Abstract

A flat slow-light band over a wide frequency range is obtained in the hetero-MIM (metal-insulator-metal) waveguide with zero group velocity dispersion (GVD). The zero GVD originates from dispersion compensation by the photonic mode and the plasmonic mode, the mechanism of which does not exist in the homo-MIM structure. By changing dielectric permittivity of the insulator or the difference of two different metallic plasma frequencies, the group index and the bandwidth can be tuned. The dispersionless slow light characteristic in the hetero-MIM waveguide may be useful in the new design of plasmonic devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Slow light engineering in periodic-stub-assisted plasmonic waveguide

Guoxi Wang
Appl. Opt. 52(9) 1799-1804 (2013)

Ultrawideband air-core plasmonic slow-light waveguide with ultralow high-order dispersion

Lei Dai, Juan Xia, and Chun Jiang
Appl. Opt. 50(23) 4566-4573 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  4. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
    [Crossref]
  5. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007).
    [Crossref]
  6. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [Crossref] [PubMed]
  7. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [Crossref]
  8. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
    [Crossref] [PubMed]
  9. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
    [Crossref] [PubMed]
  10. E. P. Fitrakis, T. Kamalakis, and T. Sphicopoulos, “Slow light in insulator-metal-insulator plasmonic waveguides,” J. Opt. Soc. Am. B 28(9), 2159–2164 (2011).
    [Crossref]
  11. M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
    [Crossref] [PubMed]
  12. A. Karalis, J. D. Joannopoulos, and M. Soljacić, “Plasmonic-dielectric systems for high-order dispersionless slow or stopped subwavelength light,” Phys. Rev. Lett. 103(4), 043906 (2009).
    [Crossref] [PubMed]
  13. M. I. Stockman, “Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems,” Nano Lett. 6(11), 2604–2608 (2006).
    [Crossref] [PubMed]
  14. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006).
    [Crossref] [PubMed]
  15. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
    [Crossref] [PubMed]
  16. C. Y. Tai, W. H. Yu, and S. H. Chang, “Giant angular dispersion mediated by plasmonic modal competition,” Opt. Express 18(24), 24510–24515 (2010).
    [Crossref] [PubMed]
  17. K. Y. Kim, “Effects of using different plasmonic metals in metal/dielectric/metal subwavelength waveguides on guided dispersion characteristics,” J. Opt. A, Pure Appl. Opt. 11(7), 075003 (2009).
    [Crossref]
  18. M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
    [Crossref]
  19. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  20. C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7(8), 260–272 (2000).
    [Crossref] [PubMed]
  21. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  22. R. H. Ritchie, “Surface plasmons in solids,” Surf. Sci. 34(1), 1–19 (1973).
    [Crossref]
  23. R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion,” Opt. Express 18(6), 5942–5950 (2010).
    [Crossref] [PubMed]
  24. G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20(19), 20902–20907 (2012).
    [Crossref] [PubMed]
  25. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]

2012 (2)

2011 (3)

E. P. Fitrakis, T. Kamalakis, and T. Sphicopoulos, “Slow light in insulator-metal-insulator plasmonic waveguides,” J. Opt. Soc. Am. B 28(9), 2159–2164 (2011).
[Crossref]

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[Crossref] [PubMed]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

2010 (4)

2009 (3)

K. Y. Kim, “Effects of using different plasmonic metals in metal/dielectric/metal subwavelength waveguides on guided dispersion characteristics,” J. Opt. A, Pure Appl. Opt. 11(7), 075003 (2009).
[Crossref]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

A. Karalis, J. D. Joannopoulos, and M. Soljacić, “Plasmonic-dielectric systems for high-order dispersionless slow or stopped subwavelength light,” Phys. Rev. Lett. 103(4), 043906 (2009).
[Crossref] [PubMed]

2008 (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

2007 (2)

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007).
[Crossref]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

2006 (2)

M. I. Stockman, “Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems,” Nano Lett. 6(11), 2604–2608 (2006).
[Crossref] [PubMed]

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006).
[Crossref] [PubMed]

2005 (1)

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2000 (1)

1991 (1)

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
[Crossref] [PubMed]

1973 (1)

R. H. Ritchie, “Surface plasmons in solids,” Surf. Sci. 34(1), 1–19 (1973).
[Crossref]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Atwater, H.

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[Crossref] [PubMed]

Atwater, H. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Bahoura, M.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Barnakov, Y. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Berini, P.

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Cassan, E.

Chang, S. H.

Chen, C.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Fan, S.

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006).
[Crossref] [PubMed]

Feng, D.

Fitrakis, E. P.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Gu, L.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Hao, R.

Ibanescu, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jang, M. S.

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[Crossref] [PubMed]

Joannopoulos, J. D.

A. Karalis, J. D. Joannopoulos, and M. Soljacić, “Plasmonic-dielectric systems for high-order dispersionless slow or stopped subwavelength light,” Phys. Rev. Lett. 103(4), 043906 (2009).
[Crossref] [PubMed]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

Kamalakis, T.

