Abstract

In this work, we investigate blade-coated organic interlayers at the rear surface of hybrid organic-silicon photovoltaics based on two small molecules: Tris(8-hydroxyquinolinato) aluminium (Alq3) and 1,3-bis(2-(4-tert-butylphenyl)-1,3,4-oxadiazol-5-yl) benzene (OXD-7). In particular, soluble Alq3 resulting in a uniform thin film with a root-mean-square roughness < 0.2nm is demonstrated for the first time. Both devices with the Alq3 and OXD-7 interlayers show notable enhancement in the open-circuit voltage and fill-factor, leading to a net efficiency increase by over 2% from the reference, up to 11.8% and 12.5% respectively. The capacitance-voltage characteristics confirm the role of the small-molecule interlayers resembling a thin interfacial oxide layer for the Al-Si Schottky barrier to enhance the built-in potential and facilitate charge transport. Moreover, the Alq3 interlayer in optimized devices exhibits isolated phases with a large surface roughness, in contrast to the OXD-7 which forms a continuous uniform thin film. The distinct morphological differences between the two interlayers further suggest different enhancement mechanisms and hence offer versatile functionalities to the advent of hybrid organic-silicon photovoltaics.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced photovoltaic performance of organic/silicon nanowire hybrid solar cells by solution-evacuated method

Wei-Li Wang, Xian-Shao Zou, Bin Zhang, Jun Dong, Qiao-Li Niu, Yi-An Yin, and Yong Zhang
Opt. Lett. 39(11) 3219-3222 (2014)

Ruthenium acetylacetonate in interface engineering for high performance planar hybrid perovskite solar cells

Wei Chen, Shiqiang Luo, Zunyuan Wan, Xiyuan Feng, Xinke Liu, and Zhubing He
Opt. Express 25(8) A253-A263 (2017)

Perovskite-based low-cost and high-efficiency hybrid halide solar cells

Jiandong Fan, Baohua Jia, and Min Gu
Photon. Res. 2(5) 111-120 (2014)

References

  • View by:
  • |
  • |
  • |

  1. International Technology Roadmap for Photovoltaic (ITRPV) 2014 Results; 2015. Available from: http://www.itrpv.net/Reports/Downloads/2015/
  2. P. V. Magazine, Photovoltaic Markets & Technology; 2012. Available from: http://www.pv-magazine.com/archive/articles/beitrag/switch-from-p-to-n-_100007072/501/#axzz3jI3NkDxM
  3. Panasonic Press Release, 10 April 2014. Panasonic HIT® Solar Cell Achieves World’s Highest Energy Conversion Efficiency of 25.6%. Available from: http://news.panasonic.net/stories/2014/0416_26881.html
  4. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
    [Crossref]
  5. S. C. Shiu, J. J. Chao, S. C. Hung, C. L. Yeh, and C. F. Lin, “Morphology dependence of silicon nanowire/poly (3, 4-ethylenedioxythiophene):poly(Styrenesulfonate) heterojunction solar cells,” Chem. Mater. 22(10), 3108–3113 (2010).
    [Crossref]
  6. J. C. Nolasco, R. Cabré, J. Ferré-Borrull, L. F. Marsal, M. Estrada, and J. Pallares, “Extraction of poly (3-hexylthiophene)(P3HT) properties from dark current voltage characteristics in a P3HT/n-crystalline-silicon solar cell,” J. Appl. Phys. 107(4), 044505 (2010).
    [Crossref]
  7. L. He, C. Rusli, C. Jiang, H. Wang, and D. Lai, “Simple approach of fabricating high efficiency Si nanowire/conductive polymer hybrid solar cells,” IEEE. Electron. Dev. Lett. 32(10), 1406–1408 (2011).
    [Crossref]
  8. X. Shen, B. Sun, D. Liu, and S. T. Lee, “Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture,” J. Am. Chem. Soc. 133(48), 19408–19415 (2011).
    [Crossref] [PubMed]
  9. T. G. Chen, B. U. Huang, E. C. Chen, P. Yu, and H. F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
    [Crossref]
  10. C. Xie, X. Zhang, Y. Wu, X. Zhang, X. Zhang, Y. Wang, W. Zhang, P. Gao, Y. Han, and J. Jie, “Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 1(30), 8567–8574 (2013).
    [Crossref]
  11. Y. Wu, X. Zhang, J. Jie, C. Xie, X. Zhang, B. Sun, Y. Wang, and P. Gao, “Graphene Transparent Conductive Electrodes for Highly Efficient Silicon Nanostructures-Based Hybrid Heterojunction Solar Cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
    [Crossref]
  12. Y. Zhang, F. Zu, S. T. Lee, N. Zhao, and B. Sun, “Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells,” Adv. Energy Mater. 4(2), 1300923 (2014).
    [Crossref]
  13. Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S. T. Lee, and B. Sun, “High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact,” Energy Environ. Sci. 8(1), 297–302 (2015).
    [Crossref]
  14. Y. Zhang, R. Liu, S. T. Lee, and B. Sun, “The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si organic-inorganic hybrid solar cells,” Appl. Phys. Lett. 104(8), 083514 (2014).
    [Crossref]
  15. D. Zielke, A. Pazidis, F. Werner, and J. Schmidt, “Organic-silicon heterojunction solar cells on n-type silicon wafers: the backpedot concept,” Sol. Energy Mater. Sol. Cells 131, 110–116 (2014).
    [Crossref]
  16. D. Zielke, C. Niehaves, W. Lövenich, A. Elschner, M. Hörteis, and J. Schmidt, “Organic-silicon solar cells exceeding 20% efficiency,” Energy Procedia 77, 331–339 (2015).
    [Crossref]
  17. Y. F. Chang, H. F. Meng, G. L. Fan, K. T. Wong, H. W. Zan, H. W. Lin, H. L. Huang, and S. F. Horng, “Blade coating of tris(8-hydroxyquinolinato)aluminum as the electron-transport layer for all-solution blue fluorescent organic light-emitting diodes,” Org. Electron. 29, 99–106 (2016).
    [Crossref]
  18. J. Piao, S. Katori, T. Ikenoue, and S. Fujita, “Formation of aluminum tris(8‐hydroxyquinoline) solution in methanol and fabrication of thin films by ultrasonic spray‐assisted vapor deposition,” Phys. Status Solidi A 209(7), 1298–1301 (2012).
    [Crossref]
  19. H. C. Card, “Aluminum—silicon Schottky barriers and ohmic contacts in integrated circuits,” IEEE Trans. Electron. Dev. 23(6), 538 (1976).
    [Crossref]
  20. P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
    [Crossref] [PubMed]
  21. J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
    [Crossref] [PubMed]
  22. M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett. 79(2), 156 (2001).
    [Crossref]
  23. L. Hou, L. Duan, J. Qiao, W. Li, D. Zhang, and Y. Qiu, “Efficient single layer solution-processed blue-emitting electrophosphorescent devices based on a small-molecule host,” Appl. Phys. Lett. 92(26), 263301 (2008).
    [Crossref]
  24. T. Yasuda, Y. Yamaguchi, D. C. Zou, and T. Tsutsui, “Carrier mobilities in organic electron transport materials determined from space charge limited current,” Jpn. J. Appl. Phys. 41(9), 5626–5629 (2002).
    [Crossref]
  25. K. L. Wang, B. Lai, M. Lu, X. Zhou, L. S. Liao, X. M. Ding, X. Y. Hou, and S. T. Lee, “Electronic structure and energy level alignment of Alq3/Al2O3/Al and Alq3/Al interfaces studied by ultraviolet photoemission spectroscopy,” Thin Solid Films 363(1-2), 178–181 (2000).
    [Crossref]
  26. J. H. Lee, D. W. Moon, and Y. Yi, “The initial interface formation between Al and tris-(8-hydroquinoline) aluminum (Alq3) with LiF interlayer,” Org. Electron. 11(1), 164–168 (2010).
    [Crossref]
  27. Y. T. Chang, J. K. Chang, Y. T. Lee, P. S. Wang, J. L. Wu, C. C. Hsu, I. W. Wu, W. H. Tseng, T. W. Pi, C. T. Chen, and C. I. Wu, “High-efficiency small-molecule-based organic light emitting devices with solution processes and oxadiazole-based electron transport materials,” ACS Appl. Mater. Interfaces 5(21), 10614–10622 (2013).
    [Crossref] [PubMed]
  28. X. H. Yang, F. Jaiser, S. Klinger, and D. Neher, “Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles,” Appl. Phys. Lett. 88(2), 021107 (2006).
    [Crossref]
  29. L. He, L. Duan, J. Qiao, D. Zhang, L. Wang, and Y. Qiu, “Highly efficient solution-processed blue-green to red and white light-emitting diodes using cationic iridium complexes as dopants,” Org. Electron. 11(7), 1185–1191 (2010).
    [Crossref]
  30. B. V. Zehbroeck, Principles of Semiconductor Devices (Colarado University, 2004) Chap.3.7.

