Abstract

Er3+/Yb3+ co-doped ZnWO4 phosphors were synthesized by a solid state reaction method and their structure, photoluminescence and temperature sensing properties were characterized. The color-tunable upconversion emissions (from green to red) were observed by increasing the doped Er3+/Yb3+ concentration. The temperature sensing properties were studied by using the fluorescence intensity ratio technique in the temperature range of 83-583 K, and high performance was obtained. The maximum sensitivity is found to be 0.0099 K−1 at 583 K. The XRD Rietveld refinement revealed that the phosphors crystallized in monoclinic structure with the space group P2/c (13) at room temperature. The results suggest that the phosphors could be an exceptional choice for next generation luminescence-based temperature sensing devices as well as in multiple biolabels.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Color-tunable upconversion emission and optical temperature sensing behaviour in Er-Yb-Mo codoped Bi7Ti4NbO21 multifunctional ferroelectric oxide

Hua Zou, Jun Li, Xusheng Wang, Dengfeng Peng, Yanxia Li, and Xi Yao
Opt. Mater. Express 4(8) 1545-1554 (2014)

Study on optical properties and upconversion luminescence of Er3+/Yb3+ co-doped tellurite glass for highly sensitive temperature measuring

Jianfeng Tang, Maojun Sun, Yawen Huang, Jie Gou, Yu Zhang, Guannan Li, Yuan Li, Yuhong Man, and Jun Yang
Opt. Mater. Express 7(9) 3238-3250 (2017)

Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+: BaGd2(MoO4)4 phosphors

Ruoshan Lei, Degang Deng, Xin Liu, Feifei Huang, Huanping Wang, Shilong Zhao, and Shiqing Xu
Opt. Mater. Express 8(10) 3023-3035 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. Wang, Q. Liu, Y. Bu, Ch. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
    [Crossref]
  2. Y. Yang, C. Mi, F. Yu, X. Su, C. Guo, G. Li, J. Zhang, L. Liu, Y. Liu, and X. Li, “Optical thermometry based on the upconversion fluorescence fromYb3+/ Er3+codoped La2O2S phosphor,” Ceram. Int. 40(7), 9875–9880 (2014).
    [Crossref]
  3. B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
    [Crossref] [PubMed]
  4. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
    [Crossref] [PubMed]
  5. M. A. R. C. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er 3+ -doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
    [Crossref]
  6. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [Crossref]
  7. P. Haro-Gonzalez, S. F. León-Luis, S. González-Pérez, and I. R. Martín, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
    [Crossref]
  8. X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of Annealing on Upconversion luminescence of ZnO:Er3+ Nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111(41), 15119–15124 (2007).
    [Crossref]
  9. B. Dong, T. Yang, and M. K. Lei, “Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3,” Sens. Actuators B Chem. 123(2), 667–670 (2007).
    [Crossref]
  10. S. F. Leon-Luis, U. R. Rodriguez-Mendoza, I. R. Martin, E. Lalla, and V. La Vin, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176(1), 1167–1175 (2013).
    [Crossref]
  11. S. F. Leon-Luis, U. R. Rodriguez-Mendoza, E. Lalla, and V. Lavin, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
    [Crossref]
  12. M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+ /Yb3+ particles,” Appl. Phys. Express 4(2), 022601 (2011).
    [Crossref]
  13. W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
    [Crossref]
  14. A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codopedb SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209(3), 352–358 (2015).
    [Crossref]
  15. D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
    [Crossref] [PubMed]
  16. P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
    [Crossref]
  17. L. Wang, Y. Ma, H. Jiang, Q. Wang, C. Ren, X. Kong, J. Shi, and J. Wang, “Luminescence properties of nano and bulk ZnWO4 and their charge transfer transitions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4651–4658 (2014).
    [Crossref]
  18. D. M. Trots, A. Senyshyn, L. Vasylechko, R. Niewa, T. Vad, V. B. Mikhailik, and H. Kraus, “Crystal structure of ZnWO4 scintillator material in the range of 3-1423 K,” J. Phys. Condens. Matter 21(32), 325402 (2009).
    [Crossref] [PubMed]
  19. D. Errandonea, F. J. Manjon, N. Garro, P. Rodriguez-Hernandez, S. Radescu, A. Mujica, A. Muñoz, and C. Y. Tu, “Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4,” Phys. Rev. B 78(5), 054116 (2008).
    [Crossref]
  20. X. Luo and W. Cao, “Upconversion luminescence properties of Li+-doped ZnWO4:Yb,Er,” J. Mater. Res. 23(8), 2078–2083 (2008).
    [Crossref]
  21. D. Xu and J. Zang, “Progress of study on upconversion laser& luminescence materials,” J. Synth. Cryst. 30(2), 203–210 (2001).
  22. F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, and X. Lu, “Growth and optical property of ZnWO4: Er3+ crystal,” J. Lumin. 126(2), 623–628 (2007).
    [Crossref]
  23. F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal,” Opt. Mater. 29(12), 1861–1865 (2007).
    [Crossref]
  24. F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of ZnWO4:Ho3+ crystal,” J. Alloys Compd. 455(1–2), 269–273 (2008).
    [Crossref]
  25. N. Van Minh, N. Manh Hung, D. T. Xuan Thao, M. Roeffaers, and J. Hofkens, “Structural and optical properties of ZnWO4:Er3+ crystals,” J. Spectrosc. 2013, 424185 (2013).
  26. Q. Dai, H. Song, X. Bai, G. Pan, S. Lu, T. Wang, X. Ren, and H. Zhao, “Photoluminescence properties of ZnWO4:Eu3+ nanocrystals prepared by a hydrothermal method,” J. Phys. Chem. C 111(21), 7586–7592 (2007).
    [Crossref]
  27. X. Chen, F. Xiao, S. Ye, X. Huang, G. Dong, and Q. Zhang, “ZnWO4:Eu3+ nanorods: A potential tunable white light-emitting phosphors,” J. Alloys Compd. 509(5), 1355–1359 (2011).
    [Crossref]
  28. L. Wang, Q. Wang, X. Xu, J. Li, L. Gao, W. Kang, J. Shi, and J. Wang, “Energy transfer from Bi3+ to Eu3+ triggers exceptional long-wavelength excitation band in ZnWO4:Bi3+, Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8033–8040 (2013).
    [Crossref]
  29. D. He, C. Guo, S. Jiang, N. Zhang, C. Duan, M. Yin, and T. Li, “Optical temperature sensing properties of Yb3+–Er3+ co-doped NaLnTiO4 (Ln = Gd, Y) up-conversion phosphors,” RSC Advances 5(2), 1385–1390 (2015).
    [Crossref]
  30. D. Gao, D. Tian, X. Zhang, and W. Gao, “Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect,” Sci. Rep. 6, 22433 (2016).
    [Crossref] [PubMed]
  31. D. Gao, X. Zhang, and W. Gao, “Formation of Bundle-Shaped β-NaYF4 Upconversion Microtubes via Ostwald Ripening,” ACS Appl. Mater. Interfaces 5(19), 9732–9739 (2013).
    [Crossref] [PubMed]
  32. D. Yang, Y. Dai, P. Ma, X. Kang, M. Shang, Z. Cheng, C. Li, and J. Lin, “Synthesis of Li1-xNaxYF4:Yb3+/Ln3+(0 ≤ x ≤ 0.3, Ln = Er, Tm, Ho) nanocrystals with multicolor up-conversion luminescence properties for in vitro cell imaging,” J. Mater. Chem. 22(38), 20618–20625 (2012).
    [Crossref]
  33. X. Chai, J. Li, X. Wang, H. Zhao, Y. Li, and X. Yao, “Dual-mode photoluminescence, temperature sensing and enhanced ferroelectric properties in Er-doped (Ba0.4Ca0.6)TiO3 multifunctional diphase ceramics,” Mater. Sci. Eng. B 201(12), 23–28 (2015).
    [PubMed]
  34. V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3:Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
    [Crossref]
  35. W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+codoped CaWO4,” Sens. Actuators B Chem. 188(12), 1096–1100 (2013).
    [Crossref]
  36. E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, and G. W. Baxter, “Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors,” Appl. Opt. 34(34), 8019–8025 (1995).
    [Crossref] [PubMed]
  37. P. Du, L. H. Luo, Q. Y. Yue, and W. P. Li, “The simultaneousrealizationofhigh-andlow-temperature thermometry inEr3+/Yb3+-codoped Y2O3 nanoparticles,” Mater. Lett. 143, 209–211 (2015).
    [Crossref]
  38. P. Du and J. S. Yu, “Effect of molybdenum on upconversion emission and temperature sensing properties in Na0.5Bi0.5TiO3:Er/Yb ceramics,” Ceram. Int. 41(5), 6710–6714 (2015).
    [Crossref]
  39. P. Du, L. H. Luo, W. P. Li, and Q. Y. Yue, “Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application,” J. Appl. Phys. 116(1), 014102 (2014).
    [Crossref]
  40. H. Zou, J. Li, X. S. Wang, D. F. Peng, Y. X. Li, and X. Yao, “Color-tunable upconversion emission and optical temperature sensing behaviour in Er-Yb-Mo codoped Bi7Ti4NbO21 multifunctional ferroelectric oxide,” Opt. Mater. Express 4(8), 1545–1554 (2014).
    [Crossref]
  41. P. Haro-Gonzalez, S. F. Leon-Luis, S. Gonzalez-Perez, and I. R. Martın, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
    [Crossref]
  42. B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Cryst. 34(2), 210–213 (2001).
    [Crossref]
  43. A. C. Larson and R. B. Von Dreele, “General structure analysis system (GSAS),” LANL Report No. LAUR 86–748, Los Alamos National Laboratory, Los Alamos, NM, 2000.
  44. Radii for All Species, http://abulafia.mt.ic.ac.uk/shannon/radius.php .
  45. E. Kim, C. Jeon, and G. Clem, “Effects of crystal structure on the microwave dielectricproperties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) ceramics,” J. Am. Ceram. Soc. 95(9), 2934–2938 (2012).
    [Crossref]

