Abstract

We develop a simple quantum-mechanical theory of interband absorption by semiconductor nanocrystals exposed to a dc electric field. The theory is based on the model of noninteracting electrons and holes in an infinitely deep quantum well and describes all the major features of electroabsorption, including the Stark effect, the Franz-Keldysh effect, and the field-induced spectral broadening. It is applicable to nanocrystals of different shapes and dimensions (quantum dots, nanorods, and nanoplatelets), and will prove useful in modeling and design of electrooptical devices based on ensembles of semiconductor nanocrystals.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, “Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures,” Phys. Rev. B 76, 045332 (2007).
    [Crossref]
  2. I. D. Rukhlenko and A. V. Fedorov, “Propagation of electric fields induced by optical phonons in semiconductor heterostructures,” Opt. Spectrosc. 100, 238–244 (2006).
    [Crossref]
  3. I. D. Rukhlenko and A. V. Fedorov, “Penetration of electric fields induced by surface phonon modes into the layers of a semiconductor heterostructure,” Opt. Spectrosc. 101, 253–264 (2006).
    [Crossref]
  4. A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
    [Crossref] [PubMed]
  5. A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
    [Crossref]
  6. A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, “Engineering band structure in nanoscale quantum-dot supercrystals,” Opt. Lett. 38, 2259–2261 (2013).
    [Crossref] [PubMed]
  7. I. Sagnes, A. Halimaoui, G. Vincent, and P. Badoz, “Optical absorption evidence of a quantum size effect in porous silicon,” Appl. Phys. Lett. 62, 1155–1157 (1993).
    [Crossref]
  8. Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: Materials synthesis, quantum size effects and photophysical properties,” J. Phys. Chem. 95, 525–532 (1991).
    [Crossref]
  9. A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, M. Y. Leonov, A. V. Baranov, Y. K. Gun’ko, and A. V. Fedorov, “Harnessing the shape-induced optical anisotropy of a semiconductor nanocrystal: A new type of intraband absorption spectroscopy,” J. Phys. Chem. C 118, 2867–2876 (2014).
    [Crossref]
  10. I. D. Rukhlenko, M. Y. Leonov, V. K. Turkov, A. P. Litvin, A. S. Baymuratov, A. V. Baranov, and A. V. Fedorov, “Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot,” Opt. Express 20, 27612–27635 (2012).
    [Crossref] [PubMed]
  11. S. Furukawa and T. Miyasato, “Quantum size effects on the optical band gap of microcrystalline Si:H,” Phys. Rev. B 38, 5726–5729 (1988).
    [Crossref]
  12. E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6, 8913–8921 (2012).
    [Crossref] [PubMed]
  13. Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B 48, 2827–2831 (1993).
    [Crossref]
  14. I. D. Rukhlenko, A. D. Fedorov, A. S. Baymuratov, and M. Premaratne, “Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance,” Opt. Express 19, 15459–15482 (2011).
    [Crossref] [PubMed]
  15. X. Liu, T. Iimori, R. Ohshima, T. Nakabayashi, and N. Ohta, “Electroabsorption spectra of PbSe nanocrystal quantum dots,” Appl. Phys. Lett. 98, 161911 (2011).
    [Crossref]
  16. H. Spector and J. Lee, “Stark effect in the optical absorption in cubical quantum boxes,” Physica B 393, 94–99 (2007).
    [Crossref]
  17. P. Jin, C. Li, Z. Zhang, F. Liu, Y. Chen, X. Ye, B. Xu, and Z. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
    [Crossref]
  18. S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E. Stinaff, M. Kerfoot, M. Scheibner, A. Bracker, and D. Gammon, “Quantum-confined Stark effects in coupled InAs/GaAs quantum dots,” Appl. Phys. Lett. 102, 213101 (2004).
    [Crossref]
  19. I. Itskevich, S. Rybchenko, I. Tartakovskii, S. Stoddart, A. Levin, P. Main, L. Eaves, M. Henini, and S. Parnell, “Stark shift in electroluminescence of individual InAs quantum dots,” Appl. Phys. Lett. 76, 3932–3934 (2000).
    [Crossref]
  20. D. Miller, D. Chemla, and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev. B 33, 6976–6982 (1986).
    [Crossref]
  21. D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, and C. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
    [Crossref]
  22. A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
    [Crossref]
  23. H. Hillhouse and M. Beard, “Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics,” Curr. Opin. Colloid Interface Sci. 14, 245–259 (2009).
    [Crossref]
  24. K. Park, Z. Deutsch, J. J. Li, D. Oron, and S. Weiss, “Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature,” ACS Nano 6, 10013–10023 (2012).
    [Crossref] [PubMed]
  25. Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. D. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27, 169–175 (2015).
    [Crossref]
  26. Y. Wang, S. Yang, H. Yang, and H. D. Sun, “Quaternary alloy quantum dots: Toward low-threshold stimulated emission and all-solution-processed lasers in the green region,” Adv. Mater. 3, 652–657 (2014).
  27. D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” J. Phys. D: Appl. Phys. 38, 2055 (2005).
    [Crossref]
  28. H. Saito, K. Nishi, and S. Sugou, “Ground-state lasing at room temperature in long-wavelength InAs quantum-dot lasers on InP(311)B substrates,” Appl. Phys. Lett. 78, 267 (2001).
    [Crossref]
  29. A. W. Achtstein, A. V. Prudnikau, M. V. Ermolenko, L. I. Gurinovich, S. V. Gaponenko, U. Woggon, A. V. Baranov, M. Y. Leonov, I. D. Rukhlenko, A. V. Fedorov, and M. V. Artemyev, “Electroabsorption by 0D, 1D, and 2D nanocrystals: A comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets,” ACS Nano 8, 7678–7686 (2014).
    [Crossref] [PubMed]
  30. M. Ehrhardt and T. Koprucki, Multi-Band Effective Mass Approximations: Advanced Mathematical Models and Numerical Techniques, 1st ed., Lecture Notes in Computational Science and Engineering94 (Springer International Publishing, 2014).
  31. O. Olendski, “Comparative analysis of electric field influence on the quantum wells with different boundary conditions,” Annalen Phys. 527, 278–295 (2015).
    [Crossref]
  32. S. Y. Kruchinin and A. V. Fedorov, “Spectroscopy of persistent hole burning in the quantum dot-matrix system: Quantum-confined Stark effect and electroabsorption,” Phys. Solid State 49, 968–975 (2007).
    [Crossref]

