Abstract

A test method that measures spectrally resolved irradiance distribution for a concentrator photovoltaic (CPV) optical system is presented. In conjunction with electrical I-V curves, it is a means to visualize and characterize the effects of chromatic aberration and nonuniform flux profiles under controllable testing conditions. The indoor characterization test bench, METHOD (Measurement of Electrical, Thermal and Optical Devices), decouples the temperatures of the primary optical element (POE) and the cell allowing their respective effects on optical and electrical performance to be analysed. In varying the temperature of the POE, the effects on electrical efficiency, focal distance, spectral sensitivity, acceptance angle and multi-junction current matching profiles can be quantified. This work presents the calibration procedures to accurately image the spectral irradiance distribution of a CPV system and a study of system behavior over lens temperature.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
9-fold Fresnel–Köhler concentrator with Fresnel lens of variable focal point

João Mendes-Lopes, Pablo Benítez, Pablo Zamora, and Juan C. Miñano
Opt. Express 22(S4) A1153-A1163 (2014)

Free-form optics for Fresnel-lens-based photovoltaic concentrators

Juan C. Miñano, Pablo Benítez, Pablo Zamora, Marina Buljan, Rubén Mohedano, and Asunción Santamaría
Opt. Express 21(S3) A494-A502 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Fraunhofer ISE, Soitec, CEA-Leti, “New world record for solar cell efficiency at 46%: French-German cooperation confirms competitive advantage of European photovoltaic industry,” [Press Release], Freiburg (2014). http://www.ise.fraunhofer.de/en/press-and-media/press-releases/press-releases-2014/new-world-record-for-solar-cell-efficiency-at-46-percent .
  2. Fraunhofer ISE, Soitec, CEA-Leti, “Four-junction solar cell developped using Soitec's expertise in semiconductor materials sets new efficiency record of 38.9% for CPV module,” [Press Release], Grenoble (2015). http://www.soitec.com/en/news/press-releases/article-1737 .
  3. J. Haysom, O. Jafarieh, H. Anis, K. Hinzer, and D. Wright, “Learning curve analysis of concentrated photovoltaic systems,” Prog. Photovolt. Res. Appl. 23(11), 1678–1686 (2015).
    [Crossref]
  4. P. Sharma, A. W. Walker, J. F. Wheeldon, K. Hinzer, and H. Schriemer, “Enhanced efficiencies for high concentration, multijunction PV systems by optimizing grid spacing under nonuniform illumination,” Int. J. Photoenergy 2014, 1–7 (2014).
  5. R. Herrero, M. Victoria, S. Askins, C. Domínguez, I. Antón, G. Sala, and J. Berrios, “Indoor characterization of multijunction solar cells under non uniform light patterns,” in CPV6 Conf. Proc. (Amer Inst. Physics, 2010), pp. 36–38.
  6. S. Kurtz, D. J. Friedman, and J. M. Olson, “The effect of chromatic aberrations on two-junction, two-terminal, devices on a concentrator system,” in Conf. Record of the 24th IEEE PVSC (IEEE, 1994), pp. 1791–1794.
  7. P. Espinet-González, R. Mohedano, I. García, P. Zamora, I. Rey-Stolle, P. Benitez, C. Algora, A. Cvetkovic, M. Hernández, J. Chaves, J. C. Miñano, and Y. Li, “Triple-junction solar cell performance under fresnel-based concentrators taking into account chromatic aberration and off-axis operation,” in CPV8 Conf. Proc. (Amer. Inst. Physics, 2012), pp. 81–85.
    [Crossref]
  8. M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi-junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
    [Crossref]
  9. S. Askins, M. Victoria, R. Herrero, and C. Domínguez, “Optimizing CPV systems for thermal and spectral tolerance,” in Proc. 27th EU PVSEC (2012), pp. 194–198.
  10. P. Benítez, J. C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernández, “High performance Fresnel-based photovoltaic concentrator,” Opt. Express 18(1), A25–A40 (2010).
    [Crossref] [PubMed]
  11. I. Antón, C. Dominguez, M. Victoria, R. Herrero, S. Askins, and G. Sala, “Characterization capabilities of solar simulators for concentrator photovoltaic modules,” Jpn. J. Appl. Phys. 51(10S), 1–4 (2012).
    [Crossref]
  12. C. Domínguez, I. Antón, G. Sala, and S. Askins, “Current-matching estimation for multijunction cells within a CPV module by means of component cells,” Prog. Photovolt. Res. Appl. 21(7), 1478–1488 (2013).
    [Crossref]
  13. W. Smith, Modern Optical Engineering; The Design of Optical Systems, 3rd Edition (McGraw-Hill, 2000).
  14. H. P. Baltes, Inverse Scattering Problems in Optics (Springer-Verlag Berlin Heidelberg, 1980).
  15. M. Victoria, “SOE for Fresnel lenses,” in New Concepts and Techniques for the Development of High-Efficiency Concentrating Photovoltaic Modules (Academic, Universidad politecnica de Madrid, 2014), pp. 48–49.
  16. T. Hornung, M. Steiner, and P. Nitz, “Estimation of the influence of Fresnel lens temperature on energy generation of a concentrator photovoltaic system,” Sol. Energy Mater. Sol. Cells 99, 333–338 (2012).
    [Crossref]
  17. T. Hornung, A. Bachmaier, P. Nitz, A. Gombert, A. W. Bett, R. D. McConnell, G. Sala, and F. Dimroth, “Temperature dependent measurement and simulation of Fresnel lenses for concentrating photovoltaics,” in CPV6 Conf. Proc. (Amer Inst Physics, 2010), pp. 85–89.
    [Crossref]
  18. R. Mohedano, P. Benitez, P. Zamora, J. C. Miñano, J. Mendes, A. Cvetkovic, J. Vilaplana, M. Hernandez, J. Chaves, and G. Biot, “Ventana power train features and performance,” in CPV9 AIP Conf. Proc. (Amer. Inst. Physics, 2013), pp. 176–179.
  19. I. Garcia, P. Espinet-Gonzalez, I. Rey-Stolle, E. Barrigon, C. Algora, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Extended triple-junction solar cell 3d distributed model: application to chromatic aberration-related losses,” in CPV7 Conf. Proc. (Amer. Inst. Physics, 2011), pp. 13–16.
    [Crossref]