2016 (1)

D. Gao, D. Tian, X. Zhang, and W. Gao, “Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect,” Sci. Rep. 6, 22433 (2016).
[Crossref] [PubMed]

2015 (6)

P. Du, L. H. Luo, Q. Y. Yue, and W. P. Li, “The simultaneousrealizationofhigh-andlow-temperature thermometry inEr3+/Yb3+-codoped Y2O3 nanoparticles,” Mater. Lett. 143, 209–211 (2015).
[Crossref]

P. Du and J. S. Yu, “Effect of molybdenum on upconversion emission and temperature sensing properties in Na0.5Bi0.5TiO3:Er/Yb ceramics,” Ceram. Int. 41(5), 6710–6714 (2015).
[Crossref]

X. Chai, J. Li, X. Wang, H. Zhao, Y. Li, and X. Yao, “Dual-mode photoluminescence, temperature sensing and enhanced ferroelectric properties in Er-doped (Ba0.4Ca0.6)TiO3 multifunctional diphase ceramics,” Mater. Sci. Eng. B 201(12), 23–28 (2015).
[PubMed]

X. Wang, Q. Liu, Y. Bu, Ch. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codopedb SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209(3), 352–358 (2015).
[Crossref]

D. He, C. Guo, S. Jiang, N. Zhang, C. Duan, M. Yin, and T. Li, “Optical temperature sensing properties of Yb3+–Er3+ co-doped NaLnTiO4 (Ln = Gd, Y) up-conversion phosphors,” RSC Advances 5(2), 1385–1390 (2015).
[Crossref]

2014 (5)

H. Zou, J. Li, X. S. Wang, D. F. Peng, Y. X. Li, and X. Yao, “Color-tunable upconversion emission and optical temperature sensing behaviour in Er-Yb-Mo codoped Bi7Ti4NbO21 multifunctional ferroelectric oxide,” Opt. Mater. Express 4(8), 1545–1554 (2014).
[Crossref]

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

L. Wang, Y. Ma, H. Jiang, Q. Wang, C. Ren, X. Kong, J. Shi, and J. Wang, “Luminescence properties of nano and bulk ZnWO4 and their charge transfer transitions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4651–4658 (2014).
[Crossref]

Y. Yang, C. Mi, F. Yu, X. Su, C. Guo, G. Li, J. Zhang, L. Liu, Y. Liu, and X. Li, “Optical thermometry based on the upconversion fluorescence fromYb3+/ Er3+codoped La2O2S phosphor,” Ceram. Int. 40(7), 9875–9880 (2014).
[Crossref]

P. Du, L. H. Luo, W. P. Li, and Q. Y. Yue, “Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application,” J. Appl. Phys. 116(1), 014102 (2014).
[Crossref]

2013 (6)

V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3:Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
[Crossref]

W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+codoped CaWO4,” Sens. Actuators B Chem. 188(12), 1096–1100 (2013).
[Crossref]

D. Gao, X. Zhang, and W. Gao, “Formation of Bundle-Shaped β-NaYF4 Upconversion Microtubes via Ostwald Ripening,” ACS Appl. Mater. Interfaces 5(19), 9732–9739 (2013).
[Crossref] [PubMed]

L. Wang, Q. Wang, X. Xu, J. Li, L. Gao, W. Kang, J. Shi, and J. Wang, “Energy transfer from Bi3+ to Eu3+ triggers exceptional long-wavelength excitation band in ZnWO4:Bi3+, Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8033–8040 (2013).
[Crossref]

N. Van Minh, N. Manh Hung, D. T. Xuan Thao, M. Roeffaers, and J. Hofkens, “Structural and optical properties of ZnWO4:Er3+ crystals,” J. Spectrosc. 2013, 424185 (2013).

S. F. Leon-Luis, U. R. Rodriguez-Mendoza, I. R. Martin, E. Lalla, and V. La Vin, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176(1), 1167–1175 (2013).
[Crossref]

2012 (6)

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

D. Yang, Y. Dai, P. Ma, X. Kang, M. Shang, Z. Cheng, C. Li, and J. Lin, “Synthesis of Li1-xNaxYF4:Yb3+/Ln3+(0 ≤ x ≤ 0.3, Ln = Er, Tm, Ho) nanocrystals with multicolor up-conversion luminescence properties for in vitro cell imaging,” J. Mater. Chem. 22(38), 20618–20625 (2012).
[Crossref]

E. Kim, C. Jeon, and G. Clem, “Effects of crystal structure on the microwave dielectricproperties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) ceramics,” J. Am. Ceram. Soc. 95(9), 2934–2938 (2012).
[Crossref]

2011 (5)

P. Haro-Gonzalez, S. F. Leon-Luis, S. Gonzalez-Perez, and I. R. Martın, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

X. Chen, F. Xiao, S. Ye, X. Huang, G. Dong, and Q. Zhang, “ZnWO4:Eu3+ nanorods: A potential tunable white light-emitting phosphors,” J. Alloys Compd. 509(5), 1355–1359 (2011).
[Crossref]

S. F. Leon-Luis, U. R. Rodriguez-Mendoza, E. Lalla, and V. Lavin, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+ /Yb3+ particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

P. Haro-Gonzalez, S. F. León-Luis, S. González-Pérez, and I. R. Martín, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

2009 (1)

D. M. Trots, A. Senyshyn, L. Vasylechko, R. Niewa, T. Vad, V. B. Mikhailik, and H. Kraus, “Crystal structure of ZnWO4 scintillator material in the range of 3-1423 K,” J. Phys. Condens. Matter 21(32), 325402 (2009).
[Crossref] [PubMed]

2008 (3)

D. Errandonea, F. J. Manjon, N. Garro, P. Rodriguez-Hernandez, S. Radescu, A. Mujica, A. Muñoz, and C. Y. Tu, “Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4,” Phys. Rev. B 78(5), 054116 (2008).
[Crossref]

X. Luo and W. Cao, “Upconversion luminescence properties of Li+-doped ZnWO4:Yb,Er,” J. Mater. Res. 23(8), 2078–2083 (2008).
[Crossref]

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of ZnWO4:Ho3+ crystal,” J. Alloys Compd. 455(1–2), 269–273 (2008).
[Crossref]

2007 (5)

Q. Dai, H. Song, X. Bai, G. Pan, S. Lu, T. Wang, X. Ren, and H. Zhao, “Photoluminescence properties of ZnWO4:Eu3+ nanocrystals prepared by a hydrothermal method,” J. Phys. Chem. C 111(21), 7586–7592 (2007).
[Crossref]

F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, and X. Lu, “Growth and optical property of ZnWO4: Er3+ crystal,” J. Lumin. 126(2), 623–628 (2007).
[Crossref]

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal,” Opt. Mater. 29(12), 1861–1865 (2007).
[Crossref]

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of Annealing on Upconversion luminescence of ZnO:Er3+ Nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111(41), 15119–15124 (2007).
[Crossref]

B. Dong, T. Yang, and M. K. Lei, “Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3,” Sens. Actuators B Chem. 123(2), 667–670 (2007).
[Crossref]

2004 (1)

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er 3+ -doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

2001 (2)

D. Xu and J. Zang, “Progress of study on upconversion laser& luminescence materials,” J. Synth. Cryst. 30(2), 203–210 (2001).

B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Cryst. 34(2), 210–213 (2001).
[Crossref]

1995 (1)

Alencar, M. A. R. C.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er 3+ -doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Bai, X.

Q. Dai, H. Song, X. Bai, G. Pan, S. Lu, T. Wang, X. Ren, and H. Zhao, “Photoluminescence properties of ZnWO4:Eu3+ nanocrystals prepared by a hydrothermal method,” J. Phys. Chem. C 111(21), 7586–7592 (2007).
[Crossref]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, and G. W. Baxter, “Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors,” Appl. Opt. 34(34), 8019–8025 (1995).
[Crossref] [PubMed]

Bednarkiewicz, A.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Bu, Y.