2015 (2)

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. D. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27, 169–175 (2015).
[Crossref]

O. Olendski, “Comparative analysis of electric field influence on the quantum wells with different boundary conditions,” Annalen Phys. 527, 278–295 (2015).
[Crossref]

2014 (4)

A. W. Achtstein, A. V. Prudnikau, M. V. Ermolenko, L. I. Gurinovich, S. V. Gaponenko, U. Woggon, A. V. Baranov, M. Y. Leonov, I. D. Rukhlenko, A. V. Fedorov, and M. V. Artemyev, “Electroabsorption by 0D, 1D, and 2D nanocrystals: A comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets,” ACS Nano 8, 7678–7686 (2014).
[Crossref] [PubMed]

Y. Wang, S. Yang, H. Yang, and H. D. Sun, “Quaternary alloy quantum dots: Toward low-threshold stimulated emission and all-solution-processed lasers in the green region,” Adv. Mater. 3, 652–657 (2014).

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, M. Y. Leonov, A. V. Baranov, Y. K. Gun’ko, and A. V. Fedorov, “Harnessing the shape-induced optical anisotropy of a semiconductor nanocrystal: A new type of intraband absorption spectroscopy,” J. Phys. Chem. C 118, 2867–2876 (2014).
[Crossref]

2013 (3)

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, “Engineering band structure in nanoscale quantum-dot supercrystals,” Opt. Lett. 38, 2259–2261 (2013).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

2012 (3)

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6, 8913–8921 (2012).
[Crossref] [PubMed]

K. Park, Z. Deutsch, J. J. Li, D. Oron, and S. Weiss, “Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature,” ACS Nano 6, 10013–10023 (2012).
[Crossref] [PubMed]

I. D. Rukhlenko, M. Y. Leonov, V. K. Turkov, A. P. Litvin, A. S. Baymuratov, A. V. Baranov, and A. V. Fedorov, “Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot,” Opt. Express 20, 27612–27635 (2012).
[Crossref] [PubMed]

2011 (2)

I. D. Rukhlenko, A. D. Fedorov, A. S. Baymuratov, and M. Premaratne, “Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance,” Opt. Express 19, 15459–15482 (2011).
[Crossref] [PubMed]

X. Liu, T. Iimori, R. Ohshima, T. Nakabayashi, and N. Ohta, “Electroabsorption spectra of PbSe nanocrystal quantum dots,” Appl. Phys. Lett. 98, 161911 (2011).
[Crossref]

2009 (1)

H. Hillhouse and M. Beard, “Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics,” Curr. Opin. Colloid Interface Sci. 14, 245–259 (2009).
[Crossref]

2007 (3)

S. Y. Kruchinin and A. V. Fedorov, “Spectroscopy of persistent hole burning in the quantum dot-matrix system: Quantum-confined Stark effect and electroabsorption,” Phys. Solid State 49, 968–975 (2007).
[Crossref]

H. Spector and J. Lee, “Stark effect in the optical absorption in cubical quantum boxes,” Physica B 393, 94–99 (2007).
[Crossref]

A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, “Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures,” Phys. Rev. B 76, 045332 (2007).
[Crossref]

2006 (2)

I. D. Rukhlenko and A. V. Fedorov, “Propagation of electric fields induced by optical phonons in semiconductor heterostructures,” Opt. Spectrosc. 100, 238–244 (2006).
[Crossref]

I. D. Rukhlenko and A. V. Fedorov, “Penetration of electric fields induced by surface phonon modes into the layers of a semiconductor heterostructure,” Opt. Spectrosc. 101, 253–264 (2006).
[Crossref]

2005 (1)

D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” J. Phys. D: Appl. Phys. 38, 2055 (2005).
[Crossref]

2004 (2)

P. Jin, C. Li, Z. Zhang, F. Liu, Y. Chen, X. Ye, B. Xu, and Z. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E. Stinaff, M. Kerfoot, M. Scheibner, A. Bracker, and D. Gammon, “Quantum-confined Stark effects in coupled InAs/GaAs quantum dots,” Appl. Phys. Lett. 102, 213101 (2004).
[Crossref]

2001 (1)

H. Saito, K. Nishi, and S. Sugou, “Ground-state lasing at room temperature in long-wavelength InAs quantum-dot lasers on InP(311)B substrates,” Appl. Phys. Lett. 78, 267 (2001).
[Crossref]

2000 (1)

I. Itskevich, S. Rybchenko, I. Tartakovskii, S. Stoddart, A. Levin, P. Main, L. Eaves, M. Henini, and S. Parnell, “Stark shift in electroluminescence of individual InAs quantum dots,” Appl. Phys. Lett. 76, 3932–3934 (2000).
[Crossref]

1993 (2)

I. Sagnes, A. Halimaoui, G. Vincent, and P. Badoz, “Optical absorption evidence of a quantum size effect in porous silicon,” Appl. Phys. Lett. 62, 1155–1157 (1993).
[Crossref]

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B 48, 2827–2831 (1993).
[Crossref]

1991 (1)

Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: Materials synthesis, quantum size effects and photophysical properties,” J. Phys. Chem. 95, 525–532 (1991).
[Crossref]

1988 (1)

S. Furukawa and T. Miyasato, “Quantum size effects on the optical band gap of microcrystalline Si:H,” Phys. Rev. B 38, 5726–5729 (1988).
[Crossref]

1986 (1)

D. Miller, D. Chemla, and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev. B 33, 6976–6982 (1986).
[Crossref]

1984 (1)

D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, and C. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[Crossref]

Achtstein, A. W.

