Abstract

We use a Mach-Zehnder interferometer to perform neutron holography of a spiral phase plate. The object beam passes through a spiral phase plate, acquiring the phase twist characteristic of orbital angular momentum states. The reference beam passes through a fused silica prism, acquiring a linear phase gradient. The resulting hologram is a fork dislocation image, which could be used to reconstruct neutron beams with various orbital angular momenta. This work paves the way for novel applications of neutron holography, diffraction and imaging.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical vortex phase-shifting digital holography

Cheng-Shan Guo, Xin Cheng, Xiu-Yun Ren, Jian-Ping Ding, and Hui-Tian Wang
Opt. Express 12(21) 5166-5171 (2004)

Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range

Xuli Wei, Changming Liu, Liting Niu, Zhongqi Zhang, Kejia Wang, Zhengang Yang, and Jinsong Liu
Appl. Opt. 54(36) 10641-10649 (2015)

Digital holography with a point diffraction interferometer

C. Iemmi, A. Moreno, and J. Campos
Opt. Express 13(6) 1885-1891 (2005)

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref] [PubMed]
  2. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
    [Crossref]
  3. H. Lichte and M. Lehmann, “Electron holography–basics and applications,” Rep. Prog. Phys. 71, 016102 (2008).
    [Crossref]
  4. B. Sur, R. B. Rogge, R. P. Hammond, V. N. P. Anghel, and J. Katsaras, “Atomic structure holography using thermal neutrons,” Nature 414, 525–527 (2001).
    [Crossref] [PubMed]
  5. L. Cser, Gy. Török, G. Krexner, I. Sharkov, and B. Faragó, “Holographic Imaging of Atoms Using Thermal Neutrons,” Phys. Rev. Lett. 89, 175504 (2002).
    [Crossref] [PubMed]
  6. I. S. Anderson, R. McGreevy, and H. Z. Bilheux, eds., Neutron Imaging and Applications: A Reference for the Imaging Community (SpringerUS, 2009).
  7. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52(10), 1123–1130 (1962).
    [Crossref]
  8. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53(12), 1377–1381 (1963).
    [Crossref]
  9. B. Javidi, ed. Optical and Digital Techniques for Information Security (Springer Science & Business Media, 2005).
    [Crossref]
  10. S. F. Johnston, Holograms: A Cultural History (Oxford University, 2016).
  11. P. Hessing, B. Pfau, E. Guehrs, M. Schneider, L. Shemilt, J. Geilhufe, and S. Eisebitt, “Holography-guided ptychography with soft X-rays,” Opt. Express 24, 1840–1851 (2016).
    [Crossref] [PubMed]
  12. O. Backoach, S. Kariv, P. Girshovitz, and N. T. Shaked, “Fast phase processing in off-axis holography by CUDA including parallel phase unwrapping,” Opt. Express 24, 3177–3188 (2016).
    [Crossref] [PubMed]
  13. R. Isogai, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography,” Opt. Express 24, 522–527 (2016).
    [Crossref] [PubMed]
  14. T. C. Petersen, A. I. Bishop, S. A. Eastwood, D. M. Paganin, K. S. Morgan, and M. J. Morgan, “Singularimetry of local phase gradients using vortex lattices and in-line holography,” Opt. Express 24, 2259–2272 (2016).
    [Crossref] [PubMed]
  15. P. Zolliker and E. Hack, “THz holography in reflection using a high resolution microbolometer array,” Opt. Express 23, 10957–10967 (2015).
    [Crossref] [PubMed]
  16. M. R. Fernández-Ruiz, L. Lei, M. Rochette, and J. Azaña, “All-optical wavelength conversion based on time-domain holography,” Opt. Express 23, 22847–22856 (2015).
    [Crossref] [PubMed]
  17. D. Bowman, P. Ireland, G. D. Bruce, and D. Cassettari, “Multi-wavelength holography with a single spatial light modulator for ultracold atom experiments,” Opt. Express 23, 8365–8372 (2015).
    [Crossref] [PubMed]
  18. H. Rauch and S. A. Werner, Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement (Oxford University, 2015).
    [Crossref]
  19. C. W. Clark, R. Barankov, M. G. Huber, M. Arif, D. G. Cory, and D. A. Pushin, “Controlling neutron orbital angular momentum,” Nature 525, 504–506 (2015).
    [Crossref] [PubMed]
  20. V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” Pis’ma Zh. Eks. Teor. Fiz. 52, 1037–1039 (1990) [JETP Lett. 52, 429–431 (1991)].
  21. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17221–223 (1992).
    [Crossref] [PubMed]
  22. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
    [Crossref]
  23. M. F. Andersen, C. Ryu, P. Cladeé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
    [Crossref] [PubMed]
  24. B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331192–195 (2011).
    [Crossref] [PubMed]
  25. K. Saitoh and M. Uchida, “Electron beam carrying orbital angular momentum,” Nihon Kessho Gakkaishi 58, 79–84 (2016).
    [Crossref]
  26. A. Yao and M. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
    [Crossref]
  27. J. Nsofini, D. Sarenac, C. J. Wood, D. G. Cory, M. Arif, C. W. Clark, M. G. Huber, and D. A. Pushin, “Spin orbit states of neutron wavepackets,” Phys. Rev. A 94, 013605 (2016).
    [Crossref]
  28. N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature 494, 331–335 (2013).
    [Crossref] [PubMed]
  29. V. Grillo, E. Karimi, G. C. Gazzadi, S. Frabboni, M. R. Dennis, and R. W. Boyd, “Generation of nondiffracting electron Bessel beams,” Phys. Rev. X 4, 011013 (2014).
  30. I. A. Litvin, T. Mhlanga, and A. Forbes, “Digital generation of shape-invariant Bessel-like beams,” Opt. Express 23, 7312–7319 (2015).
    [Crossref] [PubMed]
  31. D. A. Pushin, D. G. Cory, M. Arif, D. L. Jacobson, and M. G. Huber, “Reciprocal space approaches to neutron imaging,” Appl. Phys. Lett. 90, 224104 (2007).
    [Crossref]
  32. D. A. Pushin, M. Arif, D. L. Jacobson, C. K. Doe, and D. G. Cory, “Reciprocal space neutron imaging,” Physica B 385–386, 1402 (2006).
    [Crossref]
  33. C. B. Shahi, M. Arif, D. G. Cory, T. Mineeva, J. Nsofini, D. Sarenac, C. J. Williams, M. G. Huber, and D. A. Pushin, “A new polarized neutron interferometry facility at the NCNR,” Nuc. Inst. Meth. A 813, 111–122 (2016).
    [Crossref]
  34. M. Dietze, J. Felber, K. Raum, and C. Rausch, “Intensified CCDs as position sensitive neutron detectors,” Nuc. Inst. Meth. A 377, 320–324 (1996).
    [Crossref]
  35. J. D. Fairweather, D. Spernjak, A. Z. Weber, D. Harvey, S. Wessel, D. S. Hussey, D. L. Jacobson, K. Artyushkova, R. Mukundan, and R. L. Borup, “Effects of cathode corrosion on through-plane water transport in proton exchange membrane fuel cells,” J. Electrochem. Soc. 160, F980–F993 (2013).
    [Crossref]