2016 (1)

Y. F. Chang, H. F. Meng, G. L. Fan, K. T. Wong, H. W. Zan, H. W. Lin, H. L. Huang, and S. F. Horng, “Blade coating of tris(8-hydroxyquinolinato)aluminum as the electron-transport layer for all-solution blue fluorescent organic light-emitting diodes,” Org. Electron. 29, 99–106 (2016).
[Crossref]

2015 (3)

Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S. T. Lee, and B. Sun, “High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact,” Energy Environ. Sci. 8(1), 297–302 (2015).
[Crossref]

D. Zielke, C. Niehaves, W. Lövenich, A. Elschner, M. Hörteis, and J. Schmidt, “Organic-silicon solar cells exceeding 20% efficiency,” Energy Procedia 77, 331–339 (2015).
[Crossref]

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

2014 (4)

Y. Zhang, R. Liu, S. T. Lee, and B. Sun, “The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si organic-inorganic hybrid solar cells,” Appl. Phys. Lett. 104(8), 083514 (2014).
[Crossref]

D. Zielke, A. Pazidis, F. Werner, and J. Schmidt, “Organic-silicon heterojunction solar cells on n-type silicon wafers: the backpedot concept,” Sol. Energy Mater. Sol. Cells 131, 110–116 (2014).
[Crossref]

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

Y. Zhang, F. Zu, S. T. Lee, N. Zhao, and B. Sun, “Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells,” Adv. Energy Mater. 4(2), 1300923 (2014).
[Crossref]

2013 (4)

C. Xie, X. Zhang, Y. Wu, X. Zhang, X. Zhang, Y. Wang, W. Zhang, P. Gao, Y. Han, and J. Jie, “Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 1(30), 8567–8574 (2013).
[Crossref]

Y. Wu, X. Zhang, J. Jie, C. Xie, X. Zhang, B. Sun, Y. Wang, and P. Gao, “Graphene Transparent Conductive Electrodes for Highly Efficient Silicon Nanostructures-Based Hybrid Heterojunction Solar Cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

Y. T. Chang, J. K. Chang, Y. T. Lee, P. S. Wang, J. L. Wu, C. C. Hsu, I. W. Wu, W. H. Tseng, T. W. Pi, C. T. Chen, and C. I. Wu, “High-efficiency small-molecule-based organic light emitting devices with solution processes and oxadiazole-based electron transport materials,” ACS Appl. Mater. Interfaces 5(21), 10614–10622 (2013).
[Crossref] [PubMed]

2012 (2)

J. Piao, S. Katori, T. Ikenoue, and S. Fujita, “Formation of aluminum tris(8‐hydroxyquinoline) solution in methanol and fabrication of thin films by ultrasonic spray‐assisted vapor deposition,” Phys. Status Solidi A 209(7), 1298–1301 (2012).
[Crossref]

T. G. Chen, B. U. Huang, E. C. Chen, P. Yu, and H. F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

2011 (2)

L. He, C. Rusli, C. Jiang, H. Wang, and D. Lai, “Simple approach of fabricating high efficiency Si nanowire/conductive polymer hybrid solar cells,” IEEE. Electron. Dev. Lett. 32(10), 1406–1408 (2011).
[Crossref]

X. Shen, B. Sun, D. Liu, and S. T. Lee, “Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture,” J. Am. Chem. Soc. 133(48), 19408–19415 (2011).
[Crossref] [PubMed]

2010 (4)

S. C. Shiu, J. J. Chao, S. C. Hung, C. L. Yeh, and C. F. Lin, “Morphology dependence of silicon nanowire/poly (3, 4-ethylenedioxythiophene):poly(Styrenesulfonate) heterojunction solar cells,” Chem. Mater. 22(10), 3108–3113 (2010).
[Crossref]

J. C. Nolasco, R. Cabré, J. Ferré-Borrull, L. F. Marsal, M. Estrada, and J. Pallares, “Extraction of poly (3-hexylthiophene)(P3HT) properties from dark current voltage characteristics in a P3HT/n-crystalline-silicon solar cell,” J. Appl. Phys. 107(4), 044505 (2010).
[Crossref]

J. H. Lee, D. W. Moon, and Y. Yi, “The initial interface formation between Al and tris-(8-hydroquinoline) aluminum (Alq3) with LiF interlayer,” Org. Electron. 11(1), 164–168 (2010).
[Crossref]

L. He, L. Duan, J. Qiao, D. Zhang, L. Wang, and Y. Qiu, “Highly efficient solution-processed blue-green to red and white light-emitting diodes using cationic iridium complexes as dopants,” Org. Electron. 11(7), 1185–1191 (2010).
[Crossref]

2008 (1)

L. Hou, L. Duan, J. Qiao, W. Li, D. Zhang, and Y. Qiu, “Efficient single layer solution-processed blue-emitting electrophosphorescent devices based on a small-molecule host,” Appl. Phys. Lett. 92(26), 263301 (2008).
[Crossref]

2006 (1)

X. H. Yang, F. Jaiser, S. Klinger, and D. Neher, “Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles,” Appl. Phys. Lett. 88(2), 021107 (2006).
[Crossref]

2002 (1)

T. Yasuda, Y. Yamaguchi, D. C. Zou, and T. Tsutsui, “Carrier mobilities in organic electron transport materials determined from space charge limited current,” Jpn. J. Appl. Phys. 41(9), 5626–5629 (2002).
[Crossref]

2001 (1)

M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett. 79(2), 156 (2001).
[Crossref]

2000 (1)

K. L. Wang, B. Lai, M. Lu, X. Zhou, L. S. Liao, X. M. Ding, X. Y. Hou, and S. T. Lee, “Electronic structure and energy level alignment of Alq3/Al2O3/Al and Alq3/Al interfaces studied by ultraviolet photoemission spectroscopy,” Thin Solid Films 363(1-2), 178–181 (2000).
[Crossref]

1976 (1)

H. C. Card, “Aluminum—silicon Schottky barriers and ohmic contacts in integrated circuits,” IEEE Trans. Electron. Dev. 23(6), 538 (1976).
[Crossref]

Cabré, R.

J. C. Nolasco, R. Cabré, J. Ferré-Borrull, L. F. Marsal, M. Estrada, and J. Pallares, “Extraction of poly (3-hexylthiophene)(P3HT) properties from dark current voltage characteristics in a P3HT/n-crystalline-silicon solar cell,” J. Appl. Phys. 107(4), 044505 (2010).
[Crossref]

Card, H. C.

H. C. Card, “Aluminum—silicon Schottky barriers and ohmic contacts in integrated circuits,” IEEE Trans. Electron. Dev. 23(6), 538 (1976).
[Crossref]

Chang, J. K.

