Abstract

We propose and demonstrate by simulations a novel Nyquist-WDM (N-WDM) superchannel transmitter based on an arrayed waveguide grating router (AWGR). This approach can generate Nyquist pulses at multiple wavelengths using a single AWGR. Results for a 3-channel 960-Gbit/s QPSK superchannel system show that a 10% guard band reduces the inter-channel interference (ICI) sufficiently. The design introduces less than 0.16-dB penalty when the waveguide loss is 2 dB/cm and 0.73-dB penalty when the standard deviation of phase error is 10°. Such Nyquist pulse shapers can be realised on a chip scale using photonic integrated circuits technology, and could be compactly integrated with other functional components to create single-chip N-WDM superchannel transmitters.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping

Meng Xiang, Songnian Fu, Ming Tang, Haoyuan Tang, Perry Shum, and Deming Liu
Opt. Express 22(14) 17448-17457 (2014)

Systems performance comparison of three all-optical generation schemes for quasi-Nyquist WDM

Arthur James Lowery, Yiwei Xie, and Chen Zhu
Opt. Express 23(17) 21706-21718 (2015)

Design of arrayed-waveguide grating routers for use as optical OFDM demultiplexers

Arthur James Lowery
Opt. Express 18(13) 14129-14143 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. C. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012).
    [Crossref]
  2. C. Behrens, S. Makovejs, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Pulse-shaping versus digital backpropagation in 224Gbit/s PDM-16QAM transmission,” Opt. Express 19(14), 12879–12884 (2011).
    [Crossref] [PubMed]
  3. H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928).
    [Crossref]
  4. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
    [Crossref]
  5. X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “PDM-Nyquist-32QAM for 450-Gb/s per-channel WDM transmission on the 50 GHz ITU-T grid,” J. Lightwave Technol. 30(4), 553–559 (2012).
    [Crossref]
  6. Z. Dong, X. Li, J. Yu, and N. Chi, “6× 144-Gb/s Nyquist-WDM PDM-64QAM generation and transmission on a 12-GHz WDM grid equipped with Nyquist-band pre-equalization,” J. Lightwave Technol. 30(23), 3687–3692 (2012).
    [Crossref]
  7. D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 1.92 Tbit/s, 64 QAM coherent Nyquist orthogonal TDM transmission with a spectral efficiency of 10.6 bit/s/Hz,” J. Lightwave Technol. 34(2), 768–775 (2016).
    [Crossref]
  8. M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
    [Crossref] [PubMed]
  9. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fibre Communication Conference (OFC, 2006), paper OTuF2.
    [Crossref]
  10. G. Cincotti, “Enhanced functionalities for AWGs,” J. Lightwave Technol. 33(5), 998–1006 (2015).
    [Crossref]
  11. A. J. Lowery, Y. Xie, and C. Zhu, “Systems performance comparison of three all-optical generation schemes for quasi-Nyquist WDM,” Opt. Express 23(17), 21706–21718 (2015).
    [Crossref] [PubMed]
  12. Y. Xie, L. Zhuang, C. Zhu, and A. J. Lowery, “Nyquist-WDM channel generation using an Arrayed Waveguide Grating Router,” in Optical Fibre Communication Conference (OFC, 2016), paper W2A–37.
    [Crossref]
  13. Z. Wang, K. S. Kravtsov, Y. K. Huang, and P. R. Prucnal, “Optical FFT/IFFT circuit realization using arrayed waveguide gratings and the applications in all-optical OFDM system,” Opt. Express 19(5), 4501–4512 (2011).
    [Crossref] [PubMed]
  14. A. J. Lowery, “Design of Arrayed-Waveguide Grating Routers for use as optical OFDM demultiplexers,” Opt. Express 18(13), 14129–14143 (2010).
    [Crossref] [PubMed]
  15. H. G. Beutler, “The theory of the concave grating,” J. Opt. Soc. Am. 35(5), 311–350 (1945).
    [Crossref]
  16. G. Cincotti, N. Wada, and K. I. Kitayama, “Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers-part I: modeling and design,” J. Lightwave Technol. 24(1), 103–112 (2006).
    [Crossref]
  17. S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express 17(24), 21350–21361 (2009).
    [Crossref] [PubMed]
  18. P. Muñoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightwave Technol. 20(4), 661–674 (2002).
    [Crossref]
  19. H. Tsuda, H. Takenouchi, A. Hirano, T. Kurokawa, and K. Okamoto, “Performance analysis of a dispersion compensator using arrayed-waveguide gratings,” J. Lightwave Technol. 18(8), 1139–1147 (2000).
    [Crossref]
  20. C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley and Sons, 2005), Chap. 6.
  21. K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, and X. J. M. Leijtens, “J. J. G. M van der Tol, M. K. Smit, “InP photonic circuits using generic integration,” Photonics Res. 3(5), B60–B68 (2015).
    [Crossref]
  22. S. Zhang, P. Y. Kam, J. Chen, and C. Yu, “Decision-aided maximum likelihood detection in coherent optical phase-shift-keying system,” Opt. Express 17(2), 703–715 (2009).
    [Crossref] [PubMed]
  23. A. J. Lowery, “Sensitivity to phase errors of Fourier transforms using arrayed waveguide grating routers for optical OFDM,” in National Fiber Optic Engineers Conference (NFOEC/OFC, 2012), paper JTh2A–7.
    [Crossref]