2016 (7)

2015 (5)

2014 (1)

V. Grillo, E. Karimi, G. C. Gazzadi, S. Frabboni, M. R. Dennis, and R. W. Boyd, “Generation of nondiffracting electron Bessel beams,” Phys. Rev. X 4, 011013 (2014).

2013 (2)

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature 494, 331–335 (2013).
[Crossref] [PubMed]

J. D. Fairweather, D. Spernjak, A. Z. Weber, D. Harvey, S. Wessel, D. S. Hussey, D. L. Jacobson, K. Artyushkova, R. Mukundan, and R. L. Borup, “Effects of cathode corrosion on through-plane water transport in proton exchange membrane fuel cells,” J. Electrochem. Soc. 160, F980–F993 (2013).
[Crossref]

2011 (2)

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331192–195 (2011).
[Crossref] [PubMed]

A. Yao and M. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
[Crossref]

2008 (1)

H. Lichte and M. Lehmann, “Electron holography–basics and applications,” Rep. Prog. Phys. 71, 016102 (2008).
[Crossref]

2007 (1)

D. A. Pushin, D. G. Cory, M. Arif, D. L. Jacobson, and M. G. Huber, “Reciprocal space approaches to neutron imaging,” Appl. Phys. Lett. 90, 224104 (2007).
[Crossref]

2006 (2)

D. A. Pushin, M. Arif, D. L. Jacobson, C. K. Doe, and D. G. Cory, “Reciprocal space neutron imaging,” Physica B 385–386, 1402 (2006).
[Crossref]

M. F. Andersen, C. Ryu, P. Cladeé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref] [PubMed]

2002 (2)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

L. Cser, Gy. Török, G. Krexner, I. Sharkov, and B. Faragó, “Holographic Imaging of Atoms Using Thermal Neutrons,” Phys. Rev. Lett. 89, 175504 (2002).
[Crossref] [PubMed]

2001 (1)

B. Sur, R. B. Rogge, R. P. Hammond, V. N. P. Anghel, and J. Katsaras, “Atomic structure holography using thermal neutrons,” Nature 414, 525–527 (2001).
[Crossref] [PubMed]

1996 (1)

M. Dietze, J. Felber, K. Raum, and C. Rausch, “Intensified CCDs as position sensitive neutron detectors,” Nuc. Inst. Meth. A 377, 320–324 (1996).
[Crossref]

1995 (1)

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

1992 (1)

1990 (1)

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” Pis’ma Zh. Eks. Teor. Fiz. 52, 1037–1039 (1990) [JETP Lett. 52, 429–431 (1991)].

1963 (1)

1962 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

Agrawal, A.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331192–195 (2011).
[Crossref] [PubMed]

Andersen, M. F.

M. F. Andersen, C. Ryu, P. Cladeé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref] [PubMed]

Anderson, I. M.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331192–195 (2011).
[Crossref] [PubMed]

Anghel, V. N. P.

B. Sur, R. B. Rogge, R. P. Hammond, V. N. P. Anghel, and J. Katsaras, “Atomic structure holography using thermal neutrons,” Nature 414, 525–527 (2001).
[Crossref] [PubMed]

Arie, A.

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature 494, 331–335 (2013).
[Crossref] [PubMed]

Arif, M.