X. Wang, Q. Liu, Y. Bu, Ch. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Caballero, A. C.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+ /Yb3+ particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Cantelar, E.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+ /Yb3+ particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Cao, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Cao, W.

W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+codoped CaWO4,” Sens. Actuators B Chem. 188(12), 1096–1100 (2013).
[Crossref]

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

X. Luo and W. Cao, “Upconversion luminescence properties of Li+-doped ZnWO4:Yb,Er,” J. Mater. Res. 23(8), 2078–2083 (2008).
[Crossref]

Chai, X.

X. Chai, J. Li, X. Wang, H. Zhao, Y. Li, and X. Yao, “Dual-mode photoluminescence, temperature sensing and enhanced ferroelectric properties in Er-doped (Ba0.4Ca0.6)TiO3 multifunctional diphase ceramics,” Mater. Sci. Eng. B 201(12), 23–28 (2015).
[PubMed]

Chen, H.

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

Chen, X.

X. Chen, F. Xiao, S. Ye, X. Huang, G. Dong, and Q. Zhang, “ZnWO4:Eu3+ nanorods: A potential tunable white light-emitting phosphors,” J. Alloys Compd. 509(5), 1355–1359 (2011).
[Crossref]

Cheng, Z.

D. Yang, Y. Dai, P. Ma, X. Kang, M. Shang, Z. Cheng, C. Li, and J. Lin, “Synthesis of Li1-xNaxYF4:Yb3+/Ln3+(0 ≤ x ≤ 0.3, Ln = Er, Tm, Ho) nanocrystals with multicolor up-conversion luminescence properties for in vitro cell imaging,” J. Mater. Chem. 22(38), 20618–20625 (2012).
[Crossref]

Clem, G.

E. Kim, C. Jeon, and G. Clem, “Effects of crystal structure on the microwave dielectricproperties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) ceramics,” J. Am. Ceram. Soc. 95(9), 2934–2938 (2012).
[Crossref]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Cusso, F.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+ /Yb3+ particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Dai, Q.

Q. Dai, H. Song, X. Bai, G. Pan, S. Lu, T. Wang, X. Ren, and H. Zhao, “Photoluminescence properties of ZnWO4:Eu3+ nanocrystals prepared by a hydrothermal method,” J. Phys. Chem. C 111(21), 7586–7592 (2007).
[Crossref]

Dai, Y.

D. Yang, Y. Dai, P. Ma, X. Kang, M. Shang, Z. Cheng, C. Li, and J. Lin, “Synthesis of Li1-xNaxYF4:Yb3+/Ln3+(0 ≤ x ≤ 0.3, Ln = Er, Tm, Ho) nanocrystals with multicolor up-conversion luminescence properties for in vitro cell imaging,” J. Mater. Chem. 22(38), 20618–20625 (2012).
[Crossref]

de Araujo, C. B.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er 3+ -doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Dey, R.

V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3:Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
[Crossref]

Dong, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

B. Dong, T. Yang, and M. K. Lei, “Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3,” Sens. Actuators B Chem. 123(2), 667–670 (2007).
[Crossref]

Dong, G.

X. Chen, F. Xiao, S. Ye, X. Huang, G. Dong, and Q. Zhang, “ZnWO4:Eu3+ nanorods: A potential tunable white light-emitting phosphors,” J. Alloys Compd. 509(5), 1355–1359 (2011).
[Crossref]

Du, P.

P. Du, L. H. Luo, Q. Y. Yue, and W. P. Li, “The simultaneousrealizationofhigh-andlow-temperature thermometry inEr3+/Yb3+-codoped Y2O3 nanoparticles,” Mater. Lett. 143, 209–211 (2015).
[Crossref]

P. Du and J. S. Yu, “Effect of molybdenum on upconversion emission and temperature sensing properties in Na0.5Bi0.5TiO3:Er/Yb ceramics,” Ceram. Int. 41(5), 6710–6714 (2015).
[Crossref]

P. Du, L. H. Luo, W. P. Li, and Q. Y. Yue, “Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application,” J. Appl. Phys. 116(1), 014102 (2014).
[Crossref]

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

Duan, C.

D. He, C. Guo, S. Jiang, N. Zhang, C. Duan, M. Yin, and T. Li, “Optical temperature sensing properties of Yb3+–Er3+ co-doped NaLnTiO4 (Ln = Gd, Y) up-conversion phosphors,” RSC Advances 5(2), 1385–1390 (2015).
[Crossref]

Dussardier, B.

Errandonea, D.

D. Errandonea, F. J. Manjon, N. Garro, P. Rodriguez-Hernandez, S. Radescu, A. Mujica, A. Muñoz, and C. Y. Tu, “Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4,” Phys. Rev. B 78(5), 054116 (2008).
[Crossref]

Feng, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Gao, D.

D. Gao, D. Tian, X. Zhang, and W. Gao, “Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect,” Sci. Rep. 6, 22433 (2016).
[Crossref] [PubMed]

D. Gao, X. Zhang, and W. Gao, “Formation of Bundle-Shaped β-NaYF4 Upconversion Microtubes via Ostwald Ripening,” ACS Appl. Mater. Interfaces 5(19), 9732–9739 (2013).
[Crossref] [PubMed]

Gao, L.

L. Wang, Q. Wang, X. Xu, J. Li, L. Gao, W. Kang, J. Shi, and J. Wang, “Energy transfer from Bi3+ to Eu3+ triggers exceptional long-wavelength excitation band in ZnWO4:Bi3+, Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8033–8040 (2013).
[Crossref]

Gao, W.

D. Gao, D. Tian, X. Zhang, and W. Gao, “Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect,” Sci. Rep. 6, 22433 (2016).
[Crossref] [PubMed]

D. Gao, X. Zhang, and W. Gao, “Formation of Bundle-Shaped β-NaYF4 Upconversion Microtubes via Ostwald Ripening,” ACS Appl. Mater. Interfaces 5(19), 9732–9739 (2013).
[Crossref] [PubMed]

Gao, X.

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Garro, N.

D. Errandonea, F. J. Manjon, N. Garro, P. Rodriguez-Hernandez, S. Radescu, A. Mujica, A. Muñoz, and C. Y. Tu, “Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4,” Phys. Rev. B 78(5), 054116 (2008).
[Crossref]

Gonzalez-Perez, S.

P. Haro-Gonzalez, S. F. Leon-Luis, S. Gonzalez-Perez, and I. R. Martın, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

González-Pérez, S.

P. Haro-Gonzalez, S. F. León-Luis, S. González-Pérez, and I. R. Martín, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

Guo, C.

D. He, C. Guo, S. Jiang, N. Zhang, C. Duan, M. Yin, and T. Li, “Optical temperature sensing properties of Yb3+–Er3+ co-doped NaLnTiO4 (Ln = Gd, Y) up-conversion phosphors,” RSC Advances 5(2), 1385–1390 (2015).
[Crossref]

Y. Yang, C. Mi, F. Yu, X. Su, C. Guo, G. Li, J. Zhang, L. Liu, Y. Liu, and X. Li, “Optical thermometry based on the upconversion fluorescence fromYb3+/ Er3+codoped La2O2S phosphor,” Ceram. Int. 40(7), 9875–9880 (2014).
[Crossref]

Haro-Gonzalez, P.

P. Haro-Gonzalez, S. F. León-Luis, S. González-Pérez, and I. R. Martín, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

P. Haro-Gonzalez, S. F. Leon-Luis, S. Gonzalez-Perez, and I. R. Martın, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

He, D.

D. He, C. Guo, S. Jiang, N. Zhang, C. Duan, M. Yin, and T. Li, “Optical temperature sensing properties of Yb3+–Er3+ co-doped NaLnTiO4 (Ln = Gd, Y) up-conversion phosphors,” RSC Advances 5(2), 1385–1390 (2015).
[Crossref]

He, Y.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Hofkens, J.

N. Van Minh, N. Manh Hung, D. T. Xuan Thao, M. Roeffaers, and J. Hofkens, “Structural and optical properties of ZnWO4:Er3+ crystals,” J. Spectrosc. 2013, 424185 (2013).

Huang, X.

X. Chen, F. Xiao, S. Ye, X. Huang, G. Dong, and Q. Zhang, “ZnWO4:Eu3+ nanorods: A potential tunable white light-emitting phosphors,” J. Alloys Compd. 509(5), 1355–1359 (2011).
[Crossref]

Jaque, D.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

Jeon, C.

E. Kim, C. Jeon, and G. Clem, “Effects of crystal structure on the microwave dielectricproperties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) ceramics,” J. Am. Ceram. Soc. 95(9), 2934–2938 (2012).
[Crossref]

Jia, G.