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

Y. T. Chang, J. K. Chang, Y. T. Lee, P. S. Wang, J. L. Wu, C. C. Hsu, I. W. Wu, W. H. Tseng, T. W. Pi, C. T. Chen, and C. I. Wu, “High-efficiency small-molecule-based organic light emitting devices with solution processes and oxadiazole-based electron transport materials,” ACS Appl. Mater. Interfaces 5(21), 10614–10622 (2013).
[Crossref] [PubMed]

Chang, Y. F.

Y. F. Chang, H. F. Meng, G. L. Fan, K. T. Wong, H. W. Zan, H. W. Lin, H. L. Huang, and S. F. Horng, “Blade coating of tris(8-hydroxyquinolinato)aluminum as the electron-transport layer for all-solution blue fluorescent organic light-emitting diodes,” Org. Electron. 29, 99–106 (2016).
[Crossref]

Chang, Y. T.

Y. T. Chang, J. K. Chang, Y. T. Lee, P. S. Wang, J. L. Wu, C. C. Hsu, I. W. Wu, W. H. Tseng, T. W. Pi, C. T. Chen, and C. I. Wu, “High-efficiency small-molecule-based organic light emitting devices with solution processes and oxadiazole-based electron transport materials,” ACS Appl. Mater. Interfaces 5(21), 10614–10622 (2013).
[Crossref] [PubMed]

Chao, J. J.

S. C. Shiu, J. J. Chao, S. C. Hung, C. L. Yeh, and C. F. Lin, “Morphology dependence of silicon nanowire/poly (3, 4-ethylenedioxythiophene):poly(Styrenesulfonate) heterojunction solar cells,” Chem. Mater. 22(10), 3108–3113 (2010).
[Crossref]

Chen, C. T.

Y. T. Chang, J. K. Chang, Y. T. Lee, P. S. Wang, J. L. Wu, C. C. Hsu, I. W. Wu, W. H. Tseng, T. W. Pi, C. T. Chen, and C. I. Wu, “High-efficiency small-molecule-based organic light emitting devices with solution processes and oxadiazole-based electron transport materials,” ACS Appl. Mater. Interfaces 5(21), 10614–10622 (2013).
[Crossref] [PubMed]

Chen, E. C.

T. G. Chen, B. U. Huang, E. C. Chen, P. Yu, and H. F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

Chen, P. H.

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

Chen, S. W.

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

Chen, T. G.

T. G. Chen, B. U. Huang, E. C. Chen, P. Yu, and H. F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

Chueh, Y. L.

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

Cui, W.

Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S. T. Lee, and B. Sun, “High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact,” Energy Environ. Sci. 8(1), 297–302 (2015).
[Crossref]

Cui, Y.

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

Ding, X. M.

K. L. Wang, B. Lai, M. Lu, X. Zhou, L. S. Liao, X. M. Ding, X. Y. Hou, and S. T. Lee, “Electronic structure and energy level alignment of Alq3/Al2O3/Al and Alq3/Al interfaces studied by ultraviolet photoemission spectroscopy,” Thin Solid Films 363(1-2), 178–181 (2000).
[Crossref]

Du, C. H.

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

Duan, L.

L. He, L. Duan, J. Qiao, D. Zhang, L. Wang, and Y. Qiu, “Highly efficient solution-processed blue-green to red and white light-emitting diodes using cationic iridium complexes as dopants,” Org. Electron. 11(7), 1185–1191 (2010).
[Crossref]

L. Hou, L. Duan, J. Qiao, W. Li, D. Zhang, and Y. Qiu, “Efficient single layer solution-processed blue-emitting electrophosphorescent devices based on a small-molecule host,” Appl. Phys. Lett. 92(26), 263301 (2008).
[Crossref]

Elschner, A.

D. Zielke, C. Niehaves, W. Lövenich, A. Elschner, M. Hörteis, and J. Schmidt, “Organic-silicon solar cells exceeding 20% efficiency,” Energy Procedia 77, 331–339 (2015).
[Crossref]

Estrada, M.

J. C. Nolasco, R. Cabré, J. Ferré-Borrull, L. F. Marsal, M. Estrada, and J. Pallares, “Extraction of poly (3-hexylthiophene)(P3HT) properties from dark current voltage characteristics in a P3HT/n-crystalline-silicon solar cell,” J. Appl. Phys. 107(4), 044505 (2010).
[Crossref]

Fan, G. L.

Y. F. Chang, H. F. Meng, G. L. Fan, K. T. Wong, H. W. Zan, H. W. Lin, H. L. Huang, and S. F. Horng, “Blade coating of tris(8-hydroxyquinolinato)aluminum as the electron-transport layer for all-solution blue fluorescent organic light-emitting diodes,” Org. Electron. 29, 99–106 (2016).
[Crossref]

Ferré-Borrull, J.

J. C. Nolasco, R. Cabré, J. Ferré-Borrull, L. F. Marsal, M. Estrada, and J. Pallares, “Extraction of poly (3-hexylthiophene)(P3HT) properties from dark current voltage characteristics in a P3HT/n-crystalline-silicon solar cell,” J. Appl. Phys. 107(4), 044505 (2010).
[Crossref]

Fujita, K.

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

Fujita, S.

J. Piao, S. Katori, T. Ikenoue, and S. Fujita, “Formation of aluminum tris(8‐hydroxyquinoline) solution in methanol and fabrication of thin films by ultrasonic spray‐assisted vapor deposition,” Phys. Status Solidi A 209(7), 1298–1301 (2012).
[Crossref]

Gao, P.

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

Y. Wu, X. Zhang, J. Jie, C. Xie, X. Zhang, B. Sun, Y. Wang, and P. Gao, “Graphene Transparent Conductive Electrodes for Highly Efficient Silicon Nanostructures-Based Hybrid Heterojunction Solar Cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

C. Xie, X. Zhang, Y. Wu, X. Zhang, X. Zhang, Y. Wang, W. Zhang, P. Gao, Y. Han, and J. Jie, “Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 1(30), 8567–8574 (2013).
[Crossref]

Han, Y.

C. Xie, X. Zhang, Y. Wu, X. Zhang, X. Zhang, Y. Wang, W. Zhang, P. Gao, Y. Han, and J. Jie, “Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 1(30), 8567–8574 (2013).
[Crossref]

He, J.

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

He, L.

L. He, C. Rusli, C. Jiang, H. Wang, and D. Lai, “Simple approach of fabricating high efficiency Si nanowire/conductive polymer hybrid solar cells,” IEEE. Electron. Dev. Lett. 32(10), 1406–1408 (2011).
[Crossref]

L. He, L. Duan, J. Qiao, D. Zhang, L. Wang, and Y. Qiu, “Highly efficient solution-processed blue-green to red and white light-emitting diodes using cationic iridium complexes as dopants,” Org. Electron. 11(7), 1185–1191 (2010).
[Crossref]

Horng, S. F.

Y. F. Chang, H. F. Meng, G. L. Fan, K. T. Wong, H. W. Zan, H. W. Lin, H. L. Huang, and S. F. Horng, “Blade coating of tris(8-hydroxyquinolinato)aluminum as the electron-transport layer for all-solution blue fluorescent organic light-emitting diodes,” Org. Electron. 29, 99–106 (2016).
[Crossref]

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

Hörteis, M.

D. Zielke, C. Niehaves, W. Lövenich, A. Elschner, M. Hörteis, and J. Schmidt, “Organic-silicon solar cells exceeding 20% efficiency,” Energy Procedia 77, 331–339 (2015).
[Crossref]

Hou, L.

L. Hou, L. Duan, J. Qiao, W. Li, D. Zhang, and Y. Qiu, “Efficient single layer solution-processed blue-emitting electrophosphorescent devices based on a small-molecule host,” Appl. Phys. Lett. 92(26), 263301 (2008).
[Crossref]

Hou, X. Y.