J. Nsofini, D. Sarenac, C. J. Wood, D. G. Cory, M. Arif, C. W. Clark, M. G. Huber, and D. A. Pushin, “Spin orbit states of neutron wavepackets,” Phys. Rev. A 94, 013605 (2016).
[Crossref]

C. B. Shahi, M. Arif, D. G. Cory, T. Mineeva, J. Nsofini, D. Sarenac, C. J. Williams, M. G. Huber, and D. A. Pushin, “A new polarized neutron interferometry facility at the NCNR,” Nuc. Inst. Meth. A 813, 111–122 (2016).
[Crossref]

C. W. Clark, R. Barankov, M. G. Huber, M. Arif, D. G. Cory, and D. A. Pushin, “Controlling neutron orbital angular momentum,” Nature 525, 504–506 (2015).
[Crossref] [PubMed]

D. A. Pushin, D. G. Cory, M. Arif, D. L. Jacobson, and M. G. Huber, “Reciprocal space approaches to neutron imaging,” Appl. Phys. Lett. 90, 224104 (2007).
[Crossref]

D. A. Pushin, M. Arif, D. L. Jacobson, C. K. Doe, and D. G. Cory, “Reciprocal space neutron imaging,” Physica B 385–386, 1402 (2006).
[Crossref]

Artyushkova, K.

J. D. Fairweather, D. Spernjak, A. Z. Weber, D. Harvey, S. Wessel, D. S. Hussey, D. L. Jacobson, K. Artyushkova, R. Mukundan, and R. L. Borup, “Effects of cathode corrosion on through-plane water transport in proton exchange membrane fuel cells,” J. Electrochem. Soc. 160, F980–F993 (2013).
[Crossref]

Azaña, J.

Backoach, O.

Barankov, R.

C. W. Clark, R. Barankov, M. G. Huber, M. Arif, D. G. Cory, and D. A. Pushin, “Controlling neutron orbital angular momentum,” Nature 525, 504–506 (2015).
[Crossref] [PubMed]

Bazhenov, V. Y.

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” Pis’ma Zh. Eks. Teor. Fiz. 52, 1037–1039 (1990) [JETP Lett. 52, 429–431 (1991)].

Bishop, A. I.

Borup, R. L.

J. D. Fairweather, D. Spernjak, A. Z. Weber, D. Harvey, S. Wessel, D. S. Hussey, D. L. Jacobson, K. Artyushkova, R. Mukundan, and R. L. Borup, “Effects of cathode corrosion on through-plane water transport in proton exchange membrane fuel cells,” J. Electrochem. Soc. 160, F980–F993 (2013).
[Crossref]

Bowman, D.

Boyd, R. W.

V. Grillo, E. Karimi, G. C. Gazzadi, S. Frabboni, M. R. Dennis, and R. W. Boyd, “Generation of nondiffracting electron Bessel beams,” Phys. Rev. X 4, 011013 (2014).

Bruce, G. D.

Cassettari, D.

Cladeé, P.

M. F. Andersen, C. Ryu, P. Cladeé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref] [PubMed]

Clark, C. W.

J. Nsofini, D. Sarenac, C. J. Wood, D. G. Cory, M. Arif, C. W. Clark, M. G. Huber, and D. A. Pushin, “Spin orbit states of neutron wavepackets,” Phys. Rev. A 94, 013605 (2016).
[Crossref]

C. W. Clark, R. Barankov, M. G. Huber, M. Arif, D. G. Cory, and D. A. Pushin, “Controlling neutron orbital angular momentum,” Nature 525, 504–506 (2015).
[Crossref] [PubMed]

Cory, D. G.

C. B. Shahi, M. Arif, D. G. Cory, T. Mineeva, J. Nsofini, D. Sarenac, C. J. Williams, M. G. Huber, and D. A. Pushin, “A new polarized neutron interferometry facility at the NCNR,” Nuc. Inst. Meth. A 813, 111–122 (2016).
[Crossref]

J. Nsofini, D. Sarenac, C. J. Wood, D. G. Cory, M. Arif, C. W. Clark, M. G. Huber, and D. A. Pushin, “Spin orbit states of neutron wavepackets,” Phys. Rev. A 94, 013605 (2016).
[Crossref]

C. W. Clark, R. Barankov, M. G. Huber, M. Arif, D. G. Cory, and D. A. Pushin, “Controlling neutron orbital angular momentum,” Nature 525, 504–506 (2015).
[Crossref] [PubMed]

D. A. Pushin, D. G. Cory, M. Arif, D. L. Jacobson, and M. G. Huber, “Reciprocal space approaches to neutron imaging,” Appl. Phys. Lett. 90, 224104 (2007).
[Crossref]

D. A. Pushin, M. Arif, D. L. Jacobson, C. K. Doe, and D. G. Cory, “Reciprocal space neutron imaging,” Physica B 385–386, 1402 (2006).
[Crossref]

Cser, L.

L. Cser, Gy. Török, G. Krexner, I. Sharkov, and B. Faragó, “Holographic Imaging of Atoms Using Thermal Neutrons,” Phys. Rev. Lett. 89, 175504 (2002).
[Crossref] [PubMed]

Dennis, M. R.