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of ZnWO4:Ho3+ crystal,” J. Alloys Compd. 455(1–2), 269–273 (2008).
[Crossref]

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal,” Opt. Mater. 29(12), 1861–1865 (2007).
[Crossref]

F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, and X. Lu, “Growth and optical property of ZnWO4: Er3+ crystal,” J. Lumin. 126(2), 623–628 (2007).
[Crossref]

Jiang, H.

L. Wang, Y. Ma, H. Jiang, Q. Wang, C. Ren, X. Kong, J. Shi, and J. Wang, “Luminescence properties of nano and bulk ZnWO4 and their charge transfer transitions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4651–4658 (2014).
[Crossref]

Jiang, S.

D. He, C. Guo, S. Jiang, N. Zhang, C. Duan, M. Yin, and T. Li, “Optical temperature sensing properties of Yb3+–Er3+ co-doped NaLnTiO4 (Ln = Gd, Y) up-conversion phosphors,” RSC Advances 5(2), 1385–1390 (2015).
[Crossref]

Kang, W.

L. Wang, Q. Wang, X. Xu, J. Li, L. Gao, W. Kang, J. Shi, and J. Wang, “Energy transfer from Bi3+ to Eu3+ triggers exceptional long-wavelength excitation band in ZnWO4:Bi3+, Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8033–8040 (2013).
[Crossref]

Kang, X.

D. Yang, Y. Dai, P. Ma, X. Kang, M. Shang, Z. Cheng, C. Li, and J. Lin, “Synthesis of Li1-xNaxYF4:Yb3+/Ln3+(0 ≤ x ≤ 0.3, Ln = Er, Tm, Ho) nanocrystals with multicolor up-conversion luminescence properties for in vitro cell imaging,” J. Mater. Chem. 22(38), 20618–20625 (2012).
[Crossref]

Kim, E.

E. Kim, C. Jeon, and G. Clem, “Effects of crystal structure on the microwave dielectricproperties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) ceramics,” J. Am. Ceram. Soc. 95(9), 2934–2938 (2012).
[Crossref]

Kong, X.

L. Wang, Y. Ma, H. Jiang, Q. Wang, C. Ren, X. Kong, J. Shi, and J. Wang, “Luminescence properties of nano and bulk ZnWO4 and their charge transfer transitions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4651–4658 (2014).
[Crossref]

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of Annealing on Upconversion luminescence of ZnO:Er3+ Nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111(41), 15119–15124 (2007).
[Crossref]

Kraus, H.

D. M. Trots, A. Senyshyn, L. Vasylechko, R. Niewa, T. Vad, V. B. Mikhailik, and H. Kraus, “Crystal structure of ZnWO4 scintillator material in the range of 3-1423 K,” J. Phys. Condens. Matter 21(32), 325402 (2009).
[Crossref] [PubMed]

Kumar, V.

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codopedb SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209(3), 352–358 (2015).
[Crossref]

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codopedb SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209(3), 352–358 (2015).
[Crossref]

La Vin, V.

S. F. Leon-Luis, U. R. Rodriguez-Mendoza, I. R. Martin, E. Lalla, and V. La Vin, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176(1), 1167–1175 (2013).
[Crossref]

Lalla, E.

S. F. Leon-Luis, U. R. Rodriguez-Mendoza, I. R. Martin, E. Lalla, and V. La Vin, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176(1), 1167–1175 (2013).
[Crossref]

S. F. Leon-Luis, U. R. Rodriguez-Mendoza, E. Lalla, and V. Lavin, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Lavin, V.

S. F. Leon-Luis, U. R. Rodriguez-Mendoza, E. Lalla, and V. Lavin, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Lei, M. K.

B. Dong, T. Yang, and M. K. Lei, “Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3,” Sens. Actuators B Chem. 123(2), 667–670 (2007).
[Crossref]

Leon-Luis, S. F.

S. F. Leon-Luis, U. R. Rodriguez-Mendoza, I. R. Martin, E. Lalla, and V. La Vin, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176(1), 1167–1175 (2013).
[Crossref]

S. F. Leon-Luis, U. R. Rodriguez-Mendoza, E. Lalla, and V. Lavin, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

P. Haro-Gonzalez, S. F. Leon-Luis, S. Gonzalez-Perez, and I. R. Martın, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

León-Luis, S. F.

P. Haro-Gonzalez, S. F. León-Luis, S. González-Pérez, and I. R. Martín, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

Li, C.

D. Yang, Y. Dai, P. Ma, X. Kang, M. Shang, Z. Cheng, C. Li, and J. Lin, “Synthesis of Li1-xNaxYF4:Yb3+/Ln3+(0 ≤ x ≤ 0.3, Ln = Er, Tm, Ho) nanocrystals with multicolor up-conversion luminescence properties for in vitro cell imaging,” J. Mater. Chem. 22(38), 20618–20625 (2012).
[Crossref]

Li, G.

Y. Yang, C. Mi, F. Yu, X. Su, C. Guo, G. Li, J. Zhang, L. Liu, Y. Liu, and X. Li, “Optical thermometry based on the upconversion fluorescence fromYb3+/ Er3+codoped La2O2S phosphor,” Ceram. Int. 40(7), 9875–9880 (2014).
[Crossref]

Li, J.

X. Chai, J. Li, X. Wang, H. Zhao, Y. Li, and X. Yao, “Dual-mode photoluminescence, temperature sensing and enhanced ferroelectric properties in Er-doped (Ba0.4Ca0.6)TiO3 multifunctional diphase ceramics,” Mater. Sci. Eng. B 201(12), 23–28 (2015).
[PubMed]

H. Zou, J. Li, X. S. Wang, D. F. Peng, Y. X. Li, and X. Yao, “Color-tunable upconversion emission and optical temperature sensing behaviour in Er-Yb-Mo codoped Bi7Ti4NbO21 multifunctional ferroelectric oxide,” Opt. Mater. Express 4(8), 1545–1554 (2014).
[Crossref]

L. Wang, Q. Wang, X. Xu, J. Li, L. Gao, W. Kang, J. Shi, and J. Wang, “Energy transfer from Bi3+ to Eu3+ triggers exceptional long-wavelength excitation band in ZnWO4:Bi3+, Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8033–8040 (2013).
[Crossref]

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of ZnWO4:Ho3+ crystal,” J. Alloys Compd. 455(1–2), 269–273 (2008).
[Crossref]

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal,” Opt. Mater. 29(12), 1861–1865 (2007).
[Crossref]

F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, and X. Lu, “Growth and optical property of ZnWO4: Er3+ crystal,” J. Lumin. 126(2), 623–628 (2007).
[Crossref]

Li, T.

D. He, C. Guo, S. Jiang, N. Zhang, C. Duan, M. Yin, and T. Li, “Optical temperature sensing properties of Yb3+–Er3+ co-doped NaLnTiO4 (Ln = Gd, Y) up-conversion phosphors,” RSC Advances 5(2), 1385–1390 (2015).
[Crossref]

Li, W.

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

Li, W. P.

P. Du, L. H. Luo, Q. Y. Yue, and W. P. Li, “The simultaneousrealizationofhigh-andlow-temperature thermometry inEr3+/Yb3+-codoped Y2O3 nanoparticles,” Mater. Lett. 143, 209–211 (2015).
[Crossref]

P. Du, L. H. Luo, W. P. Li, and Q. Y. Yue, “Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application,” J. Appl. Phys. 116(1), 014102 (2014).
[Crossref]

Li, X.

Y. Yang, C. Mi, F. Yu, X. Su, C. Guo, G. Li, J. Zhang, L. Liu, Y. Liu, and X. Li, “Optical thermometry based on the upconversion fluorescence fromYb3+/ Er3+codoped La2O2S phosphor,” Ceram. Int. 40(7), 9875–9880 (2014).
[Crossref]

Li, Y.

X. Chai, J. Li, X. Wang, H. Zhao, Y. Li, and X. Yao, “Dual-mode photoluminescence, temperature sensing and enhanced ferroelectric properties in Er-doped (Ba0.4Ca0.6)TiO3 multifunctional diphase ceramics,” Mater. Sci. Eng. B 201(12), 23–28 (2015).
[PubMed]

W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+codoped CaWO4,” Sens. Actuators B Chem. 188(12), 1096–1100 (2013).
[Crossref]

Li, Y. X.

Li, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Lin, J.

D. Yang, Y. Dai, P. Ma, X. Kang, M. Shang, Z. Cheng, C. Li, and J. Lin, “Synthesis of Li1-xNaxYF4:Yb3+/Ln3+(0 ≤ x ≤ 0.3, Ln = Er, Tm, Ho) nanocrystals with multicolor up-conversion luminescence properties for in vitro cell imaging,” J. Mater. Chem. 22(38), 20618–20625 (2012).
[Crossref]

Liu, Ch.