K. L. Wang, B. Lai, M. Lu, X. Zhou, L. S. Liao, X. M. Ding, X. Y. Hou, and S. T. Lee, “Electronic structure and energy level alignment of Alq3/Al2O3/Al and Alq3/Al interfaces studied by ultraviolet photoemission spectroscopy,” Thin Solid Films 363(1-2), 178–181 (2000).
[Crossref]

Hsu, C. C.

Y. T. Chang, J. K. Chang, Y. T. Lee, P. S. Wang, J. L. Wu, C. C. Hsu, I. W. Wu, W. H. Tseng, T. W. Pi, C. T. Chen, and C. I. Wu, “High-efficiency small-molecule-based organic light emitting devices with solution processes and oxadiazole-based electron transport materials,” ACS Appl. Mater. Interfaces 5(21), 10614–10622 (2013).
[Crossref] [PubMed]

Huang, B. U.

T. G. Chen, B. U. Huang, E. C. Chen, P. Yu, and H. F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

Huang, H. L.

Y. F. Chang, H. F. Meng, G. L. Fan, K. T. Wong, H. W. Zan, H. W. Lin, H. L. Huang, and S. F. Horng, “Blade coating of tris(8-hydroxyquinolinato)aluminum as the electron-transport layer for all-solution blue fluorescent organic light-emitting diodes,” Org. Electron. 29, 99–106 (2016).
[Crossref]

Huang, Y. Y.

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

Hung, S. C.

S. C. Shiu, J. J. Chao, S. C. Hung, C. L. Yeh, and C. F. Lin, “Morphology dependence of silicon nanowire/poly (3, 4-ethylenedioxythiophene):poly(Styrenesulfonate) heterojunction solar cells,” Chem. Mater. 22(10), 3108–3113 (2010).
[Crossref]

Ikai, M.

M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett. 79(2), 156 (2001).
[Crossref]

Ikenoue, T.

J. Piao, S. Katori, T. Ikenoue, and S. Fujita, “Formation of aluminum tris(8‐hydroxyquinoline) solution in methanol and fabrication of thin films by ultrasonic spray‐assisted vapor deposition,” Phys. Status Solidi A 209(7), 1298–1301 (2012).
[Crossref]

Jaiser, F.

X. H. Yang, F. Jaiser, S. Klinger, and D. Neher, “Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles,” Appl. Phys. Lett. 88(2), 021107 (2006).
[Crossref]

Jiang, C.

L. He, C. Rusli, C. Jiang, H. Wang, and D. Lai, “Simple approach of fabricating high efficiency Si nanowire/conductive polymer hybrid solar cells,” IEEE. Electron. Dev. Lett. 32(10), 1406–1408 (2011).
[Crossref]

Jie, J.

C. Xie, X. Zhang, Y. Wu, X. Zhang, X. Zhang, Y. Wang, W. Zhang, P. Gao, Y. Han, and J. Jie, “Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 1(30), 8567–8574 (2013).
[Crossref]

Y. Wu, X. Zhang, J. Jie, C. Xie, X. Zhang, B. Sun, Y. Wang, and P. Gao, “Graphene Transparent Conductive Electrodes for Highly Efficient Silicon Nanostructures-Based Hybrid Heterojunction Solar Cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

Katori, S.

J. Piao, S. Katori, T. Ikenoue, and S. Fujita, “Formation of aluminum tris(8‐hydroxyquinoline) solution in methanol and fabrication of thin films by ultrasonic spray‐assisted vapor deposition,” Phys. Status Solidi A 209(7), 1298–1301 (2012).
[Crossref]

Klinger, S.

X. H. Yang, F. Jaiser, S. Klinger, and D. Neher, “Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles,” Appl. Phys. Lett. 88(2), 021107 (2006).
[Crossref]

Lai, B.

K. L. Wang, B. Lai, M. Lu, X. Zhou, L. S. Liao, X. M. Ding, X. Y. Hou, and S. T. Lee, “Electronic structure and energy level alignment of Alq3/Al2O3/Al and Alq3/Al interfaces studied by ultraviolet photoemission spectroscopy,” Thin Solid Films 363(1-2), 178–181 (2000).
[Crossref]

Lai, C. C.

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

Lai, D.

L. He, C. Rusli, C. Jiang, H. Wang, and D. Lai, “Simple approach of fabricating high efficiency Si nanowire/conductive polymer hybrid solar cells,” IEEE. Electron. Dev. Lett. 32(10), 1406–1408 (2011).
[Crossref]

Lai, Y. C.

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

Lee, J. H.

J. H. Lee, D. W. Moon, and Y. Yi, “The initial interface formation between Al and tris-(8-hydroquinoline) aluminum (Alq3) with LiF interlayer,” Org. Electron. 11(1), 164–168 (2010).
[Crossref]

Lee, S. T.

Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S. T. Lee, and B. Sun, “High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact,” Energy Environ. Sci. 8(1), 297–302 (2015).
[Crossref]

Y. Zhang, R. Liu, S. T. Lee, and B. Sun, “The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si organic-inorganic hybrid solar cells,” Appl. Phys. Lett. 104(8), 083514 (2014).
[Crossref]

Y. Zhang, F. Zu, S. T. Lee, N. Zhao, and B. Sun, “Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells,” Adv. Energy Mater. 4(2), 1300923 (2014).
[Crossref]

X. Shen, B. Sun, D. Liu, and S. T. Lee, “Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture,” J. Am. Chem. Soc. 133(48), 19408–19415 (2011).
[Crossref] [PubMed]

K. L. Wang, B. Lai, M. Lu, X. Zhou, L. S. Liao, X. M. Ding, X. Y. Hou, and S. T. Lee, “Electronic structure and energy level alignment of Alq3/Al2O3/Al and Alq3/Al interfaces studied by ultraviolet photoemission spectroscopy,” Thin Solid Films 363(1-2), 178–181 (2000).
[Crossref]

Lee, Y. T.

Y. T. Chang, J. K. Chang, Y. T. Lee, P. S. Wang, J. L. Wu, C. C. Hsu, I. W. Wu, W. H. Tseng, T. W. Pi, C. T. Chen, and C. I. Wu, “High-efficiency small-molecule-based organic light emitting devices with solution processes and oxadiazole-based electron transport materials,” ACS Appl. Mater. Interfaces 5(21), 10614–10622 (2013).
[Crossref] [PubMed]

Li, M. C.

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

Li, W.

L. Hou, L. Duan, J. Qiao, W. Li, D. Zhang, and Y. Qiu, “Efficient single layer solution-processed blue-emitting electrophosphorescent devices based on a small-molecule host,” Appl. Phys. Lett. 92(26), 263301 (2008).
[Crossref]

Liao, L.

Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S. T. Lee, and B. Sun, “High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact,” Energy Environ. Sci. 8(1), 297–302 (2015).
[Crossref]

Liao, L. S.

K. L. Wang, B. Lai, M. Lu, X. Zhou, L. S. Liao, X. M. Ding, X. Y. Hou, and S. T. Lee, “Electronic structure and energy level alignment of Alq3/Al2O3/Al and Alq3/Al interfaces studied by ultraviolet photoemission spectroscopy,” Thin Solid Films 363(1-2), 178–181 (2000).
[Crossref]

Liao, M.

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

Lin, C. F.

S. C. Shiu, J. J. Chao, S. C. Hung, C. L. Yeh, and C. F. Lin, “Morphology dependence of silicon nanowire/poly (3, 4-ethylenedioxythiophene):poly(Styrenesulfonate) heterojunction solar cells,” Chem. Mater. 22(10), 3108–3113 (2010).
[Crossref]

Lin, H. W.

Y. F. Chang, H. F. Meng, G. L. Fan, K. T. Wong, H. W. Zan, H. W. Lin, H. L. Huang, and S. F. Horng, “Blade coating of tris(8-hydroxyquinolinato)aluminum as the electron-transport layer for all-solution blue fluorescent organic light-emitting diodes,” Org. Electron. 29, 99–106 (2016).
[Crossref]

Liu, D.