A. W. Achtstein, A. V. Prudnikau, M. V. Ermolenko, L. I. Gurinovich, S. V. Gaponenko, U. Woggon, A. V. Baranov, M. Y. Leonov, I. D. Rukhlenko, A. V. Fedorov, and M. V. Artemyev, “Electroabsorption by 0D, 1D, and 2D nanocrystals: A comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets,” ACS Nano 8, 7678–7686 (2014).
[Crossref] [PubMed]

Artemyev, M. V.

A. W. Achtstein, A. V. Prudnikau, M. V. Ermolenko, L. I. Gurinovich, S. V. Gaponenko, U. Woggon, A. V. Baranov, M. Y. Leonov, I. D. Rukhlenko, A. V. Fedorov, and M. V. Artemyev, “Electroabsorption by 0D, 1D, and 2D nanocrystals: A comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets,” ACS Nano 8, 7678–7686 (2014).
[Crossref] [PubMed]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6, 8913–8921 (2012).
[Crossref] [PubMed]

Badoz, P.

I. Sagnes, A. Halimaoui, G. Vincent, and P. Badoz, “Optical absorption evidence of a quantum size effect in porous silicon,” Appl. Phys. Lett. 62, 1155–1157 (1993).
[Crossref]

Baimuratov, A. S.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, M. Y. Leonov, A. V. Baranov, Y. K. Gun’ko, and A. V. Fedorov, “Harnessing the shape-induced optical anisotropy of a semiconductor nanocrystal: A new type of intraband absorption spectroscopy,” J. Phys. Chem. C 118, 2867–2876 (2014).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, “Engineering band structure in nanoscale quantum-dot supercrystals,” Opt. Lett. 38, 2259–2261 (2013).
[Crossref] [PubMed]

Baranov, A. V.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, M. Y. Leonov, A. V. Baranov, Y. K. Gun’ko, and A. V. Fedorov, “Harnessing the shape-induced optical anisotropy of a semiconductor nanocrystal: A new type of intraband absorption spectroscopy,” J. Phys. Chem. C 118, 2867–2876 (2014).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

A. W. Achtstein, A. V. Prudnikau, M. V. Ermolenko, L. I. Gurinovich, S. V. Gaponenko, U. Woggon, A. V. Baranov, M. Y. Leonov, I. D. Rukhlenko, A. V. Fedorov, and M. V. Artemyev, “Electroabsorption by 0D, 1D, and 2D nanocrystals: A comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets,” ACS Nano 8, 7678–7686 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6, 8913–8921 (2012).
[Crossref] [PubMed]

I. D. Rukhlenko, M. Y. Leonov, V. K. Turkov, A. P. Litvin, A. S. Baymuratov, A. V. Baranov, and A. V. Fedorov, “Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot,” Opt. Express 20, 27612–27635 (2012).
[Crossref] [PubMed]

A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, “Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures,” Phys. Rev. B 76, 045332 (2007).
[Crossref]

Baymuratov, A. S.

Beard, M.

H. Hillhouse and M. Beard, “Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics,” Curr. Opin. Colloid Interface Sci. 14, 245–259 (2009).
[Crossref]

Berwick, K.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, “Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures,” Phys. Rev. B 76, 045332 (2007).
[Crossref]

Bimberg, D.

D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” J. Phys. D: Appl. Phys. 38, 2055 (2005).
[Crossref]

Bracker, A.

S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E. Stinaff, M. Kerfoot, M. Scheibner, A. Bracker, and D. Gammon, “Quantum-confined Stark effects in coupled InAs/GaAs quantum dots,” Appl. Phys. Lett. 102, 213101 (2004).
[Crossref]

Burrus, C.

D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, and C. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[Crossref]

Chemla, D.

D. Miller, D. Chemla, and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev. B 33, 6976–6982 (1986).
[Crossref]

D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, and C. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[Crossref]

Chen, R.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. D. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27, 169–175 (2015).
[Crossref]

Chen, Y.

P. Jin, C. Li, Z. Zhang, F. Liu, Y. Chen, X. Ye, B. Xu, and Z. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Damen, T.

D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, and C. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[Crossref]

Demir, H. V.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. D. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27, 169–175 (2015).
[Crossref]

Deutsch, Z.

K. Park, Z. Deutsch, J. J. Li, D. Oron, and S. Weiss, “Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature,” ACS Nano 6, 10013–10023 (2012).
[Crossref] [PubMed]

Eaves, L.

I. Itskevich, S. Rybchenko, I. Tartakovskii, S. Stoddart, A. Levin, P. Main, L. Eaves, M. Henini, and S. Parnell, “Stark shift in electroluminescence of individual InAs quantum dots,” Appl. Phys. Lett. 76, 3932–3934 (2000).
[Crossref]

Ehrhardt, M.

M. Ehrhardt and T. Koprucki, Multi-Band Effective Mass Approximations: Advanced Mathematical Models and Numerical Techniques, 1st ed., Lecture Notes in Computational Science and Engineering94 (Springer International Publishing, 2014).

Ermolenko, M. V.

A. W. Achtstein, A. V. Prudnikau, M. V. Ermolenko, L. I. Gurinovich, S. V. Gaponenko, U. Woggon, A. V. Baranov, M. Y. Leonov, I. D. Rukhlenko, A. V. Fedorov, and M. V. Artemyev, “Electroabsorption by 0D, 1D, and 2D nanocrystals: A comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets,” ACS Nano 8, 7678–7686 (2014).
[Crossref] [PubMed]

Fedorov, A. D.

Fedorov, A. V.