X. Wang, Q. Liu, Y. Bu, Ch. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, L.

Y. Yang, C. Mi, F. Yu, X. Su, C. Guo, G. Li, J. Zhang, L. Liu, Y. Liu, and X. Li, “Optical thermometry based on the upconversion fluorescence fromYb3+/ Er3+codoped La2O2S phosphor,” Ceram. Int. 40(7), 9875–9880 (2014).
[Crossref]

Liu, Q.

X. Wang, Q. Liu, Y. Bu, Ch. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, T.

X. Wang, Q. Liu, Y. Bu, Ch. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, Y.

Y. Yang, C. Mi, F. Yu, X. Su, C. Guo, G. Li, J. Zhang, L. Liu, Y. Liu, and X. Li, “Optical thermometry based on the upconversion fluorescence fromYb3+/ Er3+codoped La2O2S phosphor,” Ceram. Int. 40(7), 9875–9880 (2014).
[Crossref]

Liu, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Lu, S.

Q. Dai, H. Song, X. Bai, G. Pan, S. Lu, T. Wang, X. Ren, and H. Zhao, “Photoluminescence properties of ZnWO4:Eu3+ nanocrystals prepared by a hydrothermal method,” J. Phys. Chem. C 111(21), 7586–7592 (2007).
[Crossref]

Lu, X.

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of ZnWO4:Ho3+ crystal,” J. Alloys Compd. 455(1–2), 269–273 (2008).
[Crossref]

F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, and X. Lu, “Growth and optical property of ZnWO4: Er3+ crystal,” J. Lumin. 126(2), 623–628 (2007).
[Crossref]

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal,” Opt. Mater. 29(12), 1861–1865 (2007).
[Crossref]

Luo, L.

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

Luo, L. H.

P. Du, L. H. Luo, Q. Y. Yue, and W. P. Li, “The simultaneousrealizationofhigh-andlow-temperature thermometry inEr3+/Yb3+-codoped Y2O3 nanoparticles,” Mater. Lett. 143, 209–211 (2015).
[Crossref]

P. Du, L. H. Luo, W. P. Li, and Q. Y. Yue, “Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application,” J. Appl. Phys. 116(1), 014102 (2014).
[Crossref]

Luo, X.

X. Luo and W. Cao, “Upconversion luminescence properties of Li+-doped ZnWO4:Yb,Er,” J. Mater. Res. 23(8), 2078–2083 (2008).
[Crossref]

Ma, P.

D. Yang, Y. Dai, P. Ma, X. Kang, M. Shang, Z. Cheng, C. Li, and J. Lin, “Synthesis of Li1-xNaxYF4:Yb3+/Ln3+(0 ≤ x ≤ 0.3, Ln = Er, Tm, Ho) nanocrystals with multicolor up-conversion luminescence properties for in vitro cell imaging,” J. Mater. Chem. 22(38), 20618–20625 (2012).
[Crossref]

Ma, Y.

L. Wang, Y. Ma, H. Jiang, Q. Wang, C. Ren, X. Kong, J. Shi, and J. Wang, “Luminescence properties of nano and bulk ZnWO4 and their charge transfer transitions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4651–4658 (2014).
[Crossref]

Maciel, G. S.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er 3+ -doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Manh Hung, N.

N. Van Minh, N. Manh Hung, D. T. Xuan Thao, M. Roeffaers, and J. Hofkens, “Structural and optical properties of ZnWO4:Er3+ crystals,” J. Spectrosc. 2013, 424185 (2013).

Manjon, F. J.

D. Errandonea, F. J. Manjon, N. Garro, P. Rodriguez-Hernandez, S. Radescu, A. Mujica, A. Muñoz, and C. Y. Tu, “Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4,” Phys. Rev. B 78(5), 054116 (2008).
[Crossref]

Martin, I. R.

S. F. Leon-Luis, U. R. Rodriguez-Mendoza, I. R. Martin, E. Lalla, and V. La Vin, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176(1), 1167–1175 (2013).
[Crossref]

P. Haro-Gonzalez, S. F. Leon-Luis, S. Gonzalez-Perez, and I. R. Martın, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

Martín, I. R.

P. Haro-Gonzalez, S. F. León-Luis, S. González-Pérez, and I. R. Martín, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

Maurice, E.

Mi, C.

Y. Yang, C. Mi, F. Yu, X. Su, C. Guo, G. Li, J. Zhang, L. Liu, Y. Liu, and X. Li, “Optical thermometry based on the upconversion fluorescence fromYb3+/ Er3+codoped La2O2S phosphor,” Ceram. Int. 40(7), 9875–9880 (2014).
[Crossref]

Mikhailik, V. B.

D. M. Trots, A. Senyshyn, L. Vasylechko, R. Niewa, T. Vad, V. B. Mikhailik, and H. Kraus, “Crystal structure of ZnWO4 scintillator material in the range of 3-1423 K,” J. Phys. Condens. Matter 21(32), 325402 (2009).
[Crossref] [PubMed]

Monnom, G.

Mujica, A.

D. Errandonea, F. J. Manjon, N. Garro, P. Rodriguez-Hernandez, S. Radescu, A. Mujica, A. Muñoz, and C. Y. Tu, “Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4,” Phys. Rev. B 78(5), 054116 (2008).
[Crossref]

Muñoz, A.

D. Errandonea, F. J. Manjon, N. Garro, P. Rodriguez-Hernandez, S. Radescu, A. Mujica, A. Muñoz, and C. Y. Tu, “Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4,” Phys. Rev. B 78(5), 054116 (2008).
[Crossref]

Niewa, R.

D. M. Trots, A. Senyshyn, L. Vasylechko, R. Niewa, T. Vad, V. B. Mikhailik, and H. Kraus, “Crystal structure of ZnWO4 scintillator material in the range of 3-1423 K,” J. Phys. Condens. Matter 21(32), 325402 (2009).
[Crossref] [PubMed]

Nyk, M.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Ostrowsky, D. B.

Pan, G.

Q. Dai, H. Song, X. Bai, G. Pan, S. Lu, T. Wang, X. Ren, and H. Zhao, “Photoluminescence properties of ZnWO4:Eu3+ nanocrystals prepared by a hydrothermal method,” J. Phys. Chem. C 111(21), 7586–7592 (2007).
[Crossref]

Pandey, A.

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codopedb SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209(3), 352–358 (2015).
[Crossref]

V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3:Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
[Crossref]

Patra, A.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er 3+ -doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Peng, D. F.

Quintanilla, M.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+ /Yb3+ particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Radescu, S.

D. Errandonea, F. J. Manjon, N. Garro, P. Rodriguez-Hernandez, S. Radescu, A. Mujica, A. Muñoz, and C. Y. Tu, “Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4,” Phys. Rev. B 78(5), 054116 (2008).
[Crossref]

Rai, V. K.

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codopedb SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209(3), 352–358 (2015).
[Crossref]

V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3:Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
[Crossref]

Ren, C.

L. Wang, Y. Ma, H. Jiang, Q. Wang, C. Ren, X. Kong, J. Shi, and J. Wang, “Luminescence properties of nano and bulk ZnWO4 and their charge transfer transitions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4651–4658 (2014).
[Crossref]

Ren, X.

Q. Dai, H. Song, X. Bai, G. Pan, S. Lu, T. Wang, X. Ren, and H. Zhao, “Photoluminescence properties of ZnWO4:Eu3+ nanocrystals prepared by a hydrothermal method,” J. Phys. Chem. C 111(21), 7586–7592 (2007).
[Crossref]

Rodriguez-Hernandez, P.

D. Errandonea, F. J. Manjon, N. Garro, P. Rodriguez-Hernandez, S. Radescu, A. Mujica, A. Muñoz, and C. Y. Tu, “Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4,” Phys. Rev. B 78(5), 054116 (2008).
[Crossref]

Rodriguez-Mendoza, U. R.

S. F. Leon-Luis, U. R. Rodriguez-Mendoza, I. R. Martin, E. Lalla, and V. La Vin, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176(1), 1167–1175 (2013).
[Crossref]

S. F. Leon-Luis, U. R. Rodriguez-Mendoza, E. Lalla, and V. Lavin, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Roeffaers, M.

N. Van Minh, N. Manh Hung, D. T. Xuan Thao, M. Roeffaers, and J. Hofkens, “Structural and optical properties of ZnWO4:Er3+ crystals,” J. Spectrosc. 2013, 424185 (2013).

Saïssy, A.

Samoc, M.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Senyshyn, A.

D. M. Trots, A. Senyshyn, L. Vasylechko, R. Niewa, T. Vad, V. B. Mikhailik, and H. Kraus, “Crystal structure of ZnWO4 scintillator material in the range of 3-1423 K,” J. Phys. Condens. Matter 21(32), 325402 (2009).
[Crossref] [PubMed]

Shang, M.

