Abstract

A cavity-aperture has a problem of low transmission efficiency due to its nano-sized aperture despite its potential for plasmonic color filters. In this study, a triple-slit aperture is proposed as the nanoaperture in the center of the cavity-aperture to improve the transmittance. It provides one centered nanoslit and two symmetric wedge structures to each of three cavities corresponding to incident polarization, and induces the strong confinement and transmission of electric fields due to plasmonic resonances at the two types of nanostructures. The transmittance of the triple-slit aperture is theoretically five times and experimentally two times higher than that of a circular aperture. Furthermore, expansive studies on polarization-insensitive nanoapertures with six-fold rotational symmetry will contribute to the development of plasmonic color filters and imaging devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization dependence of light transmission through individual nanoapertures in metal films

Kaan T. Gunay, Patrick W. Flanigan, Pei Liu, and Domenico Pacifici
J. Opt. Soc. Am. B 31(5) 1150-1158 (2014)

Transmission of light through slit apertures in metallic films

Yong Xie, Armis R. Zakharian, Jerome V. Moloney, and Masud Mansuripur
Opt. Express 12(25) 6106-6121 (2004)

References

  • View by:
  • |
  • |
  • |

  1. K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9(7), 2579–2583 (2009).
    [Crossref] [PubMed]
  2. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
    [Crossref] [PubMed]
  3. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
    [Crossref] [PubMed]
  4. B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
    [Crossref] [PubMed]
  5. T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  6. H. Yun, S.-Y. Lee, K. Hong, J. Yeom, and B. Lee, “Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity,” Nat. Commun. 6, 7133 (2015).
    [Crossref] [PubMed]
  7. K. Şendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(Pt 3), 279–283 (2003).
    [Crossref] [PubMed]
  8. E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
    [Crossref]
  9. E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
    [Crossref]
  10. Z. Rao, L. Hesselink, and J. S. Harris, “High transmission through ridge nano-apertures on Vertical-Cavity Surface-Emitting Lasers,” Opt. Express 15(16), 10427–10438 (2007).
    [Crossref] [PubMed]
  11. H. Gai, J. Wang, and Q. Tian, “Tuning the resonant wavelength of nanometric bow-tie aperture by altering the relative permittivity of the dielectric substrate,” J. Nanophotonics 1(1), 013555 (2007).
    [Crossref]
  12. E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
    [Crossref]
  13. E. X. Jin and X. Xu, “Obtaining subwavelength optical spots using nanoscale ridge apertures,” J. Heat Transfer 129(1), 37 (2007).
    [Crossref]
  14. X. Shi and L. Hesselink, “Design of a C aperture to achieve λ/10 resolution and resonant transmission,” J. Opt. Soc. Am. B 21(7), 1305–1317 (2004).
    [Crossref]
  15. O. Lopatiuk-Tirpak, J. Ma, and S. Fathpour, “Optical transmission properties of C-shaped subwavelength waveguides on silicon,” Appl. Phys. Lett. 96(24), 241109 (2010).
    [Crossref]
  16. X. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28(15), 1320–1322 (2003).
    [Crossref] [PubMed]
  17. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
    [Crossref]
  18. B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
    [Crossref]
  19. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  20. H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express 15(19), 12095–12101 (2007).
    [Crossref] [PubMed]
  21. T. J. Davis, D. E. Gómez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10(7), 2618–2625 (2010).
    [Crossref] [PubMed]
  22. D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
    [Crossref]

2015 (1)

H. Yun, S.-Y. Lee, K. Hong, J. Yeom, and B. Lee, “Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity,” Nat. Commun. 6, 7133 (2015).
[Crossref] [PubMed]

2013 (1)

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

2012 (1)

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

2011 (1)

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

2010 (4)

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[Crossref]

T. J. Davis, D. E. Gómez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10(7), 2618–2625 (2010).
[Crossref] [PubMed]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

O. Lopatiuk-Tirpak, J. Ma, and S. Fathpour, “Optical transmission properties of C-shaped subwavelength waveguides on silicon,” Appl. Phys. Lett. 96(24), 241109 (2010).
[Crossref]

2009 (1)

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

2007 (4)

Z. Rao, L. Hesselink, and J. S. Harris, “High transmission through ridge nano-apertures on Vertical-Cavity Surface-Emitting Lasers,” Opt. Express 15(16), 10427–10438 (2007).
[Crossref] [PubMed]

H. Gai, J. Wang, and Q. Tian, “Tuning the resonant wavelength of nanometric bow-tie aperture by altering the relative permittivity of the dielectric substrate,” J. Nanophotonics 1(1), 013555 (2007).
[Crossref]