A. W. Achtstein, A. V. Prudnikau, M. V. Ermolenko, L. I. Gurinovich, S. V. Gaponenko, U. Woggon, A. V. Baranov, M. Y. Leonov, I. D. Rukhlenko, A. V. Fedorov, and M. V. Artemyev, “Electroabsorption by 0D, 1D, and 2D nanocrystals: A comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets,” ACS Nano 8, 7678–7686 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, M. Y. Leonov, A. V. Baranov, Y. K. Gun’ko, and A. V. Fedorov, “Harnessing the shape-induced optical anisotropy of a semiconductor nanocrystal: A new type of intraband absorption spectroscopy,” J. Phys. Chem. C 118, 2867–2876 (2014).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, “Engineering band structure in nanoscale quantum-dot supercrystals,” Opt. Lett. 38, 2259–2261 (2013).
[Crossref] [PubMed]

I. D. Rukhlenko, M. Y. Leonov, V. K. Turkov, A. P. Litvin, A. S. Baymuratov, A. V. Baranov, and A. V. Fedorov, “Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot,” Opt. Express 20, 27612–27635 (2012).
[Crossref] [PubMed]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6, 8913–8921 (2012).
[Crossref] [PubMed]

S. Y. Kruchinin and A. V. Fedorov, “Spectroscopy of persistent hole burning in the quantum dot-matrix system: Quantum-confined Stark effect and electroabsorption,” Phys. Solid State 49, 968–975 (2007).
[Crossref]

A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, “Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures,” Phys. Rev. B 76, 045332 (2007).
[Crossref]

I. D. Rukhlenko and A. V. Fedorov, “Penetration of electric fields induced by surface phonon modes into the layers of a semiconductor heterostructure,” Opt. Spectrosc. 101, 253–264 (2006).
[Crossref]

I. D. Rukhlenko and A. V. Fedorov, “Propagation of electric fields induced by optical phonons in semiconductor heterostructures,” Opt. Spectrosc. 100, 238–244 (2006).
[Crossref]

Furukawa, S.

S. Furukawa and T. Miyasato, “Quantum size effects on the optical band gap of microcrystalline Si:H,” Phys. Rev. B 38, 5726–5729 (1988).
[Crossref]

Futagi, T.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B 48, 2827–2831 (1993).
[Crossref]

Gammon, D.

S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E. Stinaff, M. Kerfoot, M. Scheibner, A. Bracker, and D. Gammon, “Quantum-confined Stark effects in coupled InAs/GaAs quantum dots,” Appl. Phys. Lett. 102, 213101 (2004).
[Crossref]

Gao, Y.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. D. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27, 169–175 (2015).
[Crossref]

Gaponenko, S. V.

A. W. Achtstein, A. V. Prudnikau, M. V. Ermolenko, L. I. Gurinovich, S. V. Gaponenko, U. Woggon, A. V. Baranov, M. Y. Leonov, I. D. Rukhlenko, A. V. Fedorov, and M. V. Artemyev, “Electroabsorption by 0D, 1D, and 2D nanocrystals: A comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets,” ACS Nano 8, 7678–7686 (2014).
[Crossref] [PubMed]

Gossard, A.

D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, and C. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[Crossref]

Gun’ko, Y. K.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, M. Y. Leonov, A. V. Baranov, Y. K. Gun’ko, and A. V. Fedorov, “Harnessing the shape-induced optical anisotropy of a semiconductor nanocrystal: A new type of intraband absorption spectroscopy,” J. Phys. Chem. C 118, 2867–2876 (2014).
[Crossref]

Gurinovich, L. I.

A. W. Achtstein, A. V. Prudnikau, M. V. Ermolenko, L. I. Gurinovich, S. V. Gaponenko, U. Woggon, A. V. Baranov, M. Y. Leonov, I. D. Rukhlenko, A. V. Fedorov, and M. V. Artemyev, “Electroabsorption by 0D, 1D, and 2D nanocrystals: A comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets,” ACS Nano 8, 7678–7686 (2014).
[Crossref] [PubMed]

Halimaoui, A.

I. Sagnes, A. Halimaoui, G. Vincent, and P. Badoz, “Optical absorption evidence of a quantum size effect in porous silicon,” Appl. Phys. Lett. 62, 1155–1157 (1993).
[Crossref]

He, T.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. D. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27, 169–175 (2015).
[Crossref]

Henini, M.

I. Itskevich, S. Rybchenko, I. Tartakovskii, S. Stoddart, A. Levin, P. Main, L. Eaves, M. Henini, and S. Parnell, “Stark shift in electroluminescence of individual InAs quantum dots,” Appl. Phys. Lett. 76, 3932–3934 (2000).
[Crossref]

Herron, N.

Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: Materials synthesis, quantum size effects and photophysical properties,” J. Phys. Chem. 95, 525–532 (1991).
[Crossref]

Hillhouse, H.

H. Hillhouse and M. Beard, “Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics,” Curr. Opin. Colloid Interface Sci. 14, 245–259 (2009).
[Crossref]

Iimori, T.

X. Liu, T. Iimori, R. Ohshima, T. Nakabayashi, and N. Ohta, “Electroabsorption spectra of PbSe nanocrystal quantum dots,” Appl. Phys. Lett. 98, 161911 (2011).
[Crossref]

Itskevich, I.

I. Itskevich, S. Rybchenko, I. Tartakovskii, S. Stoddart, A. Levin, P. Main, L. Eaves, M. Henini, and S. Parnell, “Stark shift in electroluminescence of individual InAs quantum dots,” Appl. Phys. Lett. 76, 3932–3934 (2000).
[Crossref]

Jin, P.

P. Jin, C. Li, Z. Zhang, F. Liu, Y. Chen, X. Ye, B. Xu, and Z. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Kanemitsu, Y.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B 48, 2827–2831 (1993).
[Crossref]

Kerfoot, M.

S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E. Stinaff, M. Kerfoot, M. Scheibner, A. Bracker, and D. Gammon, “Quantum-confined Stark effects in coupled InAs/GaAs quantum dots,” Appl. Phys. Lett. 102, 213101 (2004).
[Crossref]

Koprucki, T.

M. Ehrhardt and T. Koprucki, Multi-Band Effective Mass Approximations: Advanced Mathematical Models and Numerical Techniques, 1st ed., Lecture Notes in Computational Science and Engineering94 (Springer International Publishing, 2014).