2016 (1)

2015 (3)

K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, and X. J. M. Leijtens, “J. J. G. M van der Tol, M. K. Smit, “InP photonic circuits using generic integration,” Photonics Res. 3(5), B60–B68 (2015).
[Crossref]

G. Cincotti, “Enhanced functionalities for AWGs,” J. Lightwave Technol. 33(5), 998–1006 (2015).
[Crossref]

A. J. Lowery, Y. Xie, and C. Zhu, “Systems performance comparison of three all-optical generation schemes for quasi-Nyquist WDM,” Opt. Express 23(17), 21706–21718 (2015).
[Crossref] [PubMed]

2013 (1)

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

2010 (2)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

A. J. Lowery, “Design of Arrayed-Waveguide Grating Routers for use as optical OFDM demultiplexers,” Opt. Express 18(13), 14129–14143 (2010).
[Crossref] [PubMed]

2009 (2)

2006 (1)

2002 (1)

2000 (1)

1945 (1)

1928 (1)

H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928).
[Crossref]

Alem, M.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

Altenhain, L.

Amin Shoaie, M.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

Bayvel, P.

Becker, J.

Behrens, C.

Ben-Ezra, S.

Bente, E. A. J. M.

K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, and X. J. M. Leijtens, “J. J. G. M van der Tol, M. K. Smit, “InP photonic circuits using generic integration,” Photonics Res. 3(5), B60–B68 (2015).
[Crossref]

Beutler, H. G.

Borel, P. I.

Bosco, G.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Brès, C. S.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

Capmany, J.

Carena, A.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Carlson, K.

Chandrasekhar, S.

Chen, J.

Chen, M.

Chi, N.

Cincotti, G.

Curri, V.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Dong, Z.

Dreschmann, M.

Ellermeyer, T.

Forghieri, F.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Freude, W.

Heiss, D.

K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, and X. J. M. Leijtens, “J. J. G. M van der Tol, M. K. Smit, “InP photonic circuits using generic integration,” Photonics Res. 3(5), B60–B68 (2015).
[Crossref]

Hillerkuss, D.

Hirano, A.

Hirooka, T.

Huang, Y. K.

Huebner, M.

Isaac, R.

Jiao, Y.

K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, and X. J. M. Leijtens, “J. J. G. M van der Tol, M. K. Smit, “InP photonic circuits using generic integration,” Photonics Res. 3(5), B60–B68 (2015).
[Crossref]

Jordan, M.

Kam, P. Y.

Kasai, K.

Killey, R. I.

Kitayama, K. I.

Kleinow, P.

Koos, C.

Kravtsov, K. S.

Kurokawa, T.

Lawniczuk, K.

K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, and X. J. M. Leijtens, “J. J. G. M van der Tol, M. K. Smit, “InP photonic circuits using generic integration,” Photonics Res. 3(5), B60–B68 (2015).
[Crossref]

Leijtens, X. J. M.

K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, and X. J. M. Leijtens, “J. J. G. M van der Tol, M. K. Smit, “InP photonic circuits using generic integration,” Photonics Res. 3(5), B60–B68 (2015).
[Crossref]

Leuthold, J.

Li, X.

Lindenmann, N.

Liu, X.

Lowery, A. J.

Magill, P.

Makovejs, S.

