Abstract

We developed a novel dopamine sensing and measurement technique based on aggregation of gold nanoparticles in random lasers. Dopamine combined with copper ions triggers the aggregation of gold nanoparticles and thus affects the performance of random lasers. Dopamine sensing can be achieved using four parameters which are sensitive to the presence of dopamine, that is emission peak shift, emission linewidth, signal-to-noise ratio (peak emission intensity / noise) and random lasing threshold. The dopamine is most sensitively detected by a change in the emission linewidth with a limit of detection of 1 × 10−7 M, as well as by an increase in the lasing threshold. The dopamine concentration from 1 × 10−7 M to 1 × 10−2 M can be determined by calibrating with the laser threshold.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stable and low-threshold random fiber laser via Anderson localization

Jiancheng Deng, Mengmeng Han, Zuowei Xu, Yueqing Du, and Xuewen Shu
Opt. Express 27(9) 12987-12997 (2019)

Platinum-scatterer-based random lasers from dye-doped polymer-dispersed liquid crystals in capillary tubes

Jianlong Wang, Yating Zhang, Mingxuan Cao, Xiaoxian Song, Yongli Che, Haiting Zhang, Heng Zhang, and Jianquan Yao
Appl. Opt. 55(21) 5702-5706 (2016)

Spectral behavior of partially pumped weakly scattering random lasers

Jonathan Andreasen and Hui Cao
Opt. Express 19(4) 3418-3433 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Wightman, L. J. May, and A. C. Michael, “Detection of dopamine dynamics in the brain,” Anal. Chem. 60(13), 769A–793A (1988).
    [Crossref] [PubMed]
  2. H. Su, B. Sun, L. Chen, Z. Xu, and S. Ai, “Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions,” Anal. Methods 4(12), 3981–3986 (2012).
    [Crossref]
  3. X. Zhang, X. Chen, S. Kai, H. Y. Wang, J. Yang, F. G. Wu, and Z. Chen, “Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles,” Anal. Chem. 87(6), 3360–3365 (2015).
    [Crossref] [PubMed]
  4. Z. Chen, C. Zhang, and C. Wang, “A colorimetric assay of dopamine utilizing melamine modified gold nanoparticle probes,” Anal. Methods 7(3), 838–841 (2015).
    [Crossref]
  5. D. S. Wiersma, “The Physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [Crossref]
  6. Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal quantum dot random laser,” Opt. Express 19(4), 2996–3003 (2011).
    [Crossref] [PubMed]
  7. L. Sznitko, K. Cyprych, A. Szukalski, A. Miniewicz, and J. Mysliwiec, “Coherent–incoherent random lasing based on nano-rubbing induced cavities,” Laser Phys. Lett. 11(4), 045801 (2014).
    [Crossref]
  8. X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mat. 1(8), 573–580 (2013).
    [Crossref]
  9. W. Z. Wan Ismail, T. P. Vo, E. M. Goldys, and J. M. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
    [Crossref]
  10. T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
    [Crossref] [PubMed]
  11. C. T. Dominguez, Y. Lacroute, D. Chaumont, M. Sacilotti, C. B. de Araújo, and A. S. L. Gomes, “Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement,” Opt. Express 20(16), 17380–17385 (2012).
    [Crossref] [PubMed]
  12. Y. C. Chen, C. S. Wang, T. Y. Chang, T. Y. Lin, H. M. Lin, and Y. F. Chen, “Ultraviolet and visible random lasers assisted by diatom frustules,” Opt. Express 23(12), 16224–16231 (2015).
    [Crossref] [PubMed]
  13. M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
    [Crossref]
  14. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).
  15. W. Z. Wan Ismail, D. Liu, S. Clement, D. W. Coutts, E. M. Goldys, and J. M. Dawes, “Spectral and coherence signatures of threshold in random lasers,” J. Opt. 16(10), 105008 (2014).
    [Crossref]

2015 (5)