Kruchinin, S. Y.

S. Y. Kruchinin and A. V. Fedorov, “Spectroscopy of persistent hole burning in the quantum dot-matrix system: Quantum-confined Stark effect and electroabsorption,” Phys. Solid State 49, 968–975 (2007).
[Crossref]

Leck, K. S.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. D. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27, 169–175 (2015).
[Crossref]

Lee, J.

H. Spector and J. Lee, “Stark effect in the optical absorption in cubical quantum boxes,” Physica B 393, 94–99 (2007).
[Crossref]

Leonov, M. Y.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

A. W. Achtstein, A. V. Prudnikau, M. V. Ermolenko, L. I. Gurinovich, S. V. Gaponenko, U. Woggon, A. V. Baranov, M. Y. Leonov, I. D. Rukhlenko, A. V. Fedorov, and M. V. Artemyev, “Electroabsorption by 0D, 1D, and 2D nanocrystals: A comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets,” ACS Nano 8, 7678–7686 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, M. Y. Leonov, A. V. Baranov, Y. K. Gun’ko, and A. V. Fedorov, “Harnessing the shape-induced optical anisotropy of a semiconductor nanocrystal: A new type of intraband absorption spectroscopy,” J. Phys. Chem. C 118, 2867–2876 (2014).
[Crossref]

I. D. Rukhlenko, M. Y. Leonov, V. K. Turkov, A. P. Litvin, A. S. Baymuratov, A. V. Baranov, and A. V. Fedorov, “Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot,” Opt. Express 20, 27612–27635 (2012).
[Crossref] [PubMed]

Levin, A.

I. Itskevich, S. Rybchenko, I. Tartakovskii, S. Stoddart, A. Levin, P. Main, L. Eaves, M. Henini, and S. Parnell, “Stark shift in electroluminescence of individual InAs quantum dots,” Appl. Phys. Lett. 76, 3932–3934 (2000).
[Crossref]

Li, C.

P. Jin, C. Li, Z. Zhang, F. Liu, Y. Chen, X. Ye, B. Xu, and Z. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Li, J. J.

K. Park, Z. Deutsch, J. J. Li, D. Oron, and S. Weiss, “Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature,” ACS Nano 6, 10013–10023 (2012).
[Crossref] [PubMed]

Litvin, A. P.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6, 8913–8921 (2012).
[Crossref] [PubMed]

I. D. Rukhlenko, M. Y. Leonov, V. K. Turkov, A. P. Litvin, A. S. Baymuratov, A. V. Baranov, and A. V. Fedorov, “Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot,” Opt. Express 20, 27612–27635 (2012).
[Crossref] [PubMed]

Liu, F.

P. Jin, C. Li, Z. Zhang, F. Liu, Y. Chen, X. Ye, B. Xu, and Z. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Liu, X.

X. Liu, T. Iimori, R. Ohshima, T. Nakabayashi, and N. Ohta, “Electroabsorption spectra of PbSe nanocrystal quantum dots,” Appl. Phys. Lett. 98, 161911 (2011).
[Crossref]

Main, P.

I. Itskevich, S. Rybchenko, I. Tartakovskii, S. Stoddart, A. Levin, P. Main, L. Eaves, M. Henini, and S. Parnell, “Stark shift in electroluminescence of individual InAs quantum dots,” Appl. Phys. Lett. 76, 3932–3934 (2000).
[Crossref]

Masumoto, Y.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B 48, 2827–2831 (1993).
[Crossref]

Matsumoto, T.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B 48, 2827–2831 (1993).
[Crossref]

Miller, D.

D. Miller, D. Chemla, and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev. B 33, 6976–6982 (1986).
[Crossref]

D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, and C. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[Crossref]

Mimura, H.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B 48, 2827–2831 (1993).
[Crossref]

Miyasato, T.

S. Furukawa and T. Miyasato, “Quantum size effects on the optical band gap of microcrystalline Si:H,” Phys. Rev. B 38, 5726–5729 (1988).
[Crossref]

Nakabayashi, T.

X. Liu, T. Iimori, R. Ohshima, T. Nakabayashi, and N. Ohta, “Electroabsorption spectra of PbSe nanocrystal quantum dots,” Appl. Phys. Lett. 98, 161911 (2011).
[Crossref]

Nalla, V.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. D. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27, 169–175 (2015).
[Crossref]

Nishi, K.

H. Saito, K. Nishi, and S. Sugou, “Ground-state lasing at room temperature in long-wavelength InAs quantum-dot lasers on InP(311)B substrates,” Appl. Phys. Lett. 78, 267 (2001).
[Crossref]

Ohshima, R.

X. Liu, T. Iimori, R. Ohshima, T. Nakabayashi, and N. Ohta, “Electroabsorption spectra of PbSe nanocrystal quantum dots,” Appl. Phys. Lett. 98, 161911 (2011).
[Crossref]

Ohta, N.

X. Liu, T. Iimori, R. Ohshima, T. Nakabayashi, and N. Ohta, “Electroabsorption spectra of PbSe nanocrystal quantum dots,” Appl. Phys. Lett. 98, 161911 (2011).
[Crossref]

Olendski, O.

O. Olendski, “Comparative analysis of electric field influence on the quantum wells with different boundary conditions,” Annalen Phys. 527, 278–295 (2015).
[Crossref]

Oron, D.

K. Park, Z. Deutsch, J. J. Li, D. Oron, and S. Weiss, “Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature,” ACS Nano 6, 10013–10023 (2012).
[Crossref] [PubMed]

Parfenov, P. S.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6, 8913–8921 (2012).
[Crossref] [PubMed]

Park, K.

K. Park, Z. Deutsch, J. J. Li, D. Oron, and S. Weiss, “Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature,” ACS Nano 6, 10013–10023 (2012).
[Crossref] [PubMed]

Parnell, S.