2015 (1)

J. Haysom, O. Jafarieh, H. Anis, K. Hinzer, and D. Wright, “Learning curve analysis of concentrated photovoltaic systems,” Prog. Photovolt. Res. Appl. 23(11), 1678–1686 (2015).
[Crossref]

2014 (1)

P. Sharma, A. W. Walker, J. F. Wheeldon, K. Hinzer, and H. Schriemer, “Enhanced efficiencies for high concentration, multijunction PV systems by optimizing grid spacing under nonuniform illumination,” Int. J. Photoenergy 2014, 1–7 (2014).

2013 (2)

M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi-junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
[Crossref]

C. Domínguez, I. Antón, G. Sala, and S. Askins, “Current-matching estimation for multijunction cells within a CPV module by means of component cells,” Prog. Photovolt. Res. Appl. 21(7), 1478–1488 (2013).
[Crossref]

2012 (2)

T. Hornung, M. Steiner, and P. Nitz, “Estimation of the influence of Fresnel lens temperature on energy generation of a concentrator photovoltaic system,” Sol. Energy Mater. Sol. Cells 99, 333–338 (2012).
[Crossref]

I. Antón, C. Dominguez, M. Victoria, R. Herrero, S. Askins, and G. Sala, “Characterization capabilities of solar simulators for concentrator photovoltaic modules,” Jpn. J. Appl. Phys. 51(10S), 1–4 (2012).
[Crossref]

2010 (1)

Anis, H.

J. Haysom, O. Jafarieh, H. Anis, K. Hinzer, and D. Wright, “Learning curve analysis of concentrated photovoltaic systems,” Prog. Photovolt. Res. Appl. 23(11), 1678–1686 (2015).
[Crossref]

Antón, I.

C. Domínguez, I. Antón, G. Sala, and S. Askins, “Current-matching estimation for multijunction cells within a CPV module by means of component cells,” Prog. Photovolt. Res. Appl. 21(7), 1478–1488 (2013).
[Crossref]

M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi-junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
[Crossref]

I. Antón, C. Dominguez, M. Victoria, R. Herrero, S. Askins, and G. Sala, “Characterization capabilities of solar simulators for concentrator photovoltaic modules,” Jpn. J. Appl. Phys. 51(10S), 1–4 (2012).
[Crossref]

Askins, S.

