Abstract

The optical properties of three-dimensional ordered superstructures formed on glass substrates by self-assembly of cadmium selenide or lead sulfide nanocrystals (NCs) are investigated and compared to the optical properties of the initial NC colloidal solutions. The formation of the superstructures is strongly correlated to the presence of oleic acid molecules on the surface of the NCs. It is found that the absorption band of the NCs in the superstructures is broadened and shifted to shorter wavelengths in comparison with the absorption band of the NCs in solution. The luminescence spectra of the NCs in the superstructures also differ from the spectra of the NCs in solution. The observed modification of optical properties of superstructures is a manifestation of interactions between the NCs and the chemical environment within the superstructures.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
    [Crossref] [PubMed]
  2. I. J. Kramer and E. H. Sargent, “The architecture of colloidal quantum dot solar cells: materials to devices,” Chem. Rev. 114(1), 863–882 (2014).
    [Crossref] [PubMed]
  3. M. G. Panthani and B. A. Korgel, “Nanocrystals for electronics,” Annu. Rev. Chem. Biomol. Eng. 3(1), 287–311 (2012).
    [Crossref] [PubMed]
  4. A. P. Litvin, E. V. Ushakova, P. S. Parfenov, A. V. Fedorov, and A. V. Baranov, “FRET between close-packed quasi-monodispersed PbS QDs in a porous matrix,” J. Phys. Chem. C 118(12), 6531–6535 (2014).
    [Crossref]
  5. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices,” Science 270(5240), 1335–1338 (1995).
    [Crossref]
  6. A. V. Baranov, E. V. Ushakova, V. V. Golubkov, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, and K. Berwick, “Self-organization of colloidal PbS quantum dots into highly ordered superlattices,” Langmuir 31(1), 506–513 (2015).
    [Crossref] [PubMed]
  7. A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small 3(4), 536–557 (2007).
    [Crossref] [PubMed]
  8. E. V. Ushakova, A. P. Litvin, P. S. Parfenov, S. A. Cherevkov, A. V. Fedorov, A. V. Baranov, and V. V. Golubkov, “Self-assembled PbS QDs of different size,” in Proceedings of International Conference Laser Optics, paper 6–12.
  9. P. S. Parfenov, A. V. Baranov, A. V. Veniaminov, and A. O. Orlova, “A complex for the fluorescence analysis of macro-and microsamples in the near-infrared,” J. Opt. Tech. 78(2), 120–123 (2011).
    [Crossref]
  10. P. S. Parfenov, A. P. Litvin, A. V. Baranov, A. V. Veniaminov, and E. V. Ushakova, “Calibration of the spectral sensitivity of instruments for the near infrared region,” J. Appl. Spectrosc. 78(3), 433–439 (2011).
    [Crossref]
  11. Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc. 123(1), 183–184 (2001).
    [Crossref] [PubMed]
  12. E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
    [Crossref] [PubMed]
  13. C. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M. R. Belviso, P. D. Cozzoli, A. Rizzo, and G. Gigli, “Colloidal arenethiolate-capped PbS quantum dots: optoelectronic properties, self-assembly, and application in solution-cast photovoltaics,” J. Phys. Chem. C 117(25), 13305–13317 (2013).
    [Crossref]
  14. A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
    [Crossref]
  15. M. V. Artemyev, A. I. Bibik, L. I. Gurinovich, S. V. Gaponenko, and U. Woggon, “Evolution from individual to collective electron states in a dense quantum dot ensemble,” Phys. Rev. B 60(3), 1504–1506 (1999).
    [Crossref]

2015 (1)

A. V. Baranov, E. V. Ushakova, V. V. Golubkov, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, and K. Berwick, “Self-organization of colloidal PbS quantum dots into highly ordered superlattices,” Langmuir 31(1), 506–513 (2015).
[Crossref] [PubMed]

2014 (2)

I. J. Kramer and E. H. Sargent, “The architecture of colloidal quantum dot solar cells: materials to devices,” Chem. Rev. 114(1), 863–882 (2014).
[Crossref] [PubMed]

A. P. Litvin, E. V. Ushakova, P. S. Parfenov, A. V. Fedorov, and A. V. Baranov, “FRET between close-packed quasi-monodispersed PbS QDs in a porous matrix,” J. Phys. Chem. C 118(12), 6531–6535 (2014).
[Crossref]