I. Itskevich, S. Rybchenko, I. Tartakovskii, S. Stoddart, A. Levin, P. Main, L. Eaves, M. Henini, and S. Parnell, “Stark shift in electroluminescence of individual InAs quantum dots,” Appl. Phys. Lett. 76, 3932–3934 (2000).
[Crossref]

Perova, T. S.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, “Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures,” Phys. Rev. B 76, 045332 (2007).
[Crossref]

Petersen, G.

S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E. Stinaff, M. Kerfoot, M. Scheibner, A. Bracker, and D. Gammon, “Quantum-confined Stark effects in coupled InAs/GaAs quantum dots,” Appl. Phys. Lett. 102, 213101 (2004).
[Crossref]

Ponomareva, I. O.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

Premaratne, M.

Prudnikau, A. V.

A. W. Achtstein, A. V. Prudnikau, M. V. Ermolenko, L. I. Gurinovich, S. V. Gaponenko, U. Woggon, A. V. Baranov, M. Y. Leonov, I. D. Rukhlenko, A. V. Fedorov, and M. V. Artemyev, “Electroabsorption by 0D, 1D, and 2D nanocrystals: A comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets,” ACS Nano 8, 7678–7686 (2014).
[Crossref] [PubMed]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6, 8913–8921 (2012).
[Crossref] [PubMed]

Ramanathan, S.

S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E. Stinaff, M. Kerfoot, M. Scheibner, A. Bracker, and D. Gammon, “Quantum-confined Stark effects in coupled InAs/GaAs quantum dots,” Appl. Phys. Lett. 102, 213101 (2004).
[Crossref]

Rukhlenko, I. D.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, M. Y. Leonov, A. V. Baranov, Y. K. Gun’ko, and A. V. Fedorov, “Harnessing the shape-induced optical anisotropy of a semiconductor nanocrystal: A new type of intraband absorption spectroscopy,” J. Phys. Chem. C 118, 2867–2876 (2014).
[Crossref]

A. W. Achtstein, A. V. Prudnikau, M. V. Ermolenko, L. I. Gurinovich, S. V. Gaponenko, U. Woggon, A. V. Baranov, M. Y. Leonov, I. D. Rukhlenko, A. V. Fedorov, and M. V. Artemyev, “Electroabsorption by 0D, 1D, and 2D nanocrystals: A comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets,” ACS Nano 8, 7678–7686 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, “Engineering band structure in nanoscale quantum-dot supercrystals,” Opt. Lett. 38, 2259–2261 (2013).
[Crossref] [PubMed]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6, 8913–8921 (2012).
[Crossref] [PubMed]

I. D. Rukhlenko, M. Y. Leonov, V. K. Turkov, A. P. Litvin, A. S. Baymuratov, A. V. Baranov, and A. V. Fedorov, “Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot,” Opt. Express 20, 27612–27635 (2012).
[Crossref] [PubMed]

I. D. Rukhlenko, A. D. Fedorov, A. S. Baymuratov, and M. Premaratne, “Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance,” Opt. Express 19, 15459–15482 (2011).
[Crossref] [PubMed]

A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, “Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures,” Phys. Rev. B 76, 045332 (2007).
[Crossref]

I. D. Rukhlenko and A. V. Fedorov, “Penetration of electric fields induced by surface phonon modes into the layers of a semiconductor heterostructure,” Opt. Spectrosc. 101, 253–264 (2006).
[Crossref]

I. D. Rukhlenko and A. V. Fedorov, “Propagation of electric fields induced by optical phonons in semiconductor heterostructures,” Opt. Spectrosc. 100, 238–244 (2006).
[Crossref]

Rybchenko, S.

I. Itskevich, S. Rybchenko, I. Tartakovskii, S. Stoddart, A. Levin, P. Main, L. Eaves, M. Henini, and S. Parnell, “Stark shift in electroluminescence of individual InAs quantum dots,” Appl. Phys. Lett. 76, 3932–3934 (2000).
[Crossref]

Sagnes, I.

I. Sagnes, A. Halimaoui, G. Vincent, and P. Badoz, “Optical absorption evidence of a quantum size effect in porous silicon,” Appl. Phys. Lett. 62, 1155–1157 (1993).
[Crossref]

Saito, H.

H. Saito, K. Nishi, and S. Sugou, “Ground-state lasing at room temperature in long-wavelength InAs quantum-dot lasers on InP(311)B substrates,” Appl. Phys. Lett. 78, 267 (2001).
[Crossref]

Scheibner, M.

S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E. Stinaff, M. Kerfoot, M. Scheibner, A. Bracker, and D. Gammon, “Quantum-confined Stark effects in coupled InAs/GaAs quantum dots,” Appl. Phys. Lett. 102, 213101 (2004).
[Crossref]

Schmitt-Rink, S.

D. Miller, D. Chemla, and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev. B 33, 6976–6982 (1986).
[Crossref]

Spector, H.

H. Spector and J. Lee, “Stark effect in the optical absorption in cubical quantum boxes,” Physica B 393, 94–99 (2007).
[Crossref]

Stinaff, E.

S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E. Stinaff, M. Kerfoot, M. Scheibner, A. Bracker, and D. Gammon, “Quantum-confined Stark effects in coupled InAs/GaAs quantum dots,” Appl. Phys. Lett. 102, 213101 (2004).
[Crossref]

Stoddart, S.

I. Itskevich, S. Rybchenko, I. Tartakovskii, S. Stoddart, A. Levin, P. Main, L. Eaves, M. Henini, and S. Parnell, “Stark shift in electroluminescence of individual InAs quantum dots,” Appl. Phys. Lett. 76, 3932–3934 (2000).
[Crossref]

Sugou, S.

H. Saito, K. Nishi, and S. Sugou, “Ground-state lasing at room temperature in long-wavelength InAs quantum-dot lasers on InP(311)B substrates,” Appl. Phys. Lett. 78, 267 (2001).
[Crossref]

Sun, H. D.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. D. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27, 169–175 (2015).
[Crossref]

Y. Wang, S. Yang, H. Yang, and H. D. Sun, “Quaternary alloy quantum dots: Toward low-threshold stimulated emission and all-solution-processed lasers in the green region,” Adv. Mater. 3, 652–657 (2014).