M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi-junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
[Crossref]

C. Domínguez, I. Antón, G. Sala, and S. Askins, “Current-matching estimation for multijunction cells within a CPV module by means of component cells,” Prog. Photovolt. Res. Appl. 21(7), 1478–1488 (2013).
[Crossref]

I. Antón, C. Dominguez, M. Victoria, R. Herrero, S. Askins, and G. Sala, “Characterization capabilities of solar simulators for concentrator photovoltaic modules,” Jpn. J. Appl. Phys. 51(10S), 1–4 (2012).
[Crossref]

S. Askins, M. Victoria, R. Herrero, and C. Domínguez, “Optimizing CPV systems for thermal and spectral tolerance,” in Proc. 27th EU PVSEC (2012), pp. 194–198.

Benítez, P.

Buljan, M.

Chaves, J.

Cvetkovic, A.

Dominguez, C.

I. Antón, C. Dominguez, M. Victoria, R. Herrero, S. Askins, and G. Sala, “Characterization capabilities of solar simulators for concentrator photovoltaic modules,” Jpn. J. Appl. Phys. 51(10S), 1–4 (2012).
[Crossref]

Domínguez, C.

M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi-junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
[Crossref]

C. Domínguez, I. Antón, G. Sala, and S. Askins, “Current-matching estimation for multijunction cells within a CPV module by means of component cells,” Prog. Photovolt. Res. Appl. 21(7), 1478–1488 (2013).
[Crossref]

S. Askins, M. Victoria, R. Herrero, and C. Domínguez, “Optimizing CPV systems for thermal and spectral tolerance,” in Proc. 27th EU PVSEC (2012), pp. 194–198.

Friedman, D. J.

S. Kurtz, D. J. Friedman, and J. M. Olson, “The effect of chromatic aberrations on two-junction, two-terminal, devices on a concentrator system,” in Conf. Record of the 24th IEEE PVSC (IEEE, 1994), pp. 1791–1794.

Haysom, J.

J. Haysom, O. Jafarieh, H. Anis, K. Hinzer, and D. Wright, “Learning curve analysis of concentrated photovoltaic systems,” Prog. Photovolt. Res. Appl. 23(11), 1678–1686 (2015).
[Crossref]

Hernández, M.

Herrero, R.

M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi-junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
[Crossref]

I. Antón, C. Dominguez, M. Victoria, R. Herrero, S. Askins, and G. Sala, “Characterization capabilities of solar simulators for concentrator photovoltaic modules,” Jpn. J. Appl. Phys. 51(10S), 1–4 (2012).
[Crossref]

S. Askins, M. Victoria, R. Herrero, and C. Domínguez, “Optimizing CPV systems for thermal and spectral tolerance,” in Proc. 27th EU PVSEC (2012), pp. 194–198.

Hinzer, K.

J. Haysom, O. Jafarieh, H. Anis, K. Hinzer, and D. Wright, “Learning curve analysis of concentrated photovoltaic systems,” Prog. Photovolt. Res. Appl. 23(11), 1678–1686 (2015).
[Crossref]

P. Sharma, A. W. Walker, J. F. Wheeldon, K. Hinzer, and H. Schriemer, “Enhanced efficiencies for high concentration, multijunction PV systems by optimizing grid spacing under nonuniform illumination,” Int. J. Photoenergy 2014, 1–7 (2014).

Hornung, T.

T. Hornung, M. Steiner, and P. Nitz, “Estimation of the influence of Fresnel lens temperature on energy generation of a concentrator photovoltaic system,” Sol. Energy Mater. Sol. Cells 99, 333–338 (2012).
[Crossref]

Jafarieh, O.

J. Haysom, O. Jafarieh, H. Anis, K. Hinzer, and D. Wright, “Learning curve analysis of concentrated photovoltaic systems,” Prog. Photovolt. Res. Appl. 23(11), 1678–1686 (2015).
[Crossref]

Kurtz, S.