X. Zhang, X. Chen, S. Kai, H. Y. Wang, J. Yang, F. G. Wu, and Z. Chen, “Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles,” Anal. Chem. 87(6), 3360–3365 (2015).
[Crossref] [PubMed]

Z. Chen, C. Zhang, and C. Wang, “A colorimetric assay of dopamine utilizing melamine modified gold nanoparticle probes,” Anal. Methods 7(3), 838–841 (2015).
[Crossref]

W. Z. Wan Ismail, T. P. Vo, E. M. Goldys, and J. M. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Y. C. Chen, C. S. Wang, T. Y. Chang, T. Y. Lin, H. M. Lin, and Y. F. Chen, “Ultraviolet and visible random lasers assisted by diatom frustules,” Opt. Express 23(12), 16224–16231 (2015).
[Crossref] [PubMed]

2014 (2)

W. Z. Wan Ismail, D. Liu, S. Clement, D. W. Coutts, E. M. Goldys, and J. M. Dawes, “Spectral and coherence signatures of threshold in random lasers,” J. Opt. 16(10), 105008 (2014).
[Crossref]

L. Sznitko, K. Cyprych, A. Szukalski, A. Miniewicz, and J. Mysliwiec, “Coherent–incoherent random lasing based on nano-rubbing induced cavities,” Laser Phys. Lett. 11(4), 045801 (2014).
[Crossref]

2013 (1)

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mat. 1(8), 573–580 (2013).
[Crossref]

2012 (2)

C. T. Dominguez, Y. Lacroute, D. Chaumont, M. Sacilotti, C. B. de Araújo, and A. S. L. Gomes, “Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement,” Opt. Express 20(16), 17380–17385 (2012).
[Crossref] [PubMed]

H. Su, B. Sun, L. Chen, Z. Xu, and S. Ai, “Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions,” Anal. Methods 4(12), 3981–3986 (2012).
[Crossref]

2011 (1)

2008 (1)

D. S. Wiersma, “The Physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

2006 (1)

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[Crossref]

1988 (1)

R. M. Wightman, L. J. May, and A. C. Michael, “Detection of dopamine dynamics in the brain,” Anal. Chem. 60(13), 769A–793A (1988).
[Crossref] [PubMed]

1968 (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).

Adegoke, J.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[Crossref]

Ai, S.

H. Su, B. Sun, L. Chen, Z. Xu, and S. Ai, “Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions,” Anal. Methods 4(12), 3981–3986 (2012).
[Crossref]

Bahoura, M.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[Crossref]

Chang, T. Y.

Chaumont, D.

Chen, J.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Chen, L.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

H. Su, B. Sun, L. Chen, Z. Xu, and S. Ai, “Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions,” Anal. Methods 4(12), 3981–3986 (2012).
[Crossref]

Chen, X.

X. Zhang, X. Chen, S. Kai, H. Y. Wang, J. Yang, F. G. Wu, and Z. Chen, “Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles,” Anal. Chem. 87(6), 3360–3365 (2015).
[Crossref] [PubMed]

Chen, Y.

Chen, Y. C.

Chen, Y. F.

Chen, Z.

X. Zhang, X. Chen, S. Kai, H. Y. Wang, J. Yang, F. G. Wu, and Z. Chen, “Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles,” Anal. Chem. 87(6), 3360–3365 (2015).
[Crossref] [PubMed]

Z. Chen, C. Zhang, and C. Wang, “A colorimetric assay of dopamine utilizing melamine modified gold nanoparticle probes,” Anal. Methods 7(3), 838–841 (2015).
[Crossref]

Clement, S.

W. Z. Wan Ismail, D. Liu, S. Clement, D. W. Coutts, E. M. Goldys, and J. M. Dawes, “Spectral and coherence signatures of threshold in random lasers,” J. Opt. 16(10), 105008 (2014).
[Crossref]

Coutts, D. W.