D. Yang, Y. Dai, P. Ma, X. Kang, M. Shang, Z. Cheng, C. Li, and J. Lin, “Synthesis of Li1-xNaxYF4:Yb3+/Ln3+(0 ≤ x ≤ 0.3, Ln = Er, Tm, Ho) nanocrystals with multicolor up-conversion luminescence properties for in vitro cell imaging,” J. Mater. Chem. 22(38), 20618–20625 (2012).
[Crossref]

Shi, J.

L. Wang, Y. Ma, H. Jiang, Q. Wang, C. Ren, X. Kong, J. Shi, and J. Wang, “Luminescence properties of nano and bulk ZnWO4 and their charge transfer transitions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4651–4658 (2014).
[Crossref]

L. Wang, Q. Wang, X. Xu, J. Li, L. Gao, W. Kang, J. Shi, and J. Wang, “Energy transfer from Bi3+ to Eu3+ triggers exceptional long-wavelength excitation band in ZnWO4:Bi3+, Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8033–8040 (2013).
[Crossref]

Song, H.

Q. Dai, H. Song, X. Bai, G. Pan, S. Lu, T. Wang, X. Ren, and H. Zhao, “Photoluminescence properties of ZnWO4:Eu3+ nanocrystals prepared by a hydrothermal method,” J. Phys. Chem. C 111(21), 7586–7592 (2007).
[Crossref]

Strek, W.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Su, X.

Y. Yang, C. Mi, F. Yu, X. Su, C. Guo, G. Li, J. Zhang, L. Liu, Y. Liu, and X. Li, “Optical thermometry based on the upconversion fluorescence fromYb3+/ Er3+codoped La2O2S phosphor,” Ceram. Int. 40(7), 9875–9880 (2014).
[Crossref]

Sun, Y.

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of Annealing on Upconversion luminescence of ZnO:Er3+ Nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111(41), 15119–15124 (2007).
[Crossref]

Swart, H. C.

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codopedb SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209(3), 352–358 (2015).
[Crossref]

Tian, D.

D. Gao, D. Tian, X. Zhang, and W. Gao, “Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect,” Sci. Rep. 6, 22433 (2016).
[Crossref] [PubMed]

Toby, B. H.

B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Cryst. 34(2), 210–213 (2001).
[Crossref]

Trots, D. M.

D. M. Trots, A. Senyshyn, L. Vasylechko, R. Niewa, T. Vad, V. B. Mikhailik, and H. Kraus, “Crystal structure of ZnWO4 scintillator material in the range of 3-1423 K,” J. Phys. Condens. Matter 21(32), 325402 (2009).
[Crossref] [PubMed]

Tu, C.

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of ZnWO4:Ho3+ crystal,” J. Alloys Compd. 455(1–2), 269–273 (2008).
[Crossref]

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal,” Opt. Mater. 29(12), 1861–1865 (2007).
[Crossref]

F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, and X. Lu, “Growth and optical property of ZnWO4: Er3+ crystal,” J. Lumin. 126(2), 623–628 (2007).
[Crossref]

Tu, C. Y.

D. Errandonea, F. J. Manjon, N. Garro, P. Rodriguez-Hernandez, S. Radescu, A. Mujica, A. Muñoz, and C. Y. Tu, “Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4,” Phys. Rev. B 78(5), 054116 (2008).
[Crossref]

Vad, T.

D. M. Trots, A. Senyshyn, L. Vasylechko, R. Niewa, T. Vad, V. B. Mikhailik, and H. Kraus, “Crystal structure of ZnWO4 scintillator material in the range of 3-1423 K,” J. Phys. Condens. Matter 21(32), 325402 (2009).
[Crossref] [PubMed]

Van Minh, N.

N. Van Minh, N. Manh Hung, D. T. Xuan Thao, M. Roeffaers, and J. Hofkens, “Structural and optical properties of ZnWO4:Er3+ crystals,” J. Spectrosc. 2013, 424185 (2013).

Vasylechko, L.

D. M. Trots, A. Senyshyn, L. Vasylechko, R. Niewa, T. Vad, V. B. Mikhailik, and H. Kraus, “Crystal structure of ZnWO4 scintillator material in the range of 3-1423 K,” J. Phys. Condens. Matter 21(32), 325402 (2009).
[Crossref] [PubMed]

Vetrone, F.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

Villegas, M.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+ /Yb3+ particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Wang, H.

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of ZnWO4:Ho3+ crystal,” J. Alloys Compd. 455(1–2), 269–273 (2008).
[Crossref]

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal,” Opt. Mater. 29(12), 1861–1865 (2007).
[Crossref]

F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, and X. Lu, “Growth and optical property of ZnWO4: Er3+ crystal,” J. Lumin. 126(2), 623–628 (2007).
[Crossref]

Wang, J.

L. Wang, Y. Ma, H. Jiang, Q. Wang, C. Ren, X. Kong, J. Shi, and J. Wang, “Luminescence properties of nano and bulk ZnWO4 and their charge transfer transitions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4651–4658 (2014).
[Crossref]

L. Wang, Q. Wang, X. Xu, J. Li, L. Gao, W. Kang, J. Shi, and J. Wang, “Energy transfer from Bi3+ to Eu3+ triggers exceptional long-wavelength excitation band in ZnWO4:Bi3+, Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8033–8040 (2013).
[Crossref]

Wang, L.

L. Wang, Y. Ma, H. Jiang, Q. Wang, C. Ren, X. Kong, J. Shi, and J. Wang, “Luminescence properties of nano and bulk ZnWO4 and their charge transfer transitions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4651–4658 (2014).
[Crossref]

L. Wang, Q. Wang, X. Xu, J. Li, L. Gao, W. Kang, J. Shi, and J. Wang, “Energy transfer from Bi3+ to Eu3+ triggers exceptional long-wavelength excitation band in ZnWO4:Bi3+, Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8033–8040 (2013).
[Crossref]

Wang, P.

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Wang, Q.

L. Wang, Y. Ma, H. Jiang, Q. Wang, C. Ren, X. Kong, J. Shi, and J. Wang, “Luminescence properties of nano and bulk ZnWO4 and their charge transfer transitions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4651–4658 (2014).
[Crossref]

L. Wang, Q. Wang, X. Xu, J. Li, L. Gao, W. Kang, J. Shi, and J. Wang, “Energy transfer from Bi3+ to Eu3+ triggers exceptional long-wavelength excitation band in ZnWO4:Bi3+, Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8033–8040 (2013).
[Crossref]

Wang, T.

Q. Dai, H. Song, X. Bai, G. Pan, S. Lu, T. Wang, X. Ren, and H. Zhao, “Photoluminescence properties of ZnWO4:Eu3+ nanocrystals prepared by a hydrothermal method,” J. Phys. Chem. C 111(21), 7586–7592 (2007).
[Crossref]

Wang, X.

X. Wang, Q. Liu, Y. Bu, Ch. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

X. Chai, J. Li, X. Wang, H. Zhao, Y. Li, and X. Yao, “Dual-mode photoluminescence, temperature sensing and enhanced ferroelectric properties in Er-doped (Ba0.4Ca0.6)TiO3 multifunctional diphase ceramics,” Mater. Sci. Eng. B 201(12), 23–28 (2015).
[PubMed]

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of Annealing on Upconversion luminescence of ZnO:Er3+ Nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111(41), 15119–15124 (2007).
[Crossref]

Wang, X. S.

Wang, Y.

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of ZnWO4:Ho3+ crystal,” J. Alloys Compd. 455(1–2), 269–273 (2008).
[Crossref]

F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, and X. Lu, “Growth and optical property of ZnWO4: Er3+ crystal,” J. Lumin. 126(2), 623–628 (2007).
[Crossref]

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal,” Opt. Mater. 29(12), 1861–1865 (2007).
[Crossref]

Wawrzynczyk, D.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Wei, Y.

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of ZnWO4:Ho3+ crystal,” J. Alloys Compd. 455(1–2), 269–273 (2008).
[Crossref]

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal,” Opt. Mater. 29(12), 1861–1865 (2007).
[Crossref]

F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, and X. Lu, “Growth and optical property of ZnWO4: Er3+ crystal,” J. Lumin. 126(2), 623–628 (2007).
[Crossref]

Xiao, F.

X. Chen, F. Xiao, S. Ye, X. Huang, G. Dong, and Q. Zhang, “ZnWO4:Eu3+ nanorods: A potential tunable white light-emitting phosphors,” J. Alloys Compd. 509(5), 1355–1359 (2011).
[Crossref]

Xu, D.

D. Xu and J. Zang, “Progress of study on upconversion laser& luminescence materials,” J. Synth. Cryst. 30(2), 203–210 (2001).

Xu, W.

W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+codoped CaWO4,” Sens. Actuators B Chem. 188(12), 1096–1100 (2013).
[Crossref]

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Xu, X.

L. Wang, Q. Wang, X. Xu, J. Li, L. Gao, W. Kang, J. Shi, and J. Wang, “Energy transfer from Bi3+ to Eu3+ triggers exceptional long-wavelength excitation band in ZnWO4:Bi3+, Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8033–8040 (2013).
[Crossref]

Xuan Thao, D. T.