X. Shen, B. Sun, D. Liu, and S. T. Lee, “Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture,” J. Am. Chem. Soc. 133(48), 19408–19415 (2011).
[Crossref] [PubMed]

Liu, R.

Y. Zhang, R. Liu, S. T. Lee, and B. Sun, “The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si organic-inorganic hybrid solar cells,” Appl. Phys. Lett. 104(8), 083514 (2014).
[Crossref]

Lövenich, W.

D. Zielke, C. Niehaves, W. Lövenich, A. Elschner, M. Hörteis, and J. Schmidt, “Organic-silicon solar cells exceeding 20% efficiency,” Energy Procedia 77, 331–339 (2015).
[Crossref]

Lu, M.

K. L. Wang, B. Lai, M. Lu, X. Zhou, L. S. Liao, X. M. Ding, X. Y. Hou, and S. T. Lee, “Electronic structure and energy level alignment of Alq3/Al2O3/Al and Alq3/Al interfaces studied by ultraviolet photoemission spectroscopy,” Thin Solid Films 363(1-2), 178–181 (2000).
[Crossref]

Marsal, L. F.

J. C. Nolasco, R. Cabré, J. Ferré-Borrull, L. F. Marsal, M. Estrada, and J. Pallares, “Extraction of poly (3-hexylthiophene)(P3HT) properties from dark current voltage characteristics in a P3HT/n-crystalline-silicon solar cell,” J. Appl. Phys. 107(4), 044505 (2010).
[Crossref]

Maruyama, E.

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

Matsuyama, K.

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

Meng, H. F.

Y. F. Chang, H. F. Meng, G. L. Fan, K. T. Wong, H. W. Zan, H. W. Lin, H. L. Huang, and S. F. Horng, “Blade coating of tris(8-hydroxyquinolinato)aluminum as the electron-transport layer for all-solution blue fluorescent organic light-emitting diodes,” Org. Electron. 29, 99–106 (2016).
[Crossref]

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

T. G. Chen, B. U. Huang, E. C. Chen, P. Yu, and H. F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

Moon, D. W.

J. H. Lee, D. W. Moon, and Y. Yi, “The initial interface formation between Al and tris-(8-hydroquinoline) aluminum (Alq3) with LiF interlayer,” Org. Electron. 11(1), 164–168 (2010).
[Crossref]

Nakamura, Y.

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

Neher, D.

X. H. Yang, F. Jaiser, S. Klinger, and D. Neher, “Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles,” Appl. Phys. Lett. 88(2), 021107 (2006).
[Crossref]

Niehaves, C.

D. Zielke, C. Niehaves, W. Lövenich, A. Elschner, M. Hörteis, and J. Schmidt, “Organic-silicon solar cells exceeding 20% efficiency,” Energy Procedia 77, 331–339 (2015).
[Crossref]

Nishiwaki, T.

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

Nolasco, J. C.

J. C. Nolasco, R. Cabré, J. Ferré-Borrull, L. F. Marsal, M. Estrada, and J. Pallares, “Extraction of poly (3-hexylthiophene)(P3HT) properties from dark current voltage characteristics in a P3HT/n-crystalline-silicon solar cell,” J. Appl. Phys. 107(4), 044505 (2010).
[Crossref]

Pallares, J.

J. C. Nolasco, R. Cabré, J. Ferré-Borrull, L. F. Marsal, M. Estrada, and J. Pallares, “Extraction of poly (3-hexylthiophene)(P3HT) properties from dark current voltage characteristics in a P3HT/n-crystalline-silicon solar cell,” J. Appl. Phys. 107(4), 044505 (2010).
[Crossref]

Pan, H. T.

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

Pazidis, A.

D. Zielke, A. Pazidis, F. Werner, and J. Schmidt, “Organic-silicon heterojunction solar cells on n-type silicon wafers: the backpedot concept,” Sol. Energy Mater. Sol. Cells 131, 110–116 (2014).
[Crossref]

Pi, T. W.

Y. T. Chang, J. K. Chang, Y. T. Lee, P. S. Wang, J. L. Wu, C. C. Hsu, I. W. Wu, W. H. Tseng, T. W. Pi, C. T. Chen, and C. I. Wu, “High-efficiency small-molecule-based organic light emitting devices with solution processes and oxadiazole-based electron transport materials,” ACS Appl. Mater. Interfaces 5(21), 10614–10622 (2013).
[Crossref] [PubMed]

Piao, J.

J. Piao, S. Katori, T. Ikenoue, and S. Fujita, “Formation of aluminum tris(8‐hydroxyquinoline) solution in methanol and fabrication of thin films by ultrasonic spray‐assisted vapor deposition,” Phys. Status Solidi A 209(7), 1298–1301 (2012).
[Crossref]

Qiao, J.

L. He, L. Duan, J. Qiao, D. Zhang, L. Wang, and Y. Qiu, “Highly efficient solution-processed blue-green to red and white light-emitting diodes using cationic iridium complexes as dopants,” Org. Electron. 11(7), 1185–1191 (2010).
[Crossref]

L. Hou, L. Duan, J. Qiao, W. Li, D. Zhang, and Y. Qiu, “Efficient single layer solution-processed blue-emitting electrophosphorescent devices based on a small-molecule host,” Appl. Phys. Lett. 92(26), 263301 (2008).
[Crossref]

Qiu, Y.

L. He, L. Duan, J. Qiao, D. Zhang, L. Wang, and Y. Qiu, “Highly efficient solution-processed blue-green to red and white light-emitting diodes using cationic iridium complexes as dopants,” Org. Electron. 11(7), 1185–1191 (2010).
[Crossref]

L. Hou, L. Duan, J. Qiao, W. Li, D. Zhang, and Y. Qiu, “Efficient single layer solution-processed blue-emitting electrophosphorescent devices based on a small-molecule host,” Appl. Phys. Lett. 92(26), 263301 (2008).
[Crossref]

Rusli, C.

L. He, C. Rusli, C. Jiang, H. Wang, and D. Lai, “Simple approach of fabricating high efficiency Si nanowire/conductive polymer hybrid solar cells,” IEEE. Electron. Dev. Lett. 32(10), 1406–1408 (2011).
[Crossref]

Sakamoto, Y.

M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett. 79(2), 156 (2001).
[Crossref]

Schmidt, J.

D. Zielke, C. Niehaves, W. Lövenich, A. Elschner, M. Hörteis, and J. Schmidt, “Organic-silicon solar cells exceeding 20% efficiency,” Energy Procedia 77, 331–339 (2015).
[Crossref]

D. Zielke, A. Pazidis, F. Werner, and J. Schmidt, “Organic-silicon heterojunction solar cells on n-type silicon wafers: the backpedot concept,” Sol. Energy Mater. Sol. Cells 131, 110–116 (2014).
[Crossref]

Shen, X.

X. Shen, B. Sun, D. Liu, and S. T. Lee, “Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture,” J. Am. Chem. Soc. 133(48), 19408–19415 (2011).
[Crossref] [PubMed]

Shiu, S. C.

S. C. Shiu, J. J. Chao, S. C. Hung, C. L. Yeh, and C. F. Lin, “Morphology dependence of silicon nanowire/poly (3, 4-ethylenedioxythiophene):poly(Styrenesulfonate) heterojunction solar cells,” Chem. Mater. 22(10), 3108–3113 (2010).
[Crossref]

Sun, B.

Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S. T. Lee, and B. Sun, “High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact,” Energy Environ. Sci. 8(1), 297–302 (2015).
[Crossref]

Y. Zhang, R. Liu, S. T. Lee, and B. Sun, “The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si organic-inorganic hybrid solar cells,” Appl. Phys. Lett. 104(8), 083514 (2014).
[Crossref]

Y. Zhang, F. Zu, S. T. Lee, N. Zhao, and B. Sun, “Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells,” Adv. Energy Mater. 4(2), 1300923 (2014).
[Crossref]

Y. Wu, X. Zhang, J. Jie, C. Xie, X. Zhang, B. Sun, Y. Wang, and P. Gao, “Graphene Transparent Conductive Electrodes for Highly Efficient Silicon Nanostructures-Based Hybrid Heterojunction Solar Cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

X. Shen, B. Sun, D. Liu, and S. T. Lee, “Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture,” J. Am. Chem. Soc. 133(48), 19408–19415 (2011).
[Crossref] [PubMed]

Suzuki, T.

M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett. 79(2), 156 (2001).
[Crossref]

Taga, Y.

M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett. 79(2), 156 (2001).
[Crossref]

Taguchi, M.

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

Tohoda, S.

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

Tokito, S.

M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett. 79(2), 156 (2001).
[Crossref]

Tsai, C. Y.

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

Tsai, P. T.

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

Tseng, W. H.

Y. T. Chang, J. K. Chang, Y. T. Lee, P. S. Wang, J. L. Wu, C. C. Hsu, I. W. Wu, W. H. Tseng, T. W. Pi, C. T. Chen, and C. I. Wu, “High-efficiency small-molecule-based organic light emitting devices with solution processes and oxadiazole-based electron transport materials,” ACS Appl. Mater. Interfaces 5(21), 10614–10622 (2013).
[Crossref] [PubMed]

Tsutsui, T.

T. Yasuda, Y. Yamaguchi, D. C. Zou, and T. Tsutsui, “Carrier mobilities in organic electron transport materials determined from space charge limited current,” Jpn. J. Appl. Phys. 41(9), 5626–5629 (2002).
[Crossref]

Wang, H.

L. He, C. Rusli, C. Jiang, H. Wang, and D. Lai, “Simple approach of fabricating high efficiency Si nanowire/conductive polymer hybrid solar cells,” IEEE. Electron. Dev. Lett. 32(10), 1406–1408 (2011).
[Crossref]

Wang, K. L.

K. L. Wang, B. Lai, M. Lu, X. Zhou, L. S. Liao, X. M. Ding, X. Y. Hou, and S. T. Lee, “Electronic structure and energy level alignment of Alq3/Al2O3/Al and Alq3/Al interfaces studied by ultraviolet photoemission spectroscopy,” Thin Solid Films 363(1-2), 178–181 (2000).
[Crossref]

Wang, L.

L. He, L. Duan, J. Qiao, D. Zhang, L. Wang, and Y. Qiu, “Highly efficient solution-processed blue-green to red and white light-emitting diodes using cationic iridium complexes as dopants,” Org. Electron. 11(7), 1185–1191 (2010).
[Crossref]

Wang, P. S.

Y. T. Chang, J. K. Chang, Y. T. Lee, P. S. Wang, J. L. Wu, C. C. Hsu, I. W. Wu, W. H. Tseng, T. W. Pi, C. T. Chen, and C. I. Wu, “High-efficiency small-molecule-based organic light emitting devices with solution processes and oxadiazole-based electron transport materials,” ACS Appl. Mater. Interfaces 5(21), 10614–10622 (2013).
[Crossref] [PubMed]

Wang, Y.

C. Xie, X. Zhang, Y. Wu, X. Zhang, X. Zhang, Y. Wang, W. Zhang, P. Gao, Y. Han, and J. Jie, “Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 1(30), 8567–8574 (2013).
[Crossref]

Y. Wu, X. Zhang, J. Jie, C. Xie, X. Zhang, B. Sun, Y. Wang, and P. Gao, “Graphene Transparent Conductive Electrodes for Highly Efficient Silicon Nanostructures-Based Hybrid Heterojunction Solar Cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

Werner, F.

D. Zielke, A. Pazidis, F. Werner, and J. Schmidt, “Organic-silicon heterojunction solar cells on n-type silicon wafers: the backpedot concept,” Sol. Energy Mater. Sol. Cells 131, 110–116 (2014).
[Crossref]

Wong, K. T.

Y. F. Chang, H. F. Meng, G. L. Fan, K. T. Wong, H. W. Zan, H. W. Lin, H. L. Huang, and S. F. Horng, “Blade coating of tris(8-hydroxyquinolinato)aluminum as the electron-transport layer for all-solution blue fluorescent organic light-emitting diodes,” Org. Electron. 29, 99–106 (2016).
[Crossref]

Wu, C. I.

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

Y. T. Chang, J. K. Chang, Y. T. Lee, P. S. Wang, J. L. Wu, C. C. Hsu, I. W. Wu, W. H. Tseng, T. W. Pi, C. T. Chen, and C. I. Wu, “High-efficiency small-molecule-based organic light emitting devices with solution processes and oxadiazole-based electron transport materials,” ACS Appl. Mater. Interfaces 5(21), 10614–10622 (2013).
[Crossref] [PubMed]

Wu, I. W.

Y. T. Chang, J. K. Chang, Y. T. Lee, P. S. Wang, J. L. Wu, C. C. Hsu, I. W. Wu, W. H. Tseng, T. W. Pi, C. T. Chen, and C. I. Wu, “High-efficiency small-molecule-based organic light emitting devices with solution processes and oxadiazole-based electron transport materials,” ACS Appl. Mater. Interfaces 5(21), 10614–10622 (2013).
[Crossref] [PubMed]

Wu, J. L.

Y. T. Chang, J. K. Chang, Y. T. Lee, P. S. Wang, J. L. Wu, C. C. Hsu, I. W. Wu, W. H. Tseng, T. W. Pi, C. T. Chen, and C. I. Wu, “High-efficiency small-molecule-based organic light emitting devices with solution processes and oxadiazole-based electron transport materials,” ACS Appl. Mater. Interfaces 5(21), 10614–10622 (2013).
[Crossref] [PubMed]

Wu, Y.

Y. Wu, X. Zhang, J. Jie, C. Xie, X. Zhang, B. Sun, Y. Wang, and P. Gao, “Graphene Transparent Conductive Electrodes for Highly Efficient Silicon Nanostructures-Based Hybrid Heterojunction Solar Cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

C. Xie, X. Zhang, Y. Wu, X. Zhang, X. Zhang, Y. Wang, W. Zhang, P. Gao, Y. Han, and J. Jie, “Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 1(30), 8567–8574 (2013).
[Crossref]

Xie, C.

C. Xie, X. Zhang, Y. Wu, X. Zhang, X. Zhang, Y. Wang, W. Zhang, P. Gao, Y. Han, and J. Jie, “Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 1(30), 8567–8574 (2013).
[Crossref]

Y. Wu, X. Zhang, J. Jie, C. Xie, X. Zhang, B. Sun, Y. Wang, and P. Gao, “Graphene Transparent Conductive Electrodes for Highly Efficient Silicon Nanostructures-Based Hybrid Heterojunction Solar Cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

Yamaguchi, Y.

T. Yasuda, Y. Yamaguchi, D. C. Zou, and T. Tsutsui, “Carrier mobilities in organic electron transport materials determined from space charge limited current,” Jpn. J. Appl. Phys. 41(9), 5626–5629 (2002).
[Crossref]

Yang, X.

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

Yang, X. H.

X. H. Yang, F. Jaiser, S. Klinger, and D. Neher, “Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles,” Appl. Phys. Lett. 88(2), 021107 (2006).
[Crossref]

Yano, A.

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

Yasuda, T.

T. Yasuda, Y. Yamaguchi, D. C. Zou, and T. Tsutsui, “Carrier mobilities in organic electron transport materials determined from space charge limited current,” Jpn. J. Appl. Phys. 41(9), 5626–5629 (2002).
[Crossref]

Ye, J.

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

Yeh, C. L.