V. Grillo, E. Karimi, G. C. Gazzadi, S. Frabboni, M. R. Dennis, and R. W. Boyd, “Generation of nondiffracting electron Bessel beams,” Phys. Rev. X 4, 011013 (2014).

Dietze, M.

M. Dietze, J. Felber, K. Raum, and C. Rausch, “Intensified CCDs as position sensitive neutron detectors,” Nuc. Inst. Meth. A 377, 320–324 (1996).
[Crossref]

Doe, C. K.

D. A. Pushin, M. Arif, D. L. Jacobson, C. K. Doe, and D. G. Cory, “Reciprocal space neutron imaging,” Physica B 385–386, 1402 (2006).
[Crossref]

Eastwood, S. A.

Eisebitt, S.

Fairweather, J. D.

J. D. Fairweather, D. Spernjak, A. Z. Weber, D. Harvey, S. Wessel, D. S. Hussey, D. L. Jacobson, K. Artyushkova, R. Mukundan, and R. L. Borup, “Effects of cathode corrosion on through-plane water transport in proton exchange membrane fuel cells,” J. Electrochem. Soc. 160, F980–F993 (2013).
[Crossref]

Faragó, B.

L. Cser, Gy. Török, G. Krexner, I. Sharkov, and B. Faragó, “Holographic Imaging of Atoms Using Thermal Neutrons,” Phys. Rev. Lett. 89, 175504 (2002).
[Crossref] [PubMed]

Felber, J.

M. Dietze, J. Felber, K. Raum, and C. Rausch, “Intensified CCDs as position sensitive neutron detectors,” Nuc. Inst. Meth. A 377, 320–324 (1996).
[Crossref]

Fernández-Ruiz, M. R.

Forbes, A.

Frabboni, S.

V. Grillo, E. Karimi, G. C. Gazzadi, S. Frabboni, M. R. Dennis, and R. W. Boyd, “Generation of nondiffracting electron Bessel beams,” Phys. Rev. X 4, 011013 (2014).

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

Gazzadi, G. C.

V. Grillo, E. Karimi, G. C. Gazzadi, S. Frabboni, M. R. Dennis, and R. W. Boyd, “Generation of nondiffracting electron Bessel beams,” Phys. Rev. X 4, 011013 (2014).

Geilhufe, J.

Girshovitz, P.

Goto, T.

Gover, A.

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature 494, 331–335 (2013).
[Crossref] [PubMed]

Grillo, V.

V. Grillo, E. Karimi, G. C. Gazzadi, S. Frabboni, M. R. Dennis, and R. W. Boyd, “Generation of nondiffracting electron Bessel beams,” Phys. Rev. X 4, 011013 (2014).

Guehrs, E.

Hack, E.

Hammond, R. P.

B. Sur, R. B. Rogge, R. P. Hammond, V. N. P. Anghel, and J. Katsaras, “Atomic structure holography using thermal neutrons,” Nature 414, 525–527 (2001).
[Crossref] [PubMed]

Harvey, D.

J. D. Fairweather, D. Spernjak, A. Z. Weber, D. Harvey, S. Wessel, D. S. Hussey, D. L. Jacobson, K. Artyushkova, R. Mukundan, and R. L. Borup, “Effects of cathode corrosion on through-plane water transport in proton exchange membrane fuel cells,” J. Electrochem. Soc. 160, F980–F993 (2013).
[Crossref]

He, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

Heckenberg, N. R.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17221–223 (1992).
[Crossref] [PubMed]

Helmerson, K.

M. F. Andersen, C. Ryu, P. Cladeé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref] [PubMed]

Herzing, A. A.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331192–195 (2011).
[Crossref] [PubMed]

Hessing, P.

Huber, M. G.

J. Nsofini, D. Sarenac, C. J. Wood, D. G. Cory, M. Arif, C. W. Clark, M. G. Huber, and D. A. Pushin, “Spin orbit states of neutron wavepackets,” Phys. Rev. A 94, 013605 (2016).
[Crossref]

C. B. Shahi, M. Arif, D. G. Cory, T. Mineeva, J. Nsofini, D. Sarenac, C. J. Williams, M. G. Huber, and D. A. Pushin, “A new polarized neutron interferometry facility at the NCNR,” Nuc. Inst. Meth. A 813, 111–122 (2016).
[Crossref]

C. W. Clark, R. Barankov, M. G. Huber, M. Arif, D. G. Cory, and D. A. Pushin, “Controlling neutron orbital angular momentum,” Nature 525, 504–506 (2015).
[Crossref] [PubMed]

D. A. Pushin, D. G. Cory, M. Arif, D. L. Jacobson, and M. G. Huber, “Reciprocal space approaches to neutron imaging,” Appl. Phys. Lett. 90, 224104 (2007).
[Crossref]

Hussey, D. S.

J. D. Fairweather, D. Spernjak, A. Z. Weber, D. Harvey, S. Wessel, D. S. Hussey, D. L. Jacobson, K. Artyushkova, R. Mukundan, and R. L. Borup, “Effects of cathode corrosion on through-plane water transport in proton exchange membrane fuel cells,” J. Electrochem. Soc. 160, F980–F993 (2013).
[Crossref]

Inoue, M.

Ireland, P.

Isogai, R.

Jacobson, D. L.