E. X. Jin and X. Xu, “Obtaining subwavelength optical spots using nanoscale ridge apertures,” J. Heat Transfer 129(1), 37 (2007).
[Crossref]

H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express 15(19), 12095–12101 (2007).
[Crossref] [PubMed]

2006 (2)

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
[Crossref]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[Crossref]

2005 (1)

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

2004 (2)

X. Shi and L. Hesselink, “Design of a C aperture to achieve λ/10 resolution and resonant transmission,” J. Opt. Soc. Am. B 21(7), 1305–1317 (2004).
[Crossref]

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[Crossref]

2003 (3)

X. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28(15), 1320–1322 (2003).
[Crossref] [PubMed]

K. Şendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(Pt 3), 279–283 (2003).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

1998 (1)

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Atwater, H. A.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

Bartoli, F. J.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

Challener, W.

K. Şendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(Pt 3), 279–283 (2003).
[Crossref] [PubMed]

Davis, T. J.

T. J. Davis, D. E. Gómez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10(7), 2618–2625 (2010).
[Crossref] [PubMed]

Diest, K.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

Dionne, J. A.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

Duan, H.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Ebbesen, T.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Fathpour, S.

O. Lopatiuk-Tirpak, J. Ma, and S. Fathpour, “Optical transmission properties of C-shaped subwavelength waveguides on silicon,” Appl. Phys. Lett. 96(24), 241109 (2010).
[Crossref]

Fu, L.

Fujikawa, H.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Gai, H.

H. Gai, J. Wang, and Q. Tian, “Tuning the resonant wavelength of nanometric bow-tie aperture by altering the relative permittivity of the dielectric substrate,” J. Nanophotonics 1(1), 013555 (2007).
[Crossref]

Gao, Y.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

Ghaemi, H.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Giessen, H.

Gómez, D. E.

T. J. Davis, D. E. Gómez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10(7), 2618–2625 (2010).
[Crossref] [PubMed]

Guo, H.

Guo, L. J.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Harris, J. S.

Hegde, R. S.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Hesselink, L.

Hong, K.

H. Yun, S.-Y. Lee, K. Hong, J. Yeom, and B. Lee, “Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity,” Nat. Commun. 6, 7133 (2015).
[Crossref] [PubMed]

Ikeda, N.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Inoue, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Jin, E. X.

E. X. Jin and X. Xu, “Obtaining subwavelength optical spots using nanoscale ridge apertures,” J. Heat Transfer 129(1), 37 (2007).
[Crossref]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[Crossref]

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
[Crossref]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[Crossref]

Kim, S.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[Crossref]

Koh, S. C. W.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Koide, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Kumar, K.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Lee, B.

H. Yun, S.-Y. Lee, K. Hong, J. Yeom, and B. Lee, “Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity,” Nat. Commun. 6, 7133 (2015).
[Crossref] [PubMed]

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[Crossref]

Lee, I.-M.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[Crossref]

Lee, S.-Y.

H. Yun, S.-Y. Lee, K. Hong, J. Yeom, and B. Lee, “Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity,” Nat. Commun. 6, 7133 (2015).
[Crossref] [PubMed]

Lezec, H.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Liu, N.

Lopatiuk-Tirpak, O.

O. Lopatiuk-Tirpak, J. Ma, and S. Fathpour, “Optical transmission properties of C-shaped subwavelength waveguides on silicon,” Appl. Phys. Lett. 96(24), 241109 (2010).
[Crossref]

Luo, X.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Ma, J.

O. Lopatiuk-Tirpak, J. Ma, and S. Fathpour, “Optical transmission properties of C-shaped subwavelength waveguides on silicon,” Appl. Phys. Lett. 96(24), 241109 (2010).
[Crossref]

Meyrath, T. P.

Miura, A.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Nomura, T.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Oh, D.-H.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[Crossref]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Rao, Z.

Sato, K.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Schweizer, H.

Sendur, K.

K. Şendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(Pt 3), 279–283 (2003).
[Crossref] [PubMed]

Shi, X.

Spain, M.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

Sugimoto, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Thio, T.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Thornton, R. L.

Tian, Q.

H. Gai, J. Wang, and Q. Tian, “Tuning the resonant wavelength of nanometric bow-tie aperture by altering the relative permittivity of the dielectric substrate,” J. Nanophotonics 1(1), 013555 (2007).
[Crossref]

Tsuya, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Vernon, K. C.

T. J. Davis, D. E. Gómez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10(7), 2618–2625 (2010).
[Crossref] [PubMed]

Wang, J.

H. Gai, J. Wang, and Q. Tian, “Tuning the resonant wavelength of nanometric bow-tie aperture by altering the relative permittivity of the dielectric substrate,” J. Nanophotonics 1(1), 013555 (2007).
[Crossref]

Wei, J. N.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Wolff, P.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wu, Y.-K.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Xu, T.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Xu, X.