N. Van Minh, N. Manh Hung, D. T. Xuan Thao, M. Roeffaers, and J. Hofkens, “Structural and optical properties of ZnWO4:Er3+ crystals,” J. Spectrosc. 2013, 424185 (2013).

Yan, X.

X. Wang, Q. Liu, Y. Bu, Ch. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Yang, D.

D. Yang, Y. Dai, P. Ma, X. Kang, M. Shang, Z. Cheng, C. Li, and J. Lin, “Synthesis of Li1-xNaxYF4:Yb3+/Ln3+(0 ≤ x ≤ 0.3, Ln = Er, Tm, Ho) nanocrystals with multicolor up-conversion luminescence properties for in vitro cell imaging,” J. Mater. Chem. 22(38), 20618–20625 (2012).
[Crossref]

Yang, F.

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of ZnWO4:Ho3+ crystal,” J. Alloys Compd. 455(1–2), 269–273 (2008).
[Crossref]

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal,” Opt. Mater. 29(12), 1861–1865 (2007).
[Crossref]

F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, and X. Lu, “Growth and optical property of ZnWO4: Er3+ crystal,” J. Lumin. 126(2), 623–628 (2007).
[Crossref]

Yang, T.

B. Dong, T. Yang, and M. K. Lei, “Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3,” Sens. Actuators B Chem. 123(2), 667–670 (2007).
[Crossref]

Yang, Y.

Y. Yang, C. Mi, F. Yu, X. Su, C. Guo, G. Li, J. Zhang, L. Liu, Y. Liu, and X. Li, “Optical thermometry based on the upconversion fluorescence fromYb3+/ Er3+codoped La2O2S phosphor,” Ceram. Int. 40(7), 9875–9880 (2014).
[Crossref]

Yao, X.

X. Chai, J. Li, X. Wang, H. Zhao, Y. Li, and X. Yao, “Dual-mode photoluminescence, temperature sensing and enhanced ferroelectric properties in Er-doped (Ba0.4Ca0.6)TiO3 multifunctional diphase ceramics,” Mater. Sci. Eng. B 201(12), 23–28 (2015).
[PubMed]

H. Zou, J. Li, X. S. Wang, D. F. Peng, Y. X. Li, and X. Yao, “Color-tunable upconversion emission and optical temperature sensing behaviour in Er-Yb-Mo codoped Bi7Ti4NbO21 multifunctional ferroelectric oxide,” Opt. Mater. Express 4(8), 1545–1554 (2014).
[Crossref]

Ye, S.

X. Chen, F. Xiao, S. Ye, X. Huang, G. Dong, and Q. Zhang, “ZnWO4:Eu3+ nanorods: A potential tunable white light-emitting phosphors,” J. Alloys Compd. 509(5), 1355–1359 (2011).
[Crossref]

Yin, M.

D. He, C. Guo, S. Jiang, N. Zhang, C. Duan, M. Yin, and T. Li, “Optical temperature sensing properties of Yb3+–Er3+ co-doped NaLnTiO4 (Ln = Gd, Y) up-conversion phosphors,” RSC Advances 5(2), 1385–1390 (2015).
[Crossref]

You, Z.

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of ZnWO4:Ho3+ crystal,” J. Alloys Compd. 455(1–2), 269–273 (2008).
[Crossref]

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal,” Opt. Mater. 29(12), 1861–1865 (2007).
[Crossref]

F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, and X. Lu, “Growth and optical property of ZnWO4: Er3+ crystal,” J. Lumin. 126(2), 623–628 (2007).
[Crossref]

Yu, F.

Y. Yang, C. Mi, F. Yu, X. Su, C. Guo, G. Li, J. Zhang, L. Liu, Y. Liu, and X. Li, “Optical thermometry based on the upconversion fluorescence fromYb3+/ Er3+codoped La2O2S phosphor,” Ceram. Int. 40(7), 9875–9880 (2014).
[Crossref]

Yu, J. S.

P. Du and J. S. Yu, “Effect of molybdenum on upconversion emission and temperature sensing properties in Na0.5Bi0.5TiO3:Er/Yb ceramics,” Ceram. Int. 41(5), 6710–6714 (2015).
[Crossref]

Yu, Y.

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of Annealing on Upconversion luminescence of ZnO:Er3+ Nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111(41), 15119–15124 (2007).
[Crossref]

Yue, Q.

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

Yue, Q. Y.

P. Du, L. H. Luo, Q. Y. Yue, and W. P. Li, “The simultaneousrealizationofhigh-andlow-temperature thermometry inEr3+/Yb3+-codoped Y2O3 nanoparticles,” Mater. Lett. 143, 209–211 (2015).
[Crossref]

P. Du, L. H. Luo, W. P. Li, and Q. Y. Yue, “Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application,” J. Appl. Phys. 116(1), 014102 (2014).
[Crossref]

Zang, J.

D. Xu and J. Zang, “Progress of study on upconversion laser& luminescence materials,” J. Synth. Cryst. 30(2), 203–210 (2001).

Zhang, H.

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of Annealing on Upconversion luminescence of ZnO:Er3+ Nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111(41), 15119–15124 (2007).
[Crossref]

Zhang, J.

Y. Yang, C. Mi, F. Yu, X. Su, C. Guo, G. Li, J. Zhang, L. Liu, Y. Liu, and X. Li, “Optical thermometry based on the upconversion fluorescence fromYb3+/ Er3+codoped La2O2S phosphor,” Ceram. Int. 40(7), 9875–9880 (2014).
[Crossref]

Zhang, N.

D. He, C. Guo, S. Jiang, N. Zhang, C. Duan, M. Yin, and T. Li, “Optical temperature sensing properties of Yb3+–Er3+ co-doped NaLnTiO4 (Ln = Gd, Y) up-conversion phosphors,” RSC Advances 5(2), 1385–1390 (2015).
[Crossref]

Zhang, Q.

X. Chen, F. Xiao, S. Ye, X. Huang, G. Dong, and Q. Zhang, “ZnWO4:Eu3+ nanorods: A potential tunable white light-emitting phosphors,” J. Alloys Compd. 509(5), 1355–1359 (2011).
[Crossref]

Zhang, X.

D. Gao, D. Tian, X. Zhang, and W. Gao, “Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect,” Sci. Rep. 6, 22433 (2016).
[Crossref] [PubMed]

D. Gao, X. Zhang, and W. Gao, “Formation of Bundle-Shaped β-NaYF4 Upconversion Microtubes via Ostwald Ripening,” ACS Appl. Mater. Interfaces 5(19), 9732–9739 (2013).
[Crossref] [PubMed]

Zhang, Z.

W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+codoped CaWO4,” Sens. Actuators B Chem. 188(12), 1096–1100 (2013).
[Crossref]

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Zhao, H.

X. Chai, J. Li, X. Wang, H. Zhao, Y. Li, and X. Yao, “Dual-mode photoluminescence, temperature sensing and enhanced ferroelectric properties in Er-doped (Ba0.4Ca0.6)TiO3 multifunctional diphase ceramics,” Mater. Sci. Eng. B 201(12), 23–28 (2015).
[PubMed]

W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+codoped CaWO4,” Sens. Actuators B Chem. 188(12), 1096–1100 (2013).
[Crossref]

Q. Dai, H. Song, X. Bai, G. Pan, S. Lu, T. Wang, X. Ren, and H. Zhao, “Photoluminescence properties of ZnWO4:Eu3+ nanocrystals prepared by a hydrothermal method,” J. Phys. Chem. C 111(21), 7586–7592 (2007).
[Crossref]

Zheng, L.

W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+codoped CaWO4,” Sens. Actuators B Chem. 188(12), 1096–1100 (2013).
[Crossref]

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Zhu, Z.

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of ZnWO4:Ho3+ crystal,” J. Alloys Compd. 455(1–2), 269–273 (2008).
[Crossref]

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal,” Opt. Mater. 29(12), 1861–1865 (2007).
[Crossref]

F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, and X. Lu, “Growth and optical property of ZnWO4: Er3+ crystal,” J. Lumin. 126(2), 623–628 (2007).
[Crossref]

Zou, H.