W. Z. Wan Ismail, D. Liu, S. Clement, D. W. Coutts, E. M. Goldys, and J. M. Dawes, “Spectral and coherence signatures of threshold in random lasers,” J. Opt. 16(10), 105008 (2014).
[Crossref]

Cyprych, K.

L. Sznitko, K. Cyprych, A. Szukalski, A. Miniewicz, and J. Mysliwiec, “Coherent–incoherent random lasing based on nano-rubbing induced cavities,” Laser Phys. Lett. 11(4), 045801 (2014).
[Crossref]

Davison, C.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[Crossref]

Dawes, J. M.

W. Z. Wan Ismail, T. P. Vo, E. M. Goldys, and J. M. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

W. Z. Wan Ismail, D. Liu, S. Clement, D. W. Coutts, E. M. Goldys, and J. M. Dawes, “Spectral and coherence signatures of threshold in random lasers,” J. Opt. 16(10), 105008 (2014).
[Crossref]

Dawson, M. D.

de Araújo, C. B.

Dominguez, C. T.

Drachev, V. P.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[Crossref]

Fujita, K.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mat. 1(8), 573–580 (2013).
[Crossref]

Goldys, E. M.

W. Z. Wan Ismail, T. P. Vo, E. M. Goldys, and J. M. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

W. Z. Wan Ismail, D. Liu, S. Clement, D. W. Coutts, E. M. Goldys, and J. M. Dawes, “Spectral and coherence signatures of threshold in random lasers,” J. Opt. 16(10), 105008 (2014).
[Crossref]

Gomes, A. S. L.

Gu, E.

Guilhabert, B.

Herrnsdorf, J.

Kai, S.

X. Zhang, X. Chen, S. Kai, H. Y. Wang, J. Yang, F. G. Wu, and Z. Chen, “Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles,” Anal. Chem. 87(6), 3360–3365 (2015).
[Crossref] [PubMed]

Lacroute, Y.

Laurand, N.

Letokhov, V. S.

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).

Li, S.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Lin, H. M.

Lin, T. Y.

Liu, D.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

W. Z. Wan Ismail, D. Liu, S. Clement, D. W. Coutts, E. M. Goldys, and J. M. Dawes, “Spectral and coherence signatures of threshold in random lasers,” J. Opt. 16(10), 105008 (2014).
[Crossref]

Liu, H.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

May, L. J.

R. M. Wightman, L. J. May, and A. C. Michael, “Detection of dopamine dynamics in the brain,” Anal. Chem. 60(13), 769A–793A (1988).
[Crossref] [PubMed]

Meng, X.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mat. 1(8), 573–580 (2013).
[Crossref]

Michael, A. C.

R. M. Wightman, L. J. May, and A. C. Michael, “Detection of dopamine dynamics in the brain,” Anal. Chem. 60(13), 769A–793A (1988).
[Crossref] [PubMed]

Miniewicz, A.

L. Sznitko, K. Cyprych, A. Szukalski, A. Miniewicz, and J. Mysliwiec, “Coherent–incoherent random lasing based on nano-rubbing induced cavities,” Laser Phys. Lett. 11(4), 045801 (2014).
[Crossref]

Moriguchi, Y.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mat. 1(8), 573–580 (2013).
[Crossref]

Mysliwiec, J.

L. Sznitko, K. Cyprych, A. Szukalski, A. Miniewicz, and J. Mysliwiec, “Coherent–incoherent random lasing based on nano-rubbing induced cavities,” Laser Phys. Lett. 11(4), 045801 (2014).
[Crossref]

Noginov, M. A.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[Crossref]

Nyga, P.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[Crossref]

Sacilotti, M.

Shalaev, V. M.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[Crossref]

Small, C. E.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[Crossref]

Su, H.

H. Su, B. Sun, L. Chen, Z. Xu, and S. Ai, “Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions,” Anal. Methods 4(12), 3981–3986 (2012).
[Crossref]

Sun, B.