2013 (2)

C. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M. R. Belviso, P. D. Cozzoli, A. Rizzo, and G. Gigli, “Colloidal arenethiolate-capped PbS quantum dots: optoelectronic properties, self-assembly, and application in solution-cast photovoltaics,” J. Phys. Chem. C 117(25), 13305–13317 (2013).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

2012 (2)

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

M. G. Panthani and B. A. Korgel, “Nanocrystals for electronics,” Annu. Rev. Chem. Biomol. Eng. 3(1), 287–311 (2012).
[Crossref] [PubMed]

2011 (2)

P. S. Parfenov, A. V. Baranov, A. V. Veniaminov, and A. O. Orlova, “A complex for the fluorescence analysis of macro-and microsamples in the near-infrared,” J. Opt. Tech. 78(2), 120–123 (2011).
[Crossref]

P. S. Parfenov, A. P. Litvin, A. V. Baranov, A. V. Veniaminov, and E. V. Ushakova, “Calibration of the spectral sensitivity of instruments for the near infrared region,” J. Appl. Spectrosc. 78(3), 433–439 (2011).
[Crossref]

2010 (1)

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref] [PubMed]

2007 (1)

A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small 3(4), 536–557 (2007).
[Crossref] [PubMed]

2001 (1)

Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc. 123(1), 183–184 (2001).
[Crossref] [PubMed]

1999 (1)

M. V. Artemyev, A. I. Bibik, L. I. Gurinovich, S. V. Gaponenko, and U. Woggon, “Evolution from individual to collective electron states in a dense quantum dot ensemble,” Phys. Rev. B 60(3), 1504–1506 (1999).
[Crossref]

1995 (1)

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices,” Science 270(5240), 1335–1338 (1995).
[Crossref]

Altamura, D.

C. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M. R. Belviso, P. D. Cozzoli, A. Rizzo, and G. Gigli, “Colloidal arenethiolate-capped PbS quantum dots: optoelectronic properties, self-assembly, and application in solution-cast photovoltaics,” J. Phys. Chem. C 117(25), 13305–13317 (2013).
[Crossref]

Ameer, Z.

C. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M. R. Belviso, P. D. Cozzoli, A. Rizzo, and G. Gigli, “Colloidal arenethiolate-capped PbS quantum dots: optoelectronic properties, self-assembly, and application in solution-cast photovoltaics,” J. Phys. Chem. C 117(25), 13305–13317 (2013).
[Crossref]

Artemyev, M.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Artemyev, M. V.

M. V. Artemyev, A. I. Bibik, L. I. Gurinovich, S. V. Gaponenko, and U. Woggon, “Evolution from individual to collective electron states in a dense quantum dot ensemble,” Phys. Rev. B 60(3), 1504–1506 (1999).
[Crossref]

Baimuratov, A. S.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

Baranov, A. V.

A. V. Baranov, E. V. Ushakova, V. V. Golubkov, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, and K. Berwick, “Self-organization of colloidal PbS quantum dots into highly ordered superlattices,” Langmuir 31(1), 506–513 (2015).
[Crossref] [PubMed]

A. P. Litvin, E. V. Ushakova, P. S. Parfenov, A. V. Fedorov, and A. V. Baranov, “FRET between close-packed quasi-monodispersed PbS QDs in a porous matrix,” J. Phys. Chem. C 118(12), 6531–6535 (2014).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

P. S. Parfenov, A. V. Baranov, A. V. Veniaminov, and A. O. Orlova, “A complex for the fluorescence analysis of macro-and microsamples in the near-infrared,” J. Opt. Tech. 78(2), 120–123 (2011).
[Crossref]

P. S. Parfenov, A. P. Litvin, A. V. Baranov, A. V. Veniaminov, and E. V. Ushakova, “Calibration of the spectral sensitivity of instruments for the near infrared region,” J. Appl. Spectrosc. 78(3), 433–439 (2011).
[Crossref]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, S. A. Cherevkov, A. V. Fedorov, A. V. Baranov, and V. V. Golubkov, “Self-assembled PbS QDs of different size,” in Proceedings of International Conference Laser Optics, paper 6–12.

Bawendi, M. G.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices,” Science 270(5240), 1335–1338 (1995).
[Crossref]

Belviso, M. R.

C. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M. R. Belviso, P. D. Cozzoli, A. Rizzo, and G. Gigli, “Colloidal arenethiolate-capped PbS quantum dots: optoelectronic properties, self-assembly, and application in solution-cast photovoltaics,” J. Phys. Chem. C 117(25), 13305–13317 (2013).
[Crossref]

Berwick, K.

A. V. Baranov, E. V. Ushakova, V. V. Golubkov, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, and K. Berwick, “Self-organization of colloidal PbS quantum dots into highly ordered superlattices,” Langmuir 31(1), 506–513 (2015).
[Crossref] [PubMed]

Bibik, A. I.

M. V. Artemyev, A. I. Bibik, L. I. Gurinovich, S. V. Gaponenko, and U. Woggon, “Evolution from individual to collective electron states in a dense quantum dot ensemble,” Phys. Rev. B 60(3), 1504–1506 (1999).
[Crossref]

Carbone, L.

C. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M. R. Belviso, P. D. Cozzoli, A. Rizzo, and G. Gigli, “Colloidal arenethiolate-capped PbS quantum dots: optoelectronic properties, self-assembly, and application in solution-cast photovoltaics,” J. Phys. Chem. C 117(25), 13305–13317 (2013).
[Crossref]

Cherevkov, S. A.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, S. A. Cherevkov, A. V. Fedorov, A. V. Baranov, and V. V. Golubkov, “Self-assembled PbS QDs of different size,” in Proceedings of International Conference Laser Optics, paper 6–12.

Cozzoli, P. D.

C. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M. R. Belviso, P. D. Cozzoli, A. Rizzo, and G. Gigli, “Colloidal arenethiolate-capped PbS quantum dots: optoelectronic properties, self-assembly, and application in solution-cast photovoltaics,” J. Phys. Chem. C 117(25), 13305–13317 (2013).
[Crossref]

Eychmüller, A.

A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small 3(4), 536–557 (2007).
[Crossref] [PubMed]

Fedorov, A. V.

A. V. Baranov, E. V. Ushakova, V. V. Golubkov, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, and K. Berwick, “Self-organization of colloidal PbS quantum dots into highly ordered superlattices,” Langmuir 31(1), 506–513 (2015).
[Crossref] [PubMed]

A. P. Litvin, E. V. Ushakova, P. S. Parfenov, A. V. Fedorov, and A. V. Baranov, “FRET between close-packed quasi-monodispersed PbS QDs in a porous matrix,” J. Phys. Chem. C 118(12), 6531–6535 (2014).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, S. A. Cherevkov, A. V. Fedorov, A. V. Baranov, and V. V. Golubkov, “Self-assembled PbS QDs of different size,” in Proceedings of International Conference Laser Optics, paper 6–12.

Gaponenko, S. V.

M. V. Artemyev, A. I. Bibik, L. I. Gurinovich, S. V. Gaponenko, and U. Woggon, “Evolution from individual to collective electron states in a dense quantum dot ensemble,” Phys. Rev. B 60(3), 1504–1506 (1999).
[Crossref]

Giannini, C.

C. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M. R. Belviso, P. D. Cozzoli, A. Rizzo, and G. Gigli, “Colloidal arenethiolate-capped PbS quantum dots: optoelectronic properties, self-assembly, and application in solution-cast photovoltaics,” J. Phys. Chem. C 117(25), 13305–13317 (2013).
[Crossref]

Giansante, C.

C. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M. R. Belviso, P. D. Cozzoli, A. Rizzo, and G. Gigli, “Colloidal arenethiolate-capped PbS quantum dots: optoelectronic properties, self-assembly, and application in solution-cast photovoltaics,” J. Phys. Chem. C 117(25), 13305–13317 (2013).
[Crossref]

Gigli, G.

C. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M. R. Belviso, P. D. Cozzoli, A. Rizzo, and G. Gigli, “Colloidal arenethiolate-capped PbS quantum dots: optoelectronic properties, self-assembly, and application in solution-cast photovoltaics,” J. Phys. Chem. C 117(25), 13305–13317 (2013).
[Crossref]

Golubkov, V. V.