S. Kurtz, D. J. Friedman, and J. M. Olson, “The effect of chromatic aberrations on two-junction, two-terminal, devices on a concentrator system,” in Conf. Record of the 24th IEEE PVSC (IEEE, 1994), pp. 1791–1794.

Miñano, J. C.

Mohedano, R.

Nitz, P.

T. Hornung, M. Steiner, and P. Nitz, “Estimation of the influence of Fresnel lens temperature on energy generation of a concentrator photovoltaic system,” Sol. Energy Mater. Sol. Cells 99, 333–338 (2012).
[Crossref]

Olson, J. M.

S. Kurtz, D. J. Friedman, and J. M. Olson, “The effect of chromatic aberrations on two-junction, two-terminal, devices on a concentrator system,” in Conf. Record of the 24th IEEE PVSC (IEEE, 1994), pp. 1791–1794.

Sala, G.

C. Domínguez, I. Antón, G. Sala, and S. Askins, “Current-matching estimation for multijunction cells within a CPV module by means of component cells,” Prog. Photovolt. Res. Appl. 21(7), 1478–1488 (2013).
[Crossref]

M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi-junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
[Crossref]

I. Antón, C. Dominguez, M. Victoria, R. Herrero, S. Askins, and G. Sala, “Characterization capabilities of solar simulators for concentrator photovoltaic modules,” Jpn. J. Appl. Phys. 51(10S), 1–4 (2012).
[Crossref]

Schriemer, H.

P. Sharma, A. W. Walker, J. F. Wheeldon, K. Hinzer, and H. Schriemer, “Enhanced efficiencies for high concentration, multijunction PV systems by optimizing grid spacing under nonuniform illumination,” Int. J. Photoenergy 2014, 1–7 (2014).

Sharma, P.

P. Sharma, A. W. Walker, J. F. Wheeldon, K. Hinzer, and H. Schriemer, “Enhanced efficiencies for high concentration, multijunction PV systems by optimizing grid spacing under nonuniform illumination,” Int. J. Photoenergy 2014, 1–7 (2014).

Steiner, M.

T. Hornung, M. Steiner, and P. Nitz, “Estimation of the influence of Fresnel lens temperature on energy generation of a concentrator photovoltaic system,” Sol. Energy Mater. Sol. Cells 99, 333–338 (2012).
[Crossref]

Victoria, M.

M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi-junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
[Crossref]

I. Antón, C. Dominguez, M. Victoria, R. Herrero, S. Askins, and G. Sala, “Characterization capabilities of solar simulators for concentrator photovoltaic modules,” Jpn. J. Appl. Phys. 51(10S), 1–4 (2012).
[Crossref]

S. Askins, M. Victoria, R. Herrero, and C. Domínguez, “Optimizing CPV systems for thermal and spectral tolerance,” in Proc. 27th EU PVSEC (2012), pp. 194–198.

Walker, A. W.

P. Sharma, A. W. Walker, J. F. Wheeldon, K. Hinzer, and H. Schriemer, “Enhanced efficiencies for high concentration, multijunction PV systems by optimizing grid spacing under nonuniform illumination,” Int. J. Photoenergy 2014, 1–7 (2014).

Wheeldon, J. F.

P. Sharma, A. W. Walker, J. F. Wheeldon, K. Hinzer, and H. Schriemer, “Enhanced efficiencies for high concentration, multijunction PV systems by optimizing grid spacing under nonuniform illumination,” Int. J. Photoenergy 2014, 1–7 (2014).

Wright, D.

J. Haysom, O. Jafarieh, H. Anis, K. Hinzer, and D. Wright, “Learning curve analysis of concentrated photovoltaic systems,” Prog. Photovolt. Res. Appl. 23(11), 1678–1686 (2015).
[Crossref]

Zamora, P.

Int. J. Photoenergy (1)

P. Sharma, A. W. Walker, J. F. Wheeldon, K. Hinzer, and H. Schriemer, “Enhanced efficiencies for high concentration, multijunction PV systems by optimizing grid spacing under nonuniform illumination,” Int. J. Photoenergy 2014, 1–7 (2014).