S. C. Shiu, J. J. Chao, S. C. Hung, C. L. Yeh, and C. F. Lin, “Morphology dependence of silicon nanowire/poly (3, 4-ethylenedioxythiophene):poly(Styrenesulfonate) heterojunction solar cells,” Chem. Mater. 22(10), 3108–3113 (2010).
[Crossref]

Yi, Y.

J. H. Lee, D. W. Moon, and Y. Yi, “The initial interface formation between Al and tris-(8-hydroquinoline) aluminum (Alq3) with LiF interlayer,” Org. Electron. 11(1), 164–168 (2010).
[Crossref]

Ying, Z.

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

Yu, P.

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

T. G. Chen, B. U. Huang, E. C. Chen, P. Yu, and H. F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

Zan, H. W.

Y. F. Chang, H. F. Meng, G. L. Fan, K. T. Wong, H. W. Zan, H. W. Lin, H. L. Huang, and S. F. Horng, “Blade coating of tris(8-hydroxyquinolinato)aluminum as the electron-transport layer for all-solution blue fluorescent organic light-emitting diodes,” Org. Electron. 29, 99–106 (2016).
[Crossref]

Zhang, D.

L. He, L. Duan, J. Qiao, D. Zhang, L. Wang, and Y. Qiu, “Highly efficient solution-processed blue-green to red and white light-emitting diodes using cationic iridium complexes as dopants,” Org. Electron. 11(7), 1185–1191 (2010).
[Crossref]

L. Hou, L. Duan, J. Qiao, W. Li, D. Zhang, and Y. Qiu, “Efficient single layer solution-processed blue-emitting electrophosphorescent devices based on a small-molecule host,” Appl. Phys. Lett. 92(26), 263301 (2008).
[Crossref]

Zhang, W.

C. Xie, X. Zhang, Y. Wu, X. Zhang, X. Zhang, Y. Wang, W. Zhang, P. Gao, Y. Han, and J. Jie, “Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 1(30), 8567–8574 (2013).
[Crossref]

Zhang, X.

C. Xie, X. Zhang, Y. Wu, X. Zhang, X. Zhang, Y. Wang, W. Zhang, P. Gao, Y. Han, and J. Jie, “Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 1(30), 8567–8574 (2013).
[Crossref]

C. Xie, X. Zhang, Y. Wu, X. Zhang, X. Zhang, Y. Wang, W. Zhang, P. Gao, Y. Han, and J. Jie, “Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 1(30), 8567–8574 (2013).
[Crossref]

C. Xie, X. Zhang, Y. Wu, X. Zhang, X. Zhang, Y. Wang, W. Zhang, P. Gao, Y. Han, and J. Jie, “Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 1(30), 8567–8574 (2013).
[Crossref]

Y. Wu, X. Zhang, J. Jie, C. Xie, X. Zhang, B. Sun, Y. Wang, and P. Gao, “Graphene Transparent Conductive Electrodes for Highly Efficient Silicon Nanostructures-Based Hybrid Heterojunction Solar Cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

Y. Wu, X. Zhang, J. Jie, C. Xie, X. Zhang, B. Sun, Y. Wang, and P. Gao, “Graphene Transparent Conductive Electrodes for Highly Efficient Silicon Nanostructures-Based Hybrid Heterojunction Solar Cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

Zhang, Y.

Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S. T. Lee, and B. Sun, “High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact,” Energy Environ. Sci. 8(1), 297–302 (2015).
[Crossref]

Y. Zhang, F. Zu, S. T. Lee, N. Zhao, and B. Sun, “Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells,” Adv. Energy Mater. 4(2), 1300923 (2014).
[Crossref]

Y. Zhang, R. Liu, S. T. Lee, and B. Sun, “The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si organic-inorganic hybrid solar cells,” Appl. Phys. Lett. 104(8), 083514 (2014).
[Crossref]

Zhao, N.

Y. Zhang, F. Zu, S. T. Lee, N. Zhao, and B. Sun, “Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells,” Adv. Energy Mater. 4(2), 1300923 (2014).
[Crossref]

Zhou, S.

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

Zhou, X.

K. L. Wang, B. Lai, M. Lu, X. Zhou, L. S. Liao, X. M. Ding, X. Y. Hou, and S. T. Lee, “Electronic structure and energy level alignment of Alq3/Al2O3/Al and Alq3/Al interfaces studied by ultraviolet photoemission spectroscopy,” Thin Solid Films 363(1-2), 178–181 (2000).
[Crossref]

Zhu, Y.

Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S. T. Lee, and B. Sun, “High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact,” Energy Environ. Sci. 8(1), 297–302 (2015).
[Crossref]

Zielke, D.

D. Zielke, C. Niehaves, W. Lövenich, A. Elschner, M. Hörteis, and J. Schmidt, “Organic-silicon solar cells exceeding 20% efficiency,” Energy Procedia 77, 331–339 (2015).
[Crossref]

D. Zielke, A. Pazidis, F. Werner, and J. Schmidt, “Organic-silicon heterojunction solar cells on n-type silicon wafers: the backpedot concept,” Sol. Energy Mater. Sol. Cells 131, 110–116 (2014).
[Crossref]

Zou, D. C.

T. Yasuda, Y. Yamaguchi, D. C. Zou, and T. Tsutsui, “Carrier mobilities in organic electron transport materials determined from space charge limited current,” Jpn. J. Appl. Phys. 41(9), 5626–5629 (2002).
[Crossref]

Zu, F.

Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S. T. Lee, and B. Sun, “High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact,” Energy Environ. Sci. 8(1), 297–302 (2015).
[Crossref]

Y. Zhang, F. Zu, S. T. Lee, N. Zhao, and B. Sun, “Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells,” Adv. Energy Mater. 4(2), 1300923 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Y. T. Chang, J. K. Chang, Y. T. Lee, P. S. Wang, J. L. Wu, C. C. Hsu, I. W. Wu, W. H. Tseng, T. W. Pi, C. T. Chen, and C. I. Wu, “High-efficiency small-molecule-based organic light emitting devices with solution processes and oxadiazole-based electron transport materials,” ACS Appl. Mater. Interfaces 5(21), 10614–10622 (2013).
[Crossref] [PubMed]

ACS Nano (2)

P. Yu, C. Y. Tsai, J. K. Chang, C. C. Lai, P. H. Chen, Y. C. Lai, P. T. Tsai, M. C. Li, H. T. Pan, Y. Y. Huang, C. I. Wu, Y. L. Chueh, S. W. Chen, C. H. Du, S. F. Horng, and H. F. Meng, “13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano 7(12), 10780–10787 (2013).
[Crossref] [PubMed]

J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, and Y. Cui, “Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression,” ACS Nano 9(6), 6522–6531 (2015).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

Y. Zhang, F. Zu, S. T. Lee, N. Zhao, and B. Sun, “Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells,” Adv. Energy Mater. 4(2), 1300923 (2014).
[Crossref]

Appl. Phys. Lett. (5)

Y. Zhang, R. Liu, S. T. Lee, and B. Sun, “The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si organic-inorganic hybrid solar cells,” Appl. Phys. Lett. 104(8), 083514 (2014).
[Crossref]

T. G. Chen, B. U. Huang, E. C. Chen, P. Yu, and H. F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer,” Appl. Phys. Lett. 79(2), 156 (2001).
[Crossref]

L. Hou, L. Duan, J. Qiao, W. Li, D. Zhang, and Y. Qiu, “Efficient single layer solution-processed blue-emitting electrophosphorescent devices based on a small-molecule host,” Appl. Phys. Lett. 92(26), 263301 (2008).
[Crossref]

X. H. Yang, F. Jaiser, S. Klinger, and D. Neher, “Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles,” Appl. Phys. Lett. 88(2), 021107 (2006).
[Crossref]

Chem. Mater. (1)