Ta, V. D.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. D. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27, 169–175 (2015).
[Crossref]

Tartakovskii, I.

I. Itskevich, S. Rybchenko, I. Tartakovskii, S. Stoddart, A. Levin, P. Main, L. Eaves, M. Henini, and S. Parnell, “Stark shift in electroluminescence of individual InAs quantum dots,” Appl. Phys. Lett. 76, 3932–3934 (2000).
[Crossref]

Thota, R.

S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E. Stinaff, M. Kerfoot, M. Scheibner, A. Bracker, and D. Gammon, “Quantum-confined Stark effects in coupled InAs/GaAs quantum dots,” Appl. Phys. Lett. 102, 213101 (2004).
[Crossref]

Turkov, V. K.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, M. Y. Leonov, A. V. Baranov, Y. K. Gun’ko, and A. V. Fedorov, “Harnessing the shape-induced optical anisotropy of a semiconductor nanocrystal: A new type of intraband absorption spectroscopy,” J. Phys. Chem. C 118, 2867–2876 (2014).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

I. D. Rukhlenko, M. Y. Leonov, V. K. Turkov, A. P. Litvin, A. S. Baymuratov, A. V. Baranov, and A. V. Fedorov, “Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot,” Opt. Express 20, 27612–27635 (2012).
[Crossref] [PubMed]

Ushakova, E. V.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6, 8913–8921 (2012).
[Crossref] [PubMed]

Uto, H.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B 48, 2827–2831 (1993).
[Crossref]

Vincent, G.

I. Sagnes, A. Halimaoui, G. Vincent, and P. Badoz, “Optical absorption evidence of a quantum size effect in porous silicon,” Appl. Phys. Lett. 62, 1155–1157 (1993).
[Crossref]

Wang, Y.

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. D. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27, 169–175 (2015).
[Crossref]

Y. Wang, S. Yang, H. Yang, and H. D. Sun, “Quaternary alloy quantum dots: Toward low-threshold stimulated emission and all-solution-processed lasers in the green region,” Adv. Mater. 3, 652–657 (2014).

Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: Materials synthesis, quantum size effects and photophysical properties,” J. Phys. Chem. 95, 525–532 (1991).
[Crossref]

Wang, Z.

P. Jin, C. Li, Z. Zhang, F. Liu, Y. Chen, X. Ye, B. Xu, and Z. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Weiss, S.

K. Park, Z. Deutsch, J. J. Li, D. Oron, and S. Weiss, “Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature,” ACS Nano 6, 10013–10023 (2012).
[Crossref] [PubMed]

Wiegmann, W.

D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, and C. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[Crossref]

Wijesundara, K.

S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E. Stinaff, M. Kerfoot, M. Scheibner, A. Bracker, and D. Gammon, “Quantum-confined Stark effects in coupled InAs/GaAs quantum dots,” Appl. Phys. Lett. 102, 213101 (2004).
[Crossref]

Woggon, U.

A. W. Achtstein, A. V. Prudnikau, M. V. Ermolenko, L. I. Gurinovich, S. V. Gaponenko, U. Woggon, A. V. Baranov, M. Y. Leonov, I. D. Rukhlenko, A. V. Fedorov, and M. V. Artemyev, “Electroabsorption by 0D, 1D, and 2D nanocrystals: A comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets,” ACS Nano 8, 7678–7686 (2014).
[Crossref] [PubMed]

Wood, T.

D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, and C. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[Crossref]

Xu, B.

P. Jin, C. Li, Z. Zhang, F. Liu, Y. Chen, X. Ye, B. Xu, and Z. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Yang, H.

Y. Wang, S. Yang, H. Yang, and H. D. Sun, “Quaternary alloy quantum dots: Toward low-threshold stimulated emission and all-solution-processed lasers in the green region,” Adv. Mater. 3, 652–657 (2014).

Yang, S.

Y. Wang, S. Yang, H. Yang, and H. D. Sun, “Quaternary alloy quantum dots: Toward low-threshold stimulated emission and all-solution-processed lasers in the green region,” Adv. Mater. 3, 652–657 (2014).

Ye, X.

P. Jin, C. Li, Z. Zhang, F. Liu, Y. Chen, X. Ye, B. Xu, and Z. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Zhang, Z.

P. Jin, C. Li, Z. Zhang, F. Liu, Y. Chen, X. Ye, B. Xu, and Z. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

ACS Nano (3)

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6, 8913–8921 (2012).
[Crossref] [PubMed]

K. Park, Z. Deutsch, J. J. Li, D. Oron, and S. Weiss, “Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature,” ACS Nano 6, 10013–10023 (2012).
[Crossref] [PubMed]

A. W. Achtstein, A. V. Prudnikau, M. V. Ermolenko, L. I. Gurinovich, S. V. Gaponenko, U. Woggon, A. V. Baranov, M. Y. Leonov, I. D. Rukhlenko, A. V. Fedorov, and M. V. Artemyev, “Electroabsorption by 0D, 1D, and 2D nanocrystals: A comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets,” ACS Nano 8, 7678–7686 (2014).
[Crossref] [PubMed]

Adv. Mater. (2)

Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. D. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. 27, 169–175 (2015).
[Crossref]

Y. Wang, S. Yang, H. Yang, and H. D. Sun, “Quaternary alloy quantum dots: Toward low-threshold stimulated emission and all-solution-processed lasers in the green region,” Adv. Mater. 3, 652–657 (2014).