A. V. Baranov, E. V. Ushakova, V. V. Golubkov, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, and K. Berwick, “Self-organization of colloidal PbS quantum dots into highly ordered superlattices,” Langmuir 31(1), 506–513 (2015).
[Crossref] [PubMed]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, S. A. Cherevkov, A. V. Fedorov, A. V. Baranov, and V. V. Golubkov, “Self-assembled PbS QDs of different size,” in Proceedings of International Conference Laser Optics, paper 6–12.

Gurinovich, L. I.

M. V. Artemyev, A. I. Bibik, L. I. Gurinovich, S. V. Gaponenko, and U. Woggon, “Evolution from individual to collective electron states in a dense quantum dot ensemble,” Phys. Rev. B 60(3), 1504–1506 (1999).
[Crossref]

Hickey, S. G.

A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small 3(4), 536–557 (2007).
[Crossref] [PubMed]

Kagan, C. R.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices,” Science 270(5240), 1335–1338 (1995).
[Crossref]

Kershaw, S. V.

A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small 3(4), 536–557 (2007).
[Crossref] [PubMed]

Korgel, B. A.

M. G. Panthani and B. A. Korgel, “Nanocrystals for electronics,” Annu. Rev. Chem. Biomol. Eng. 3(1), 287–311 (2012).
[Crossref] [PubMed]

Kovalenko, M. V.

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref] [PubMed]

Kramer, I. J.

I. J. Kramer and E. H. Sargent, “The architecture of colloidal quantum dot solar cells: materials to devices,” Chem. Rev. 114(1), 863–882 (2014).
[Crossref] [PubMed]

Lee, J. S.

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref] [PubMed]

Litvin, A. P.

A. V. Baranov, E. V. Ushakova, V. V. Golubkov, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, and K. Berwick, “Self-organization of colloidal PbS quantum dots into highly ordered superlattices,” Langmuir 31(1), 506–513 (2015).
[Crossref] [PubMed]

A. P. Litvin, E. V. Ushakova, P. S. Parfenov, A. V. Fedorov, and A. V. Baranov, “FRET between close-packed quasi-monodispersed PbS QDs in a porous matrix,” J. Phys. Chem. C 118(12), 6531–6535 (2014).
[Crossref]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

P. S. Parfenov, A. P. Litvin, A. V. Baranov, A. V. Veniaminov, and E. V. Ushakova, “Calibration of the spectral sensitivity of instruments for the near infrared region,” J. Appl. Spectrosc. 78(3), 433–439 (2011).
[Crossref]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, S. A. Cherevkov, A. V. Fedorov, A. V. Baranov, and V. V. Golubkov, “Self-assembled PbS QDs of different size,” in Proceedings of International Conference Laser Optics, paper 6–12.

Loiudice, A.

C. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M. R. Belviso, P. D. Cozzoli, A. Rizzo, and G. Gigli, “Colloidal arenethiolate-capped PbS quantum dots: optoelectronic properties, self-assembly, and application in solution-cast photovoltaics,” J. Phys. Chem. C 117(25), 13305–13317 (2013).
[Crossref]

Maruccio, G.

C. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M. R. Belviso, P. D. Cozzoli, A. Rizzo, and G. Gigli, “Colloidal arenethiolate-capped PbS quantum dots: optoelectronic properties, self-assembly, and application in solution-cast photovoltaics,” J. Phys. Chem. C 117(25), 13305–13317 (2013).
[Crossref]

Murray, C. B.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices,” Science 270(5240), 1335–1338 (1995).
[Crossref]

Orlova, A. O.

P. S. Parfenov, A. V. Baranov, A. V. Veniaminov, and A. O. Orlova, “A complex for the fluorescence analysis of macro-and microsamples in the near-infrared,” J. Opt. Tech. 78(2), 120–123 (2011).
[Crossref]

Panthani, M. G.

M. G. Panthani and B. A. Korgel, “Nanocrystals for electronics,” Annu. Rev. Chem. Biomol. Eng. 3(1), 287–311 (2012).
[Crossref] [PubMed]

Parfenov, P. S.