Karalis, A.

A. Karalis, J. D. Joannopoulos, and M. Soljacić, “Plasmonic-dielectric systems for high-order dispersionless slow or stopped subwavelength light,” Phys. Rev. Lett. 103(4), 043906 (2009).
[Crossref] [PubMed]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Kim, K. Y.

K. Y. Kim, “Effects of using different plasmonic metals in metal/dielectric/metal subwavelength waveguides on guided dispersion characteristics,” J. Opt. A, Pure Appl. Opt. 11(7), 075003 (2009).
[Crossref]

Kuipers, L.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007).
[Crossref]

Kurt, H.

Le Roux, X.

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

Liu, X.

Livenere, J.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Lu, H.

Marris-Morini, D.

Mundle, R.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Mysyrowicz, A.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
[Crossref] [PubMed]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Noginov, M. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Podolskiy, V. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Prade, B.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
[Crossref] [PubMed]

Pradhan, A. K.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Ritchie, R. H.

R. H. Ritchie, “Surface plasmons in solids,” Surf. Sci. 34(1), 1–19 (1973).
[Crossref]

Sandtke, M.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007).
[Crossref]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shin, H.

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006).
[Crossref] [PubMed]

Soljacic, M.

A. Karalis, J. D. Joannopoulos, and M. Soljacić, “Plasmonic-dielectric systems for high-order dispersionless slow or stopped subwavelength light,” Phys. Rev. Lett. 103(4), 043906 (2009).
[Crossref] [PubMed]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

Sphicopoulos, T.

Stockman, M. I.

M. I. Stockman, “Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems,” Nano Lett. 6(11), 2604–2608 (2006).
[Crossref] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

Tai, C. Y.

Tanev, S.

Tzolov, V.

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Vinet, J. Y.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
[Crossref] [PubMed]

Vivien, L.

Wang, G.

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Wu, H.

Yu, W. H.

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zhang, X.

Zhou, Z.

Zhu, G.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Appl. Phys. Lett. (1)

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

K. Y. Kim, “Effects of using different plasmonic metals in metal/dielectric/metal subwavelength waveguides on guided dispersion characteristics,” J. Opt. A, Pure Appl. Opt. 11(7), 075003 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nano Lett. (1)

M. I. Stockman, “Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems,” Nano Lett. 6(11), 2604–2608 (2006).
[Crossref] [PubMed]

Nat. Photonics (5)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1(10), 573–576 (2007).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Phys. Rev. B Condens. Matter (1)

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[Crossref] [PubMed]

A. Karalis, J. D. Joannopoulos, and M. Soljacić, “Plasmonic-dielectric systems for high-order dispersionless slow or stopped subwavelength light,” Phys. Rev. Lett. 103(4), 043906 (2009).
[Crossref] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref] [PubMed]

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006).
[Crossref] [PubMed]

Science (1)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

Surf. Sci. (1)

R. H. Ritchie, “Surface plasmons in solids,” Surf. Sci. 34(1), 1–19 (1973).
[Crossref]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the hetero-MIM plasmonic waveguide.
Fig. 2
Fig. 2 (a) Real part and (b) Imaginary part of the dispersion relations for εm1-εd-εm2 (solid line) waveguide with ωp1 = 1.2eV, ωp2 = 2.03eV, ε = 4, and γ = 0.06eV. Results for εm1-εd-εm1 (dashed line) and εm2-εd-εm2 (dashed-dotted line) waveguides are presented for comparison. The dotted line represents the light line in silicon dioxide.
Fig. 3
Fig. 3 (a) Real part and (b) Imaginary part of the dispersion relations for the εm1-εd-εm2 waveguide in the lossless (dash line) and lossy cases (solid line) with ωp1 = 1.2eV, ωp2 = 2.03eV, and ε = 4 and FOMs (dashed-dotted line) in the lossy case.
Fig. 4
Fig. 4 Dispersion relation (solid line), group index (dashed line), and GVD (dashed-dotted line) in the εm1-εd-εm2 waveguide. The parameters are the same as that in Fig. 2(a).
Fig. 5
Fig. 5 Field distribution profiles for various frequencies in the εm1-εd-εm2 waveguide. The field at ω = 0.62eV in the εm1-εd-εm1 waveguide is also presented.
Fig. 6
Fig. 6 (a) Group index ng and bandwidth Δf versus εd with ωp1 = 1.2eV and ωp2 = 2.03 eV. (b) Group index ng and bandwidth Δf versus Δωp with ωp1 = 1.2eV and εd = 2.25. The zero GVD is kept.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ ˜ s n ˜ xxs 2 m 11 + γ ˜ c n ˜ xxc 2 m 22 m 21 γ ˜ s γ ˜ c n ˜ xxs 2 n ˜ xxc 2 m 12 =0,

Metrics