Annalen Phys. (1)

O. Olendski, “Comparative analysis of electric field influence on the quantum wells with different boundary conditions,” Annalen Phys. 527, 278–295 (2015).
[Crossref]

Appl. Phys. Lett. (6)

H. Saito, K. Nishi, and S. Sugou, “Ground-state lasing at room temperature in long-wavelength InAs quantum-dot lasers on InP(311)B substrates,” Appl. Phys. Lett. 78, 267 (2001).
[Crossref]

X. Liu, T. Iimori, R. Ohshima, T. Nakabayashi, and N. Ohta, “Electroabsorption spectra of PbSe nanocrystal quantum dots,” Appl. Phys. Lett. 98, 161911 (2011).
[Crossref]

P. Jin, C. Li, Z. Zhang, F. Liu, Y. Chen, X. Ye, B. Xu, and Z. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

S. Ramanathan, G. Petersen, K. Wijesundara, R. Thota, E. Stinaff, M. Kerfoot, M. Scheibner, A. Bracker, and D. Gammon, “Quantum-confined Stark effects in coupled InAs/GaAs quantum dots,” Appl. Phys. Lett. 102, 213101 (2004).
[Crossref]

I. Itskevich, S. Rybchenko, I. Tartakovskii, S. Stoddart, A. Levin, P. Main, L. Eaves, M. Henini, and S. Parnell, “Stark shift in electroluminescence of individual InAs quantum dots,” Appl. Phys. Lett. 76, 3932–3934 (2000).
[Crossref]

I. Sagnes, A. Halimaoui, G. Vincent, and P. Badoz, “Optical absorption evidence of a quantum size effect in porous silicon,” Appl. Phys. Lett. 62, 1155–1157 (1993).
[Crossref]

Curr. Opin. Colloid Interface Sci. (1)

H. Hillhouse and M. Beard, “Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics,” Curr. Opin. Colloid Interface Sci. 14, 245–259 (2009).
[Crossref]

J. Phys. Chem. (1)

Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: Materials synthesis, quantum size effects and photophysical properties,” J. Phys. Chem. 95, 525–532 (1991).
[Crossref]

J. Phys. Chem. C (1)

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, M. Y. Leonov, A. V. Baranov, Y. K. Gun’ko, and A. V. Fedorov, “Harnessing the shape-induced optical anisotropy of a semiconductor nanocrystal: A new type of intraband absorption spectroscopy,” J. Phys. Chem. C 118, 2867–2876 (2014).
[Crossref]

J. Phys. D: Appl. Phys. (1)

D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” J. Phys. D: Appl. Phys. 38, 2055 (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Spectrosc. (2)

I. D. Rukhlenko and A. V. Fedorov, “Propagation of electric fields induced by optical phonons in semiconductor heterostructures,” Opt. Spectrosc. 100, 238–244 (2006).
[Crossref]

I. D. Rukhlenko and A. V. Fedorov, “Penetration of electric fields induced by surface phonon modes into the layers of a semiconductor heterostructure,” Opt. Spectrosc. 101, 253–264 (2006).
[Crossref]

Phys. Rev. B (4)

S. Furukawa and T. Miyasato, “Quantum size effects on the optical band gap of microcrystalline Si:H,” Phys. Rev. B 38, 5726–5729 (1988).
[Crossref]

A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, “Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures,” Phys. Rev. B 76, 045332 (2007).
[Crossref]

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, “Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B 48, 2827–2831 (1993).
[Crossref]

D. Miller, D. Chemla, and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev. B 33, 6976–6982 (1986).
[Crossref]

Phys. Rev. Lett. (1)

D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, and C. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[Crossref]

Phys. Solid State (1)

S. Y. Kruchinin and A. V. Fedorov, “Spectroscopy of persistent hole burning in the quantum dot-matrix system: Quantum-confined Stark effect and electroabsorption,” Phys. Solid State 49, 968–975 (2007).
[Crossref]

Physica B (1)

H. Spector and J. Lee, “Stark effect in the optical absorption in cubical quantum boxes,” Physica B 393, 94–99 (2007).
[Crossref]

Sci. Rep. (3)

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

Other (1)

M. Ehrhardt and T. Koprucki, Multi-Band Effective Mass Approximations: Advanced Mathematical Models and Numerical Techniques, 1st ed., Lecture Notes in Computational Science and Engineering94 (Springer International Publishing, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

(a) Stark shift of electronic energies E n x, (b) overlap integral 〈nx|mx〉, and (c) in-homogeneously broadened absorption peak (111) → (112) of randomly oriented 2 × 20 × 20 nm3 CdSe nanoplatelets. In (a) and (b) lx = 20 nm. In all panels δV = 0, the field strength is given inside the nanoplatelets, and the effective masses of electrons and holes are 0.11m0 and 0.44m0, where m0 is the free-electron mass.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E n | n = ( 2 2 m * Δ + V ( r ) + W ( r ) ) | n ,
E n v | n v = ( 2 2 m * d 2 d v 2 + q ε F v v ) | n v ( v = x , y , z ) ,
σ ( v ) = ( 2 m * q F v 2 ε ) 1 / 3 ( v E n v ε q F v ) ,
A n v = π ( 2 m * q F v 2 ε ) 1 / 3 Bi [ σ ( l v / 2 ) ] Bi [ σ ( l v / 2 ) ] { Bi 2 [ σ ( l v / 2 ) ] Bi 2 [ σ ( l v / 2 ) ] } 1 / 2 .
Ai [ σ ( l v / 2 ) ] Bi [ σ ( l v / 2 ) ] = Ai [ σ ( l v / 2 ) ] Bi [ σ ( l v / 2 ) ] .
| n = | n + m n n | δ V | m E n E m | m , n = E n + n | δ V | n .
ω nm = ( n + m + E g ) / ,
W nm = ( 4 π e P ) 2 I 3 c 3 ω 2 n NC Γ nm | n | m | 2 ,
Γ nm = 1 π γ nm ( ω ω nm ) 2 + γ nm 2 .
K nm Ω = 1 4 π K nm ( ϑ , φ ) sin ϑ d ϑ d φ ,
K nm g = K nm ( l x , l y , l z ) G ( l x , l y , l z , l x , l y , l z ) d l x d l y d l z .
g ( l v , l v ) = 1 2 π l v δ exp ( ln 2 ( l v / l v ) 2 δ 2 ) ,

Metrics