A. V. Baranov, E. V. Ushakova, V. V. Golubkov, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, and K. Berwick, “Self-organization of colloidal PbS quantum dots into highly ordered superlattices,” Langmuir 31(1), 506–513 (2015).
[Crossref] [PubMed]

A. P. Litvin, E. V. Ushakova, P. S. Parfenov, A. V. Fedorov, and A. V. Baranov, “FRET between close-packed quasi-monodispersed PbS QDs in a porous matrix,” J. Phys. Chem. C 118(12), 6531–6535 (2014).
[Crossref]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

P. S. Parfenov, A. P. Litvin, A. V. Baranov, A. V. Veniaminov, and E. V. Ushakova, “Calibration of the spectral sensitivity of instruments for the near infrared region,” J. Appl. Spectrosc. 78(3), 433–439 (2011).
[Crossref]

P. S. Parfenov, A. V. Baranov, A. V. Veniaminov, and A. O. Orlova, “A complex for the fluorescence analysis of macro-and microsamples in the near-infrared,” J. Opt. Tech. 78(2), 120–123 (2011).
[Crossref]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, S. A. Cherevkov, A. V. Fedorov, A. V. Baranov, and V. V. Golubkov, “Self-assembled PbS QDs of different size,” in Proceedings of International Conference Laser Optics, paper 6–12.

Peng, X.

Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc. 123(1), 183–184 (2001).
[Crossref] [PubMed]

Peng, Z. A.

Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc. 123(1), 183–184 (2001).
[Crossref] [PubMed]

Prudnikau, A. V.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Rizzo, A.

C. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M. R. Belviso, P. D. Cozzoli, A. Rizzo, and G. Gigli, “Colloidal arenethiolate-capped PbS quantum dots: optoelectronic properties, self-assembly, and application in solution-cast photovoltaics,” J. Phys. Chem. C 117(25), 13305–13317 (2013).
[Crossref]

Rogach, A. L.

A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small 3(4), 536–557 (2007).
[Crossref] [PubMed]

Rukhlenko, I. D.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Sargent, E. H.

I. J. Kramer and E. H. Sargent, “The architecture of colloidal quantum dot solar cells: materials to devices,” Chem. Rev. 114(1), 863–882 (2014).
[Crossref] [PubMed]

Shevchenko, E. V.

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref] [PubMed]

Talapin, D. V.

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref] [PubMed]

Turkov, V. K.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

Ushakova, E. V.

A. V. Baranov, E. V. Ushakova, V. V. Golubkov, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, and K. Berwick, “Self-organization of colloidal PbS quantum dots into highly ordered superlattices,” Langmuir 31(1), 506–513 (2015).
[Crossref] [PubMed]

A. P. Litvin, E. V. Ushakova, P. S. Parfenov, A. V. Fedorov, and A. V. Baranov, “FRET between close-packed quasi-monodispersed PbS QDs in a porous matrix,” J. Phys. Chem. C 118(12), 6531–6535 (2014).
[Crossref]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

P. S. Parfenov, A. P. Litvin, A. V. Baranov, A. V. Veniaminov, and E. V. Ushakova, “Calibration of the spectral sensitivity of instruments for the near infrared region,” J. Appl. Spectrosc. 78(3), 433–439 (2011).
[Crossref]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, S. A. Cherevkov, A. V. Fedorov, A. V. Baranov, and V. V. Golubkov, “Self-assembled PbS QDs of different size,” in Proceedings of International Conference Laser Optics, paper 6–12.

Veniaminov, A. V.

P. S. Parfenov, A. P. Litvin, A. V. Baranov, A. V. Veniaminov, and E. V. Ushakova, “Calibration of the spectral sensitivity of instruments for the near infrared region,” J. Appl. Spectrosc. 78(3), 433–439 (2011).
[Crossref]

P. S. Parfenov, A. V. Baranov, A. V. Veniaminov, and A. O. Orlova, “A complex for the fluorescence analysis of macro-and microsamples in the near-infrared,” J. Opt. Tech. 78(2), 120–123 (2011).
[Crossref]

Woggon, U.