E. X. Jin and X. Xu, “Obtaining subwavelength optical spots using nanoscale ridge apertures,” J. Heat Transfer 129(1), 37 (2007).
[Crossref]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[Crossref]

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
[Crossref]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[Crossref]

Yang, J. K. W.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Yeom, J.

H. Yun, S.-Y. Lee, K. Hong, J. Yeom, and B. Lee, “Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity,” Nat. Commun. 6, 7133 (2015).
[Crossref] [PubMed]

Yun, H.

H. Yun, S.-Y. Lee, K. Hong, J. Yeom, and B. Lee, “Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity,” Nat. Commun. 6, 7133 (2015).
[Crossref] [PubMed]

Zeng, B.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

Zentgraf, T.

Appl. Phys. B (1)

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
[Crossref]

Appl. Phys. Lett. (4)

O. Lopatiuk-Tirpak, J. Ma, and S. Fathpour, “Optical transmission properties of C-shaped subwavelength waveguides on silicon,” Appl. Phys. Lett. 96(24), 241109 (2010).
[Crossref]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[Crossref]

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

J. Heat Transfer (1)

E. X. Jin and X. Xu, “Obtaining subwavelength optical spots using nanoscale ridge apertures,” J. Heat Transfer 129(1), 37 (2007).
[Crossref]

J. Microsc. (1)

K. Şendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(Pt 3), 279–283 (2003).
[Crossref] [PubMed]

J. Mod. Opt. (1)

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010).
[Crossref]

J. Nanophotonics (1)

H. Gai, J. Wang, and Q. Tian, “Tuning the resonant wavelength of nanometric bow-tie aperture by altering the relative permittivity of the dielectric substrate,” J. Nanophotonics 1(1), 013555 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[Crossref]

Nano Lett. (2)

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

T. J. Davis, D. E. Gómez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10(7), 2618–2625 (2010).
[Crossref] [PubMed]

Nat. Commun. (2)

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

H. Yun, S.-Y. Lee, K. Hong, J. Yeom, and B. Lee, “Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity,” Nat. Commun. 6, 7133 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Nature (1)

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Sci. Rep. (1)

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of cavity-aperture. (a) Two basic functional structures, an optical cavity and a plasmonic nanoaperture, combine into a cavity-aperture. (b) Principle of the cavity-aperture. Incident light passes through the cavity-aperture with maximum and minimum intensities when a nanoaperture is located at anti-nodes and nodes of standing waves, respectively. Multiplexed cavity-apertures with (c) a circular aperture and (d) a triple-slit aperture.

Fig. 2
Fig. 2

(a) Normalized electric field intensities of the triple-slit apertures having various ratios of slit widths and lengths in simulation. The curves A-E are the intensities of the triple-slit apertures having constant widths of 10 nm (A), 15 nm (B), 20 nm (C), 25 nm (D), and 30 nm (E), respectively. (b) The simulation graph of the field intensity vs. size of the triple-slit and the circular apertures. Electric field profiles of (c) the circular aperture at the point F, (d) the triple-slit aperture at the point D, and (e) the cavity-aperture for a horizontally polarized light.

Fig. 3
Fig. 3

(a) Schematic energy diagram of the triple-slit aperture in symmetric and anti-symmetric bonding states, which are coupled between the plasmonic modes of X- and l-apertures under horizontal polarization. (b) Ez-field profile of the triple-slit aperture at the center of the cavity-aperture under incident light of 671 nm.

Fig. 4
Fig. 4

Electric field profiles of (a) triple-slit, (b) X-, (c) l-, (d) <-, (e) ⁄-, (f) circular apertures. (g) Comparison of their electric field intensities. The field profile images of (a)-(f) indicate the corresponding intensity curves with arrows. The X- and l-apertures are decomposed from the triple-slit aperture and the triple-slit and the circular apertures have same area.

Fig. 5
Fig. 5

Magnified SEM images of (a) the triple-slit aperture and (b) the circular aperture of cavity-apertures. (c) SEM and (d) optical microscope images of the triple-slit and the circular apertures in the cavity-aperture array for their comparison. There are triple-slit and the circular apertures of five different sizes in the upper and the lower cavity-apertures, respectively. Their areas are same in the same column and increases from left to right. Slit lengths and diameters are noted near the triple-slit and the circular apertures, respectively.

Fig. 6
Fig. 6

Size-dependent transmission behaviors of the triple-slit and the circular apertures in (a) experiment and (b) simulation. The slit lengths of the triple-slit aperture are noted near the corresponding points. The region marked by the green dotted box on the simulation graph is corresponding to that of the experimental graph.

Metrics