J. D. Fairweather, D. Spernjak, A. Z. Weber, D. Harvey, S. Wessel, D. S. Hussey, D. L. Jacobson, K. Artyushkova, R. Mukundan, and R. L. Borup, “Effects of cathode corrosion on through-plane water transport in proton exchange membrane fuel cells,” J. Electrochem. Soc. 160, F980–F993 (2013).
[Crossref]

D. A. Pushin, D. G. Cory, M. Arif, D. L. Jacobson, and M. G. Huber, “Reciprocal space approaches to neutron imaging,” Appl. Phys. Lett. 90, 224104 (2007).
[Crossref]

D. A. Pushin, M. Arif, D. L. Jacobson, C. K. Doe, and D. G. Cory, “Reciprocal space neutron imaging,” Physica B 385–386, 1402 (2006).
[Crossref]

Johnston, S. F.

S. F. Johnston, Holograms: A Cultural History (Oxford University, 2016).

Jüptner, W. P. O.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

Karimi, E.

V. Grillo, E. Karimi, G. C. Gazzadi, S. Frabboni, M. R. Dennis, and R. W. Boyd, “Generation of nondiffracting electron Bessel beams,” Phys. Rev. X 4, 011013 (2014).

Kariv, S.

Katsaras, J.

B. Sur, R. B. Rogge, R. P. Hammond, V. N. P. Anghel, and J. Katsaras, “Atomic structure holography using thermal neutrons,” Nature 414, 525–527 (2001).
[Crossref] [PubMed]

Krexner, G.

L. Cser, Gy. Török, G. Krexner, I. Sharkov, and B. Faragó, “Holographic Imaging of Atoms Using Thermal Neutrons,” Phys. Rev. Lett. 89, 175504 (2002).
[Crossref] [PubMed]

Lehmann, M.

H. Lichte and M. Lehmann, “Electron holography–basics and applications,” Rep. Prog. Phys. 71, 016102 (2008).
[Crossref]

Lei, L.

Leith, E. N.

Lereah, Y.

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature 494, 331–335 (2013).
[Crossref] [PubMed]

Lezec, H. J.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331192–195 (2011).
[Crossref] [PubMed]

Lichte, H.

H. Lichte and M. Lehmann, “Electron holography–basics and applications,” Rep. Prog. Phys. 71, 016102 (2008).
[Crossref]

Lilach, Y.

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature 494, 331–335 (2013).
[Crossref] [PubMed]

Lim, P. B.

Litvin, I. A.

McClelland, J. J.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331192–195 (2011).
[Crossref] [PubMed]

McDuff, R.

McMorran, B. J.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331192–195 (2011).
[Crossref] [PubMed]

Mhlanga, T.

Mineeva, T.

C. B. Shahi, M. Arif, D. G. Cory, T. Mineeva, J. Nsofini, D. Sarenac, C. J. Williams, M. G. Huber, and D. A. Pushin, “A new polarized neutron interferometry facility at the NCNR,” Nuc. Inst. Meth. A 813, 111–122 (2016).
[Crossref]

Morgan, K. S.

Morgan, M. J.

Mukundan, R.

J. D. Fairweather, D. Spernjak, A. Z. Weber, D. Harvey, S. Wessel, D. S. Hussey, D. L. Jacobson, K. Artyushkova, R. Mukundan, and R. L. Borup, “Effects of cathode corrosion on through-plane water transport in proton exchange membrane fuel cells,” J. Electrochem. Soc. 160, F980–F993 (2013).
[Crossref]

Nakamura, Y.

Natarajan, V.

M. F. Andersen, C. Ryu, P. Cladeé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref] [PubMed]

Nsofini, J.

C. B. Shahi, M. Arif, D. G. Cory, T. Mineeva, J. Nsofini, D. Sarenac, C. J. Williams, M. G. Huber, and D. A. Pushin, “A new polarized neutron interferometry facility at the NCNR,” Nuc. Inst. Meth. A 813, 111–122 (2016).
[Crossref]

J. Nsofini, D. Sarenac, C. J. Wood, D. G. Cory, M. Arif, C. W. Clark, M. G. Huber, and D. A. Pushin, “Spin orbit states of neutron wavepackets,” Phys. Rev. A 94, 013605 (2016).
[Crossref]

Padgett, M.

Paganin, D. M.

Petersen, T. C.

Pfau, B.

Phillips, W. D.

M. F. Andersen, C. Ryu, P. Cladeé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref] [PubMed]

Pushin, D. A.

C. B. Shahi, M. Arif, D. G. Cory, T. Mineeva, J. Nsofini, D. Sarenac, C. J. Williams, M. G. Huber, and D. A. Pushin, “A new polarized neutron interferometry facility at the NCNR,” Nuc. Inst. Meth. A 813, 111–122 (2016).
[Crossref]

J. Nsofini, D. Sarenac, C. J. Wood, D. G. Cory, M. Arif, C. W. Clark, M. G. Huber, and D. A. Pushin, “Spin orbit states of neutron wavepackets,” Phys. Rev. A 94, 013605 (2016).
[Crossref]

C. W. Clark, R. Barankov, M. G. Huber, M. Arif, D. G. Cory, and D. A. Pushin, “Controlling neutron orbital angular momentum,” Nature 525, 504–506 (2015).
[Crossref] [PubMed]

D. A. Pushin, D. G. Cory, M. Arif, D. L. Jacobson, and M. G. Huber, “Reciprocal space approaches to neutron imaging,” Appl. Phys. Lett. 90, 224104 (2007).
[Crossref]

D. A. Pushin, M. Arif, D. L. Jacobson, C. K. Doe, and D. G. Cory, “Reciprocal space neutron imaging,” Physica B 385–386, 1402 (2006).
[Crossref]

Rauch, H.