M. V. Artemyev, A. I. Bibik, L. I. Gurinovich, S. V. Gaponenko, and U. Woggon, “Evolution from individual to collective electron states in a dense quantum dot ensemble,” Phys. Rev. B 60(3), 1504–1506 (1999).
[Crossref]

ACS Nano (1)

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Annu. Rev. Chem. Biomol. Eng. (1)

M. G. Panthani and B. A. Korgel, “Nanocrystals for electronics,” Annu. Rev. Chem. Biomol. Eng. 3(1), 287–311 (2012).
[Crossref] [PubMed]

Chem. Rev. (2)

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref] [PubMed]

I. J. Kramer and E. H. Sargent, “The architecture of colloidal quantum dot solar cells: materials to devices,” Chem. Rev. 114(1), 863–882 (2014).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am. Chem. Soc. 123(1), 183–184 (2001).
[Crossref] [PubMed]

J. Appl. Spectrosc. (1)

P. S. Parfenov, A. P. Litvin, A. V. Baranov, A. V. Veniaminov, and E. V. Ushakova, “Calibration of the spectral sensitivity of instruments for the near infrared region,” J. Appl. Spectrosc. 78(3), 433–439 (2011).
[Crossref]

J. Opt. Tech. (1)

P. S. Parfenov, A. V. Baranov, A. V. Veniaminov, and A. O. Orlova, “A complex for the fluorescence analysis of macro-and microsamples in the near-infrared,” J. Opt. Tech. 78(2), 120–123 (2011).
[Crossref]

J. Phys. Chem. C (2)

A. P. Litvin, E. V. Ushakova, P. S. Parfenov, A. V. Fedorov, and A. V. Baranov, “FRET between close-packed quasi-monodispersed PbS QDs in a porous matrix,” J. Phys. Chem. C 118(12), 6531–6535 (2014).
[Crossref]

C. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M. R. Belviso, P. D. Cozzoli, A. Rizzo, and G. Gigli, “Colloidal arenethiolate-capped PbS quantum dots: optoelectronic properties, self-assembly, and application in solution-cast photovoltaics,” J. Phys. Chem. C 117(25), 13305–13317 (2013).
[Crossref]

Langmuir (1)

A. V. Baranov, E. V. Ushakova, V. V. Golubkov, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, and K. Berwick, “Self-organization of colloidal PbS quantum dots into highly ordered superlattices,” Langmuir 31(1), 506–513 (2015).
[Crossref] [PubMed]

Phys. Rev. B (1)

M. V. Artemyev, A. I. Bibik, L. I. Gurinovich, S. V. Gaponenko, and U. Woggon, “Evolution from individual to collective electron states in a dense quantum dot ensemble,” Phys. Rev. B 60(3), 1504–1506 (1999).
[Crossref]

Sci. Rep. (1)

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

Science (1)

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices,” Science 270(5240), 1335–1338 (1995).
[Crossref]

Small (1)

A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small 3(4), 536–557 (2007).
[Crossref] [PubMed]

Other (1)

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, S. A. Cherevkov, A. V. Fedorov, A. V. Baranov, and V. V. Golubkov, “Self-assembled PbS QDs of different size,” in Proceedings of International Conference Laser Optics, paper 6–12.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Absorption spectra of colloidal solutions of PbS NCs (red lines) of 3.0 and 6.4 nm in diameter and CdSe NCs (blue lines) of 2.2 and 4.0 nm in diameter, and solar spectral irradiance at air mass 1.5 (black line).

Fig. 2
Fig. 2

FTIR spectra CdSe NCs: 1 - OA shell, 2 – TOPO shell, 3 – without organic shell

Fig. 3
Fig. 3

SAXS pattern of superstructures from PbS NCs

Fig. 4
Fig. 4

Microphotographs of superstructures from CdSe (a) and PbS (b) NCs formed on the substrate. Inset in (a) shows a microphotography of a sample obtained by drop-casting the treated CdSe NC solution onto the glass slide

Fig. 5
Fig. 5

Absorption spectra of NCs colloidal solution (dashed line) and superstructures (solid line) on the substrate obtained from PbS (a) and CdSe (b) NCs. The positions of absorption maxima were calculated using the 2nd derivative of absorption spectra (blue lines). Vertical dash-dot lines corresponding to absorption peak positions are shown as a guide for eye.

Fig. 6
Fig. 6

Normalized photoluminescence spectra of PbS NCs in initial colloidal solution (dash line) and self-assembled in superstructures on the substrate (solid red line).

Fig. 7
Fig. 7

(a) Typical PL image of a CdSe NC superstructure on a glass substrate; (b) normalized PL spectra from CdSe NC colloidal solution (black dashed line), from the whole area of the image of PL (black solid line), from region 1 containing an ordered superstructure (blue solid line), and from region 2 containing a disordered NC ensemble (red solid line).

Metrics