ACS Appl. Mater. Interfaces (1)

D. Gao, X. Zhang, and W. Gao, “Formation of Bundle-Shaped β-NaYF4 Upconversion Microtubes via Ostwald Ripening,” ACS Appl. Mater. Interfaces 5(19), 9732–9739 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Express (2)

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+ /Yb3+ particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Appl. Phys. Lett. (2)

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er 3+ -doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

Ceram. Int. (2)

Y. Yang, C. Mi, F. Yu, X. Su, C. Guo, G. Li, J. Zhang, L. Liu, Y. Liu, and X. Li, “Optical thermometry based on the upconversion fluorescence fromYb3+/ Er3+codoped La2O2S phosphor,” Ceram. Int. 40(7), 9875–9880 (2014).
[Crossref]

P. Du and J. S. Yu, “Effect of molybdenum on upconversion emission and temperature sensing properties in Na0.5Bi0.5TiO3:Er/Yb ceramics,” Ceram. Int. 41(5), 6710–6714 (2015).
[Crossref]

J. Alloys Compd. (2)

X. Chen, F. Xiao, S. Ye, X. Huang, G. Dong, and Q. Zhang, “ZnWO4:Eu3+ nanorods: A potential tunable white light-emitting phosphors,” J. Alloys Compd. 509(5), 1355–1359 (2011).
[Crossref]

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of ZnWO4:Ho3+ crystal,” J. Alloys Compd. 455(1–2), 269–273 (2008).
[Crossref]

J. Am. Ceram. Soc. (1)

E. Kim, C. Jeon, and G. Clem, “Effects of crystal structure on the microwave dielectricproperties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) ceramics,” J. Am. Ceram. Soc. 95(9), 2934–2938 (2012).
[Crossref]

J. Appl. Cryst. (1)

B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Cryst. 34(2), 210–213 (2001).
[Crossref]

J. Appl. Phys. (3)

P. Du, L. H. Luo, W. P. Li, and Q. Y. Yue, “Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application,” J. Appl. Phys. 116(1), 014102 (2014).
[Crossref]

V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3:Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
[Crossref]

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

J. Lumin. (1)

F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, and X. Lu, “Growth and optical property of ZnWO4: Er3+ crystal,” J. Lumin. 126(2), 623–628 (2007).
[Crossref]

J. Mater. Chem. (1)

D. Yang, Y. Dai, P. Ma, X. Kang, M. Shang, Z. Cheng, C. Li, and J. Lin, “Synthesis of Li1-xNaxYF4:Yb3+/Ln3+(0 ≤ x ≤ 0.3, Ln = Er, Tm, Ho) nanocrystals with multicolor up-conversion luminescence properties for in vitro cell imaging,” J. Mater. Chem. 22(38), 20618–20625 (2012).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

L. Wang, Q. Wang, X. Xu, J. Li, L. Gao, W. Kang, J. Shi, and J. Wang, “Energy transfer from Bi3+ to Eu3+ triggers exceptional long-wavelength excitation band in ZnWO4:Bi3+, Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8033–8040 (2013).
[Crossref]

L. Wang, Y. Ma, H. Jiang, Q. Wang, C. Ren, X. Kong, J. Shi, and J. Wang, “Luminescence properties of nano and bulk ZnWO4 and their charge transfer transitions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4651–4658 (2014).
[Crossref]

J. Mater. Res. (1)

X. Luo and W. Cao, “Upconversion luminescence properties of Li+-doped ZnWO4:Yb,Er,” J. Mater. Res. 23(8), 2078–2083 (2008).
[Crossref]

J. Phys. Chem. C (2)

Q. Dai, H. Song, X. Bai, G. Pan, S. Lu, T. Wang, X. Ren, and H. Zhao, “Photoluminescence properties of ZnWO4:Eu3+ nanocrystals prepared by a hydrothermal method,” J. Phys. Chem. C 111(21), 7586–7592 (2007).
[Crossref]

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of Annealing on Upconversion luminescence of ZnO:Er3+ Nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111(41), 15119–15124 (2007).
[Crossref]

J. Phys. Condens. Matter (1)

D. M. Trots, A. Senyshyn, L. Vasylechko, R. Niewa, T. Vad, V. B. Mikhailik, and H. Kraus, “Crystal structure of ZnWO4 scintillator material in the range of 3-1423 K,” J. Phys. Condens. Matter 21(32), 325402 (2009).
[Crossref] [PubMed]

J. Spectrosc. (1)

N. Van Minh, N. Manh Hung, D. T. Xuan Thao, M. Roeffaers, and J. Hofkens, “Structural and optical properties of ZnWO4:Er3+ crystals,” J. Spectrosc. 2013, 424185 (2013).

J. Synth. Cryst. (1)

D. Xu and J. Zang, “Progress of study on upconversion laser& luminescence materials,” J. Synth. Cryst. 30(2), 203–210 (2001).

Mater. Lett. (1)

P. Du, L. H. Luo, Q. Y. Yue, and W. P. Li, “The simultaneousrealizationofhigh-andlow-temperature thermometry inEr3+/Yb3+-codoped Y2O3 nanoparticles,” Mater. Lett. 143, 209–211 (2015).
[Crossref]

Mater. Res. Bull. (2)

P. Haro-Gonzalez, S. F. Leon-Luis, S. Gonzalez-Perez, and I. R. Martın, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

P. Haro-Gonzalez, S. F. León-Luis, S. González-Pérez, and I. R. Martín, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46(7), 1051–1054 (2011).
[Crossref]

Mater. Sci. Eng. B (1)

X. Chai, J. Li, X. Wang, H. Zhao, Y. Li, and X. Yao, “Dual-mode photoluminescence, temperature sensing and enhanced ferroelectric properties in Er-doped (Ba0.4Ca0.6)TiO3 multifunctional diphase ceramics,” Mater. Sci. Eng. B 201(12), 23–28 (2015).
[PubMed]

Nanoscale (2)

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

Opt. Mater. (1)

F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, and Y. Wang, “Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal,” Opt. Mater. 29(12), 1861–1865 (2007).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (1)

D. Errandonea, F. J. Manjon, N. Garro, P. Rodriguez-Hernandez, S. Radescu, A. Mujica, A. Muñoz, and C. Y. Tu, “Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4,” Phys. Rev. B 78(5), 054116 (2008).
[Crossref]

RSC Advances (2)

X. Wang, Q. Liu, Y. Bu, Ch. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

D. He, C. Guo, S. Jiang, N. Zhang, C. Duan, M. Yin, and T. Li, “Optical temperature sensing properties of Yb3+–Er3+ co-doped NaLnTiO4 (Ln = Gd, Y) up-conversion phosphors,” RSC Advances 5(2), 1385–1390 (2015).
[Crossref]

Sci. Rep. (1)

D. Gao, D. Tian, X. Zhang, and W. Gao, “Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect,” Sci. Rep. 6, 22433 (2016).
[Crossref] [PubMed]

Sens. Actuators B Chem. (5)

W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+codoped CaWO4,” Sens. Actuators B Chem. 188(12), 1096–1100 (2013).
[Crossref]

B. Dong, T. Yang, and M. K. Lei, “Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3,” Sens. Actuators B Chem. 123(2), 667–670 (2007).
[Crossref]

S. F. Leon-Luis, U. R. Rodriguez-Mendoza, I. R. Martin, E. Lalla, and V. La Vin, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176(1), 1167–1175 (2013).
[Crossref]

S. F. Leon-Luis, U. R. Rodriguez-Mendoza, E. Lalla, and V. Lavin, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codopedb SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209(3), 352–358 (2015).
[Crossref]

Other (2)

A. C. Larson and R. B. Von Dreele, “General structure analysis system (GSAS),” LANL Report No. LAUR 86–748, Los Alamos National Laboratory, Los Alamos, NM, 2000.

Radii for All Species, http://abulafia.mt.ic.ac.uk/shannon/radius.php .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The UC luminescence spectra and corresponding luminescence photographs of ZnWO4: Er3+/Yb3+ samples, (b) Red-to-green emission intensity ratios as a function of doping concentration of Er3+.
Fig. 2
Fig. 2 Schematic diagram of Er3+ energy levels for visible UC photoluminescence mechanisms in ZnWO4: Er3+/Yb3+ phosphors.
Fig. 3
Fig. 3 (a) UC spectra of the ZnWO4: 0.05 mol% Er3+/0.5 mol% Yb3+ phosphor as a function of pump power at room temperature, and the inset of (a) shown the dependence of the green and red UC emission intensities on the pump power, (b) CIE chromaticity diagram of ZnWO4: 0.05 mol% Er3+/0.5 mol% Yb3+ phosphor at different pump powers.
Fig. 4
Fig. 4 The temperature sensing properties of ZnWO4: Er3+/Yb3+ phosphors, with x = 0.05 mol%: (a) Green UC emission spectra at different temperatures, (b) FIR relative to temperature and the inset of (b) is the sensor sensitivity as a function of temperature.
Fig. 5
Fig. 5 Rietveld refinements and the structure for typical ZnWO4: Er3+/Yb3+ samples, with x = 0.05 mol%, 0.20 mol% and 1.00 mol%, respectively.
Fig. 6
Fig. 6 EDS spectrum of the ZnWO4: 0.05 mol% Er3+/0.5 mol% Yb3+ sample and the inset of Fig. 6 is elemental mappings.

Tables (2)

Tables Icon

Table 1 The comparison of temperature sensing properties of Er doped oxides materials.

Tables Icon

Table 2 Crystal data and structure refinement conditions for the ZnWO4: Er3+/Yb3+ phosphors

Metrics