H. Rauch and S. A. Werner, Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement (Oxford University, 2015).
[Crossref]

Raum, K.

M. Dietze, J. Felber, K. Raum, and C. Rausch, “Intensified CCDs as position sensitive neutron detectors,” Nuc. Inst. Meth. A 377, 320–324 (1996).
[Crossref]

Rausch, C.

M. Dietze, J. Felber, K. Raum, and C. Rausch, “Intensified CCDs as position sensitive neutron detectors,” Nuc. Inst. Meth. A 377, 320–324 (1996).
[Crossref]

Rochette, M.

Rogge, R. B.

B. Sur, R. B. Rogge, R. P. Hammond, V. N. P. Anghel, and J. Katsaras, “Atomic structure holography using thermal neutrons,” Nature 414, 525–527 (2001).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

Ryu, C.

M. F. Andersen, C. Ryu, P. Cladeé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref] [PubMed]

Saitoh, K.

K. Saitoh and M. Uchida, “Electron beam carrying orbital angular momentum,” Nihon Kessho Gakkaishi 58, 79–84 (2016).
[Crossref]

Sarenac, D.

C. B. Shahi, M. Arif, D. G. Cory, T. Mineeva, J. Nsofini, D. Sarenac, C. J. Williams, M. G. Huber, and D. A. Pushin, “A new polarized neutron interferometry facility at the NCNR,” Nuc. Inst. Meth. A 813, 111–122 (2016).
[Crossref]

J. Nsofini, D. Sarenac, C. J. Wood, D. G. Cory, M. Arif, C. W. Clark, M. G. Huber, and D. A. Pushin, “Spin orbit states of neutron wavepackets,” Phys. Rev. A 94, 013605 (2016).
[Crossref]

Schnars, U.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

Schneider, M.

Shahi, C. B.

C. B. Shahi, M. Arif, D. G. Cory, T. Mineeva, J. Nsofini, D. Sarenac, C. J. Williams, M. G. Huber, and D. A. Pushin, “A new polarized neutron interferometry facility at the NCNR,” Nuc. Inst. Meth. A 813, 111–122 (2016).
[Crossref]

Shaked, N. T.

Sharkov, I.

L. Cser, Gy. Török, G. Krexner, I. Sharkov, and B. Faragó, “Holographic Imaging of Atoms Using Thermal Neutrons,” Phys. Rev. Lett. 89, 175504 (2002).
[Crossref] [PubMed]

Shemilt, L.

Smith, C. P.

Soskin, M. S.

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” Pis’ma Zh. Eks. Teor. Fiz. 52, 1037–1039 (1990) [JETP Lett. 52, 429–431 (1991)].

Spernjak, D.

J. D. Fairweather, D. Spernjak, A. Z. Weber, D. Harvey, S. Wessel, D. S. Hussey, D. L. Jacobson, K. Artyushkova, R. Mukundan, and R. L. Borup, “Effects of cathode corrosion on through-plane water transport in proton exchange membrane fuel cells,” J. Electrochem. Soc. 160, F980–F993 (2013).
[Crossref]

Sur, B.

B. Sur, R. B. Rogge, R. P. Hammond, V. N. P. Anghel, and J. Katsaras, “Atomic structure holography using thermal neutrons,” Nature 414, 525–527 (2001).
[Crossref] [PubMed]

Takagi, H.

Török, Gy.

L. Cser, Gy. Török, G. Krexner, I. Sharkov, and B. Faragó, “Holographic Imaging of Atoms Using Thermal Neutrons,” Phys. Rev. Lett. 89, 175504 (2002).
[Crossref] [PubMed]

Uchida, M.

K. Saitoh and M. Uchida, “Electron beam carrying orbital angular momentum,” Nihon Kessho Gakkaishi 58, 79–84 (2016).
[Crossref]

Unguris, J.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331192–195 (2011).
[Crossref] [PubMed]

Upatnieks, J.

Vasnetsov, M. V.

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” Pis’ma Zh. Eks. Teor. Fiz. 52, 1037–1039 (1990) [JETP Lett. 52, 429–431 (1991)].

Vaziri, A.

M. F. Andersen, C. Ryu, P. Cladeé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref] [PubMed]

Voloch-Bloch, N.

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature 494, 331–335 (2013).
[Crossref] [PubMed]

Weber, A. Z.

J. D. Fairweather, D. Spernjak, A. Z. Weber, D. Harvey, S. Wessel, D. S. Hussey, D. L. Jacobson, K. Artyushkova, R. Mukundan, and R. L. Borup, “Effects of cathode corrosion on through-plane water transport in proton exchange membrane fuel cells,” J. Electrochem. Soc. 160, F980–F993 (2013).
[Crossref]

Werner, S. A.

H. Rauch and S. A. Werner, Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement (Oxford University, 2015).
[Crossref]

Wessel, S.