H. Su, B. Sun, L. Chen, Z. Xu, and S. Ai, “Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions,” Anal. Methods 4(12), 3981–3986 (2012).
[Crossref]

Sznitko, L.

L. Sznitko, K. Cyprych, A. Szukalski, A. Miniewicz, and J. Mysliwiec, “Coherent–incoherent random lasing based on nano-rubbing induced cavities,” Laser Phys. Lett. 11(4), 045801 (2014).
[Crossref]

Szukalski, A.

L. Sznitko, K. Cyprych, A. Szukalski, A. Miniewicz, and J. Mysliwiec, “Coherent–incoherent random lasing based on nano-rubbing induced cavities,” Laser Phys. Lett. 11(4), 045801 (2014).
[Crossref]

Tanaka, K.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mat. 1(8), 573–580 (2013).
[Crossref]

Vo, T. P.

W. Z. Wan Ismail, T. P. Vo, E. M. Goldys, and J. M. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

Wan Ismail, W. Z.

W. Z. Wan Ismail, T. P. Vo, E. M. Goldys, and J. M. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

W. Z. Wan Ismail, D. Liu, S. Clement, D. W. Coutts, E. M. Goldys, and J. M. Dawes, “Spectral and coherence signatures of threshold in random lasers,” J. Opt. 16(10), 105008 (2014).
[Crossref]

Wang, C.

Z. Chen, C. Zhang, and C. Wang, “A colorimetric assay of dopamine utilizing melamine modified gold nanoparticle probes,” Anal. Methods 7(3), 838–841 (2015).
[Crossref]

Wang, C. S.

Wang, H. Y.

X. Zhang, X. Chen, S. Kai, H. Y. Wang, J. Yang, F. G. Wu, and Z. Chen, “Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles,” Anal. Chem. 87(6), 3360–3365 (2015).
[Crossref] [PubMed]

Wang, J.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Wang, L.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Watson, I. M.

Wiersma, D. S.

D. S. Wiersma, “The Physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Wightman, R. M.

R. M. Wightman, L. J. May, and A. C. Michael, “Detection of dopamine dynamics in the brain,” Anal. Chem. 60(13), 769A–793A (1988).
[Crossref] [PubMed]

Wu, F. G.

X. Zhang, X. Chen, S. Kai, H. Y. Wang, J. Yang, F. G. Wu, and Z. Chen, “Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles,” Anal. Chem. 87(6), 3360–3365 (2015).
[Crossref] [PubMed]

Xu, Z.

H. Su, B. Sun, L. Chen, Z. Xu, and S. Ai, “Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions,” Anal. Methods 4(12), 3981–3986 (2012).
[Crossref]

Yang, J.

X. Zhang, X. Chen, S. Kai, H. Y. Wang, J. Yang, F. G. Wu, and Z. Chen, “Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles,” Anal. Chem. 87(6), 3360–3365 (2015).
[Crossref] [PubMed]

Zhai, T.

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Zhang, C.

Z. Chen, C. Zhang, and C. Wang, “A colorimetric assay of dopamine utilizing melamine modified gold nanoparticle probes,” Anal. Methods 7(3), 838–841 (2015).
[Crossref]

Zhang, X.

X. Zhang, X. Chen, S. Kai, H. Y. Wang, J. Yang, F. G. Wu, and Z. Chen, “Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles,” Anal. Chem. 87(6), 3360–3365 (2015).
[Crossref] [PubMed]

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Zhang, Y.