Melikyan, A.

Meyer, J.

Meyer, M.

Moeller, M.

Muñoz, P.

Nakazawa, M.

Nebendahl, B.

Nelson, L. E.

Nyquist, H.

H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928).
[Crossref]

Oehler, A.

Okamoto, K.

Otuya, D. O.

Parmigiani, F.

Pastor, D.

Peckham, D. W.

Petropoulos, P.

Poggiolini, P.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Prucnal, P. R.

Resan, B.

Savory, S. J.

Schindler, P. C.

Schmogrow, R.

Schneider, T.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

Soto, M. A.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

Takenouchi, H.

Thévenaz, L.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

Tsuda, H.

Vedadi, A.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

Wada, N.

Wang, Z.

Weingarten, K.

Williams, K. A.

K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, and X. J. M. Leijtens, “J. J. G. M van der Tol, M. K. Smit, “InP photonic circuits using generic integration,” Photonics Res. 3(5), B60–B68 (2015).
[Crossref]

Wolf, S.

Xie, Y.

Yang, X.

Yu, C.

Yu, J.

Zhang, S.

Zhou, X.

Zhu, B.

Zhu, C.

IEEE Photonics Technol. Lett. (1)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

J. Lightwave Technol. (7)

J. Opt. Commun. Netw. (1)

J. Opt. Soc. Am. (1)

Nat. Commun. (1)

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

Opt. Express (6)

Photonics Res. (1)

K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, and X. J. M. Leijtens, “J. J. G. M van der Tol, M. K. Smit, “InP photonic circuits using generic integration,” Photonics Res. 3(5), B60–B68 (2015).
[Crossref]

Trans. Am. Inst. Electr. Eng. (1)

H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928).
[Crossref]

Other (4)

A. J. Lowery, “Sensitivity to phase errors of Fourier transforms using arrayed waveguide grating routers for optical OFDM,” in National Fiber Optic Engineers Conference (NFOEC/OFC, 2012), paper JTh2A–7.
[Crossref]

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fibre Communication Conference (OFC, 2006), paper OTuF2.
[Crossref]

Y. Xie, L. Zhuang, C. Zhu, and A. J. Lowery, “Nyquist-WDM channel generation using an Arrayed Waveguide Grating Router,” in Optical Fibre Communication Conference (OFC, 2016), paper W2A–37.
[Crossref]

C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley and Sons, 2005), Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principle of Nyquist pulse generation using a multi-tap delay-line photonic filter (FIR filter). (Note that the illustrated fields ignore the carrier frequency of the laser).

Fig. 2
Fig. 2

Nyquist pulse generation using an AWGR.

Fig. 3
Fig. 3

(a) The enlarged input slab region (S2) containing a Rowland circle (b) confocal circle. (c) Spatial power distribution after the slab S2 (K = 20, N = 100, λ = 1.55 µm, D = λ/2, d = λ, R = λ∙100) for Rowland circle and confocal circle.

Fig. 4
Fig. 4

Schematic diagram for N-WDM superchannel system.

Fig. 5
Fig. 5

Q factors for the central channel in N-WDM channels as a function of: (a) OSNR (b) guard band ratio (OSNR = 10 dB).

Fig. 6
Fig. 6

The influence of: (a) the waveguide loss (2 dB/cm) and (b) arrayed waveguide length variation (standard deviation of the phase error = 10°) with respect to the number of waveguides for the central channel in N-WDM systems (OSNR = 10 dB).

Tables (1)

Tables Icon

Table 1 Parameters used in the design of AWGR

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

s A = l k w n sin( θ k )
s B =R w n sin( θ k ' ),
h q (t)= k=0 K1 n=0 N1 exp( j2π n s λ s B ) δ(tnΔt) =exp( j2π n s λ R ) n=0 N1 k=0 K1 exp[ πj n s d λ (2kK+1) 2nN+1 2R D ] δ(tnΔt) = n=0 N1 sinc( δ( (tnΔt (N1)Δt 2 )/( λRΔt KDd n s ) ) exp( j2π nd'Dq α )
H q (f)= k=0 K1 sinc( ( fk 1 N ch Δt + Dd'q αΔt )/( 1 NΔt ) ) ,
γ 2ΔT NΔt .
M= T MLL ΔT .
FSR= 1 Δt =gB= g ΔT .

Metrics