J. D. Fairweather, D. Spernjak, A. Z. Weber, D. Harvey, S. Wessel, D. S. Hussey, D. L. Jacobson, K. Artyushkova, R. Mukundan, and R. L. Borup, “Effects of cathode corrosion on through-plane water transport in proton exchange membrane fuel cells,” J. Electrochem. Soc. 160, F980–F993 (2013).
[Crossref]

White, A. G.

Williams, C. J.

C. B. Shahi, M. Arif, D. G. Cory, T. Mineeva, J. Nsofini, D. Sarenac, C. J. Williams, M. G. Huber, and D. A. Pushin, “A new polarized neutron interferometry facility at the NCNR,” Nuc. Inst. Meth. A 813, 111–122 (2016).
[Crossref]

Wood, C. J.

J. Nsofini, D. Sarenac, C. J. Wood, D. G. Cory, M. Arif, C. W. Clark, M. G. Huber, and D. A. Pushin, “Spin orbit states of neutron wavepackets,” Phys. Rev. A 94, 013605 (2016).
[Crossref]

Yao, A.

Zolliker, P.

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

D. A. Pushin, D. G. Cory, M. Arif, D. L. Jacobson, and M. G. Huber, “Reciprocal space approaches to neutron imaging,” Appl. Phys. Lett. 90, 224104 (2007).
[Crossref]

J. Electrochem. Soc. (1)

J. D. Fairweather, D. Spernjak, A. Z. Weber, D. Harvey, S. Wessel, D. S. Hussey, D. L. Jacobson, K. Artyushkova, R. Mukundan, and R. L. Borup, “Effects of cathode corrosion on through-plane water transport in proton exchange membrane fuel cells,” J. Electrochem. Soc. 160, F980–F993 (2013).
[Crossref]

J. Mod. Opt. (1)

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

J. Opt. Soc. Am. (2)

Meas. Sci. Technol. (1)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

Nature (4)

B. Sur, R. B. Rogge, R. P. Hammond, V. N. P. Anghel, and J. Katsaras, “Atomic structure holography using thermal neutrons,” Nature 414, 525–527 (2001).
[Crossref] [PubMed]

C. W. Clark, R. Barankov, M. G. Huber, M. Arif, D. G. Cory, and D. A. Pushin, “Controlling neutron orbital angular momentum,” Nature 525, 504–506 (2015).
[Crossref] [PubMed]

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature 494, 331–335 (2013).
[Crossref] [PubMed]

Nihon Kessho Gakkaishi (1)

K. Saitoh and M. Uchida, “Electron beam carrying orbital angular momentum,” Nihon Kessho Gakkaishi 58, 79–84 (2016).
[Crossref]

Nuc. Inst. Meth. A (2)

C. B. Shahi, M. Arif, D. G. Cory, T. Mineeva, J. Nsofini, D. Sarenac, C. J. Williams, M. G. Huber, and D. A. Pushin, “A new polarized neutron interferometry facility at the NCNR,” Nuc. Inst. Meth. A 813, 111–122 (2016).
[Crossref]

M. Dietze, J. Felber, K. Raum, and C. Rausch, “Intensified CCDs as position sensitive neutron detectors,” Nuc. Inst. Meth. A 377, 320–324 (1996).
[Crossref]

Opt. Express (8)

I. A. Litvin, T. Mhlanga, and A. Forbes, “Digital generation of shape-invariant Bessel-like beams,” Opt. Express 23, 7312–7319 (2015).
[Crossref] [PubMed]

P. Hessing, B. Pfau, E. Guehrs, M. Schneider, L. Shemilt, J. Geilhufe, and S. Eisebitt, “Holography-guided ptychography with soft X-rays,” Opt. Express 24, 1840–1851 (2016).
[Crossref] [PubMed]

O. Backoach, S. Kariv, P. Girshovitz, and N. T. Shaked, “Fast phase processing in off-axis holography by CUDA including parallel phase unwrapping,” Opt. Express 24, 3177–3188 (2016).
[Crossref] [PubMed]

R. Isogai, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography,” Opt. Express 24, 522–527 (2016).
[Crossref] [PubMed]

T. C. Petersen, A. I. Bishop, S. A. Eastwood, D. M. Paganin, K. S. Morgan, and M. J. Morgan, “Singularimetry of local phase gradients using vortex lattices and in-line holography,” Opt. Express 24, 2259–2272 (2016).
[Crossref] [PubMed]

P. Zolliker and E. Hack, “THz holography in reflection using a high resolution microbolometer array,” Opt. Express 23, 10957–10967 (2015).
[Crossref] [PubMed]

M. R. Fernández-Ruiz, L. Lei, M. Rochette, and J. Azaña, “All-optical wavelength conversion based on time-domain holography,” Opt. Express 23, 22847–22856 (2015).
[Crossref] [PubMed]

D. Bowman, P. Ireland, G. D. Bruce, and D. Cassettari, “Multi-wavelength holography with a single spatial light modulator for ultracold atom experiments,” Opt. Express 23, 8365–8372 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (1)

J. Nsofini, D. Sarenac, C. J. Wood, D. G. Cory, M. Arif, C. W. Clark, M. G. Huber, and D. A. Pushin, “Spin orbit states of neutron wavepackets,” Phys. Rev. A 94, 013605 (2016).
[Crossref]

Phys. Rev. Lett. (2)

M. F. Andersen, C. Ryu, P. Cladeé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006).
[Crossref] [PubMed]

L. Cser, Gy. Török, G. Krexner, I. Sharkov, and B. Faragó, “Holographic Imaging of Atoms Using Thermal Neutrons,” Phys. Rev. Lett. 89, 175504 (2002).
[Crossref] [PubMed]

Phys. Rev. X (1)

V. Grillo, E. Karimi, G. C. Gazzadi, S. Frabboni, M. R. Dennis, and R. W. Boyd, “Generation of nondiffracting electron Bessel beams,” Phys. Rev. X 4, 011013 (2014).

