ph P inc
I D = A c A ** T 2 e q φ B nkT
P inc,d (s) P inc (0) =1e 2 s 2 w s 2
w s = w 0 1+ s 2 z 0 2
Δ Φ B = [ q 3 N( V R + V bi kT/q) 8 π 2 ε Si 3 ] 0.25

Metrics