Zhu, G.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[Crossref]

Zong, Y.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mat. 1(8), 573–580 (2013).
[Crossref]

Adv. Opt. Mat. (1)

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal–dielectric core–shell nanoparticles: advanced plasmonic architectures towards multiple control of random lasers,” Adv. Opt. Mat. 1(8), 573–580 (2013).
[Crossref]

Anal. Chem. (2)

R. M. Wightman, L. J. May, and A. C. Michael, “Detection of dopamine dynamics in the brain,” Anal. Chem. 60(13), 769A–793A (1988).
[Crossref] [PubMed]

X. Zhang, X. Chen, S. Kai, H. Y. Wang, J. Yang, F. G. Wu, and Z. Chen, “Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles,” Anal. Chem. 87(6), 3360–3365 (2015).
[Crossref] [PubMed]

Anal. Methods (2)

Z. Chen, C. Zhang, and C. Wang, “A colorimetric assay of dopamine utilizing melamine modified gold nanoparticle probes,” Anal. Methods 7(3), 838–841 (2015).
[Crossref]

H. Su, B. Sun, L. Chen, Z. Xu, and S. Ai, “Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions,” Anal. Methods 4(12), 3981–3986 (2012).
[Crossref]

J. Opt. (1)

W. Z. Wan Ismail, D. Liu, S. Clement, D. W. Coutts, E. M. Goldys, and J. M. Dawes, “Spectral and coherence signatures of threshold in random lasers,” J. Opt. 16(10), 105008 (2014).
[Crossref]

Laser Phys. (1)

W. Z. Wan Ismail, T. P. Vo, E. M. Goldys, and J. M. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

Laser Phys. Lett. (1)

L. Sznitko, K. Cyprych, A. Szukalski, A. Miniewicz, and J. Mysliwiec, “Coherent–incoherent random lasing based on nano-rubbing induced cavities,” Laser Phys. Lett. 11(4), 045801 (2014).
[Crossref]

Nanoscale (1)

T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, and X. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref] [PubMed]

Nat. Phys. (1)

D. S. Wiersma, “The Physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, “Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate,” Phys. Rev. B 74(18), 184203 (2006).
[Crossref]

Sov. Phys. JETP (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 TEM of gold nanoparticles with 0.15 mM copper (II) chloride and (a) 0 M, (b) 1 × 10−7 M, (c) 1 × 10−5 M and (d) 1 × 10−3 M of dopamine concentration. The scale bar end to end is 500 nm.
Fig. 2
Fig. 2 Extinction spectra of gold nanoparticles solutions (1.8 × 1011 cm−3, ~20 nm) with varied dopamine concentration (A-I) and 0.15 mM of copper (II) chloride without Rh640. From A to I, the concentrations of dopamine are 0, 0.01, 0.1, 1, 10, 100, 500, 1000 and 6000 × 10−6 M. The green line indicates the excitation at 532 nm.
Fig. 3
Fig. 3 Emission spectra of Rh640 / gold random lasers with copper (II) chloride (0.15 mM) and varied concentrations of dopamine (a) 1 × 10−7 M, (b) 1 × 10−5 M and (c) 1 × 10−2 M for different pump energy densities. The emission spectrum narrows (4 nm) when the lasing threshold is achieved. Figure 3(d) Peak emission intensity of Rh640 / gold random lasers with copper (II) chloride (0.15 mM) and various concentrations of dopamine versus pump energy density.
Fig. 4
Fig. 4 Dopamine sensing parameters using random lasers (a) The emission peak wavelength of Rh640 / gold / copper (II) chloride random lasers for various concentrations of dopamine, excited with 85 mJ/cm2. The emission peak wavelength red-shifts for above 10−7 M of dopamine concentration, (b) The emission linewidth of Rh640 / gold / copper (II) chloride random lasers for various concentrations of dopamine at 90% of peak emission intensity, excited with 31 mJ/cm2, (c) Signal to noise ratio (peak emission intensity/noise) of Rh640 / gold / copper (II) chloride random lasers with various concentration of dopamine excited with 85 mJ/cm2 and (d) Comparison of lasing threshold of Rh640 / gold random lasers for various concentrations of dopamine with and without copper (II) chloride. The brown line shows the concentration of dopamine (~1 × 10−7 M to 1 × 10−2 M) measured by the lasing threshold.

Metrics