Physica B (1)

D. A. Pushin, M. Arif, D. L. Jacobson, C. K. Doe, and D. G. Cory, “Reciprocal space neutron imaging,” Physica B 385–386, 1402 (2006).
[Crossref]

Pis’ma Zh. Eks. Teor. Fiz. (1)

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” Pis’ma Zh. Eks. Teor. Fiz. 52, 1037–1039 (1990) [JETP Lett. 52, 429–431 (1991)].

Rep. Prog. Phys. (1)

H. Lichte and M. Lehmann, “Electron holography–basics and applications,” Rep. Prog. Phys. 71, 016102 (2008).
[Crossref]

Science (1)

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331192–195 (2011).
[Crossref] [PubMed]

Other (4)

I. S. Anderson, R. McGreevy, and H. Z. Bilheux, eds., Neutron Imaging and Applications: A Reference for the Imaging Community (SpringerUS, 2009).

B. Javidi, ed. Optical and Digital Techniques for Information Security (Springer Science & Business Media, 2005).
[Crossref]

S. F. Johnston, Holograms: A Cultural History (Oxford University, 2016).

H. Rauch and S. A. Werner, Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement (Oxford University, 2015).
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1: MOV (550 KB)      The intensity profile of Fig. 2 (b) as a continuous function of the topological charge q.
» Visualization 2: MOV (662 KB)      The two-dimensional intensity of Fig. 4 as a continuous function of the parameter lambda*d.
» Visualization 3: MOV (606 KB)      The two-dimensional phase profile of Fig. 4 with the overall phase in the reconstruction plane varied

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The off-axis method of optical holography of semitransparent objects introduced by Leith and Upatnieks. The object here is a continuous-tone transparency; its hologram was recorded on a photographic plate. Redrawn from figures of [8]: the object shown here is actually the holographic reconstruction of the original object, said to be a good facsimile of the original. (b) An artistic depiction of the neutron holography experiment. A neutron enters a single-crystal silicon Mach-Zehnder neutron interferometer (NI) and is separated into two paths by the left beamsplitter (BS). A spiral phase plate (SPP) with q = 2 is placed in the lower path, generating the object beam; a prism tilts the wavefront of the upper path to provide the reference beam. Object and reference beams are reflected at the central BS, and are coherently combined at the right BS. One of the output beams of the right BS is sent to an imaging detector, the other to an integrating counter that serves as an intensity monitor. Note that the experiment is an expectation valued measurement over many events, each of which involves only a single neutron. That is, there is one neutron at a time in the NI and the hologram is build up from an incoherent superposition of many events.

Fig. 2
Fig. 2

Simulation of the intensity profiles at the 2D detector for SPPs with topological charges of q = 0, 1, 2, 3 in the object beam, and (a) no prism in the reference beam, and (b) a prism in the reference beam. The linked video ( Visualization 1) shows the intensity profile as a continuous function of the topological charge q. Fractional values of q correspond to admixtures of orbital angular momentum states with various integer values of . Note that the successive fork dislocations unfold as q passes through integer values.

Fig. 3
Fig. 3

Measured and simulated interferograms at the 2D detectors for the q = 2 SPP and 6° fused silica prism independently, as well as when both are placed in the neutron interferometer to produce the pitch fork pattern. It is necessary to add a horizontal gradient of 0.3 rad/mm to the simulation to reproduce the measured images.

Fig. 4
Fig. 4

Intensity and phase profiles of the computed hologram reconstruction for the measured images in Fig. 3(b) corresponding to no SPP in the object beam; and Fig. 3(d) corresponding to a q = 2 SPP being in the object beam. Note that the phase range is from −π/2 to π/2, which is why we see four arms instead of two as seen on Fig. 2(a), where the range is from −π to π. The images are interpolated, and show the central 20x48 array of the numerical reconstruction. The mask for the phase plots is included for clarity. The linked video ( Visualization 2) shows the two-dimensional intensity as a continuous function of the parameter λd, and the linked video ( Visualization 3) shows the phase profile with the overall phase in the reconstruction plane varied.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ψ t = ( 2 π σ 2 ) 1 / 2 e ( x x 0 ) 2 + ( y y 0 ) 2 4 σ 2 ,
I = 0 d 0 d | Ψ r + Ψ o | 2 d x 0 d y 0 = A + B cos ( k y q ϕ + θ ) ,
Γ ( ν , μ ) = i λ d e i π λ d ( ν 2 + μ 2 ) { h ( x , y ) exp ( i π λ d ( x 2 + y 2 ) ) }

Metrics