S. C. Shiu, J. J. Chao, S. C. Hung, C. L. Yeh, and C. F. Lin, “Morphology dependence of silicon nanowire/poly (3, 4-ethylenedioxythiophene):poly(Styrenesulfonate) heterojunction solar cells,” Chem. Mater. 22(10), 3108–3113 (2010).
[Crossref]

Energy Environ. Sci. (1)

Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S. T. Lee, and B. Sun, “High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact,” Energy Environ. Sci. 8(1), 297–302 (2015).
[Crossref]

Energy Procedia (1)

D. Zielke, C. Niehaves, W. Lövenich, A. Elschner, M. Hörteis, and J. Schmidt, “Organic-silicon solar cells exceeding 20% efficiency,” Energy Procedia 77, 331–339 (2015).
[Crossref]

IEEE J. Photovolt. (1)

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

IEEE Trans. Electron. Dev. (1)

H. C. Card, “Aluminum—silicon Schottky barriers and ohmic contacts in integrated circuits,” IEEE Trans. Electron. Dev. 23(6), 538 (1976).
[Crossref]

IEEE. Electron. Dev. Lett. (1)

L. He, C. Rusli, C. Jiang, H. Wang, and D. Lai, “Simple approach of fabricating high efficiency Si nanowire/conductive polymer hybrid solar cells,” IEEE. Electron. Dev. Lett. 32(10), 1406–1408 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

X. Shen, B. Sun, D. Liu, and S. T. Lee, “Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture,” J. Am. Chem. Soc. 133(48), 19408–19415 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. C. Nolasco, R. Cabré, J. Ferré-Borrull, L. F. Marsal, M. Estrada, and J. Pallares, “Extraction of poly (3-hexylthiophene)(P3HT) properties from dark current voltage characteristics in a P3HT/n-crystalline-silicon solar cell,” J. Appl. Phys. 107(4), 044505 (2010).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

C. Xie, X. Zhang, Y. Wu, X. Zhang, X. Zhang, Y. Wang, W. Zhang, P. Gao, Y. Han, and J. Jie, “Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 1(30), 8567–8574 (2013).
[Crossref]

J. Phys. Chem. C (1)

Y. Wu, X. Zhang, J. Jie, C. Xie, X. Zhang, B. Sun, Y. Wang, and P. Gao, “Graphene Transparent Conductive Electrodes for Highly Efficient Silicon Nanostructures-Based Hybrid Heterojunction Solar Cells,” J. Phys. Chem. C 117(23), 11968–11976 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Yasuda, Y. Yamaguchi, D. C. Zou, and T. Tsutsui, “Carrier mobilities in organic electron transport materials determined from space charge limited current,” Jpn. J. Appl. Phys. 41(9), 5626–5629 (2002).
[Crossref]

Org. Electron. (3)

L. He, L. Duan, J. Qiao, D. Zhang, L. Wang, and Y. Qiu, “Highly efficient solution-processed blue-green to red and white light-emitting diodes using cationic iridium complexes as dopants,” Org. Electron. 11(7), 1185–1191 (2010).
[Crossref]

J. H. Lee, D. W. Moon, and Y. Yi, “The initial interface formation between Al and tris-(8-hydroquinoline) aluminum (Alq3) with LiF interlayer,” Org. Electron. 11(1), 164–168 (2010).
[Crossref]

Y. F. Chang, H. F. Meng, G. L. Fan, K. T. Wong, H. W. Zan, H. W. Lin, H. L. Huang, and S. F. Horng, “Blade coating of tris(8-hydroxyquinolinato)aluminum as the electron-transport layer for all-solution blue fluorescent organic light-emitting diodes,” Org. Electron. 29, 99–106 (2016).
[Crossref]

Phys. Status Solidi A (1)

J. Piao, S. Katori, T. Ikenoue, and S. Fujita, “Formation of aluminum tris(8‐hydroxyquinoline) solution in methanol and fabrication of thin films by ultrasonic spray‐assisted vapor deposition,” Phys. Status Solidi A 209(7), 1298–1301 (2012).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

D. Zielke, A. Pazidis, F. Werner, and J. Schmidt, “Organic-silicon heterojunction solar cells on n-type silicon wafers: the backpedot concept,” Sol. Energy Mater. Sol. Cells 131, 110–116 (2014).
[Crossref]

Thin Solid Films (1)

K. L. Wang, B. Lai, M. Lu, X. Zhou, L. S. Liao, X. M. Ding, X. Y. Hou, and S. T. Lee, “Electronic structure and energy level alignment of Alq3/Al2O3/Al and Alq3/Al interfaces studied by ultraviolet photoemission spectroscopy,” Thin Solid Films 363(1-2), 178–181 (2000).
[Crossref]

Other (4)

B. V. Zehbroeck, Principles of Semiconductor Devices (Colarado University, 2004) Chap.3.7.

International Technology Roadmap for Photovoltaic (ITRPV) 2014 Results; 2015. Available from: http://www.itrpv.net/Reports/Downloads/2015/

P. V. Magazine, Photovoltaic Markets & Technology; 2012. Available from: http://www.pv-magazine.com/archive/articles/beitrag/switch-from-p-to-n-_100007072/501/#axzz3jI3NkDxM

Panasonic Press Release, 10 April 2014. Panasonic HIT® Solar Cell Achieves World’s Highest Energy Conversion Efficiency of 25.6%. Available from: http://news.panasonic.net/stories/2014/0416_26881.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of a fabricated hybrid organic-silicon nanowire solar cell incorporating a rear organic interlayer. The upper inset is a cross-sectional micrograph of the conductive polymer, PEDOT:PSS laying over the silicon nanowire template, where the scale bar is 100 nm. The lower inset shows the chemical structures of the two small-molecule materials Alq3 and OXD-7, where elements are represented by different colors: C (black), N (blue), O (red). (b) Energy band diagram of a hybrid PEDOT:PSS silicon solar cell with a Alq3 or OXD-7 rear interlayer. (c) The thickness of the blade-coated Alq3 and OXD-7 layer as a function of the blade coating speed.
Fig. 2
Fig. 2 Photovoltaic characteristics versus the blade coating speed, including the open-circuit voltage (Voc), short-circuit current-density (Jsc), Fill Factor (FF), and power conversion efficiency (PCE), for the hybrid solar cells with (a) the Alq3 and (b) the OXD-7 rear interlayers.
Fig. 3
Fig. 3 (a)-(d) Topological images and (e)-(h) phase images of the Alq3 interlayer coated on a planar silicon substrate in different blade coating speeds: 25, 50, 100, and 200 mm/s, respectively. The corresponding root mean square (RMS) roughness is 1.6, 2.5, 0.2, and 0.2 nm.
Fig. 4
Fig. 4 (a)-(d) Topological images and (e)-(h) phase images of the OXD-7 interlayer coated on a planar silicon substrate in different blade coating speeds: 50, 100, 200, and 300 mm/s, respectively. The corresponding root mean square (RMS) roughness is 4.3, 0.4, 0.2, and 0.2 nm.
Fig. 5
Fig. 5 (a) Dark and (b) light current density-voltage characteristics with and without the Alq3 and OXD-7 interlayers. Inset of (a) shows a schematic of the fabricated planar device (c) Inverse square capacitance-voltage plots for planar devices with and without the Alq3 and OXD-7 interlayers. The intersection with the x- axis yields the built-in potential across the Schottky barrier.

Tables (3)

Tables Icon

Table 1 Best and Averaged Photovoltaic Characteristics of Hybrid Heterojunction Solar Cells with and without the Rear Alq3 Interlayer at Different Blade Coating Speedsa

Tables Icon

Table 2 Best and Averaged Photovoltaic Characteristics of Hybrid Heterojunction Solar Cells with and without the Rear OXD-7 Interlayer at Different Blade Coating Speedsa

Tables Icon

Table 3 Photovoltaic characteristics of planar hybrid heterojunction solar cells with and without the rear organic interlayer

Metrics