Jpn. J. Appl. Phys. (1)

I. Antón, C. Dominguez, M. Victoria, R. Herrero, S. Askins, and G. Sala, “Characterization capabilities of solar simulators for concentrator photovoltaic modules,” Jpn. J. Appl. Phys. 51(10S), 1–4 (2012).
[Crossref]

Opt. Express (1)

Prog. Photovolt. Res. Appl. (3)

J. Haysom, O. Jafarieh, H. Anis, K. Hinzer, and D. Wright, “Learning curve analysis of concentrated photovoltaic systems,” Prog. Photovolt. Res. Appl. 23(11), 1678–1686 (2015).
[Crossref]

C. Domínguez, I. Antón, G. Sala, and S. Askins, “Current-matching estimation for multijunction cells within a CPV module by means of component cells,” Prog. Photovolt. Res. Appl. 21(7), 1478–1488 (2013).
[Crossref]

M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi-junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

T. Hornung, M. Steiner, and P. Nitz, “Estimation of the influence of Fresnel lens temperature on energy generation of a concentrator photovoltaic system,” Sol. Energy Mater. Sol. Cells 99, 333–338 (2012).
[Crossref]

Other (12)

T. Hornung, A. Bachmaier, P. Nitz, A. Gombert, A. W. Bett, R. D. McConnell, G. Sala, and F. Dimroth, “Temperature dependent measurement and simulation of Fresnel lenses for concentrating photovoltaics,” in CPV6 Conf. Proc. (Amer Inst Physics, 2010), pp. 85–89.
[Crossref]

R. Mohedano, P. Benitez, P. Zamora, J. C. Miñano, J. Mendes, A. Cvetkovic, J. Vilaplana, M. Hernandez, J. Chaves, and G. Biot, “Ventana power train features and performance,” in CPV9 AIP Conf. Proc. (Amer. Inst. Physics, 2013), pp. 176–179.

I. Garcia, P. Espinet-Gonzalez, I. Rey-Stolle, E. Barrigon, C. Algora, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Extended triple-junction solar cell 3d distributed model: application to chromatic aberration-related losses,” in CPV7 Conf. Proc. (Amer. Inst. Physics, 2011), pp. 13–16.
[Crossref]

W. Smith, Modern Optical Engineering; The Design of Optical Systems, 3rd Edition (McGraw-Hill, 2000).

H. P. Baltes, Inverse Scattering Problems in Optics (Springer-Verlag Berlin Heidelberg, 1980).

M. Victoria, “SOE for Fresnel lenses,” in New Concepts and Techniques for the Development of High-Efficiency Concentrating Photovoltaic Modules (Academic, Universidad politecnica de Madrid, 2014), pp. 48–49.

S. Askins, M. Victoria, R. Herrero, and C. Domínguez, “Optimizing CPV systems for thermal and spectral tolerance,” in Proc. 27th EU PVSEC (2012), pp. 194–198.

Fraunhofer ISE, Soitec, CEA-Leti, “New world record for solar cell efficiency at 46%: French-German cooperation confirms competitive advantage of European photovoltaic industry,” [Press Release], Freiburg (2014). http://www.ise.fraunhofer.de/en/press-and-media/press-releases/press-releases-2014/new-world-record-for-solar-cell-efficiency-at-46-percent .

Fraunhofer ISE, Soitec, CEA-Leti, “Four-junction solar cell developped using Soitec's expertise in semiconductor materials sets new efficiency record of 38.9% for CPV module,” [Press Release], Grenoble (2015). http://www.soitec.com/en/news/press-releases/article-1737 .

R. Herrero, M. Victoria, S. Askins, C. Domínguez, I. Antón, G. Sala, and J. Berrios, “Indoor characterization of multijunction solar cells under non uniform light patterns,” in CPV6 Conf. Proc. (Amer Inst. Physics, 2010), pp. 36–38.

S. Kurtz, D. J. Friedman, and J. M. Olson, “The effect of chromatic aberrations on two-junction, two-terminal, devices on a concentrator system,” in Conf. Record of the 24th IEEE PVSC (IEEE, 1994), pp. 1791–1794.

P. Espinet-González, R. Mohedano, I. García, P. Zamora, I. Rey-Stolle, P. Benitez, C. Algora, A. Cvetkovic, M. Hernández, J. Chaves, J. C. Miñano, and Y. Li, “Triple-junction solar cell performance under fresnel-based concentrators taking into account chromatic aberration and off-axis operation,” in CPV8 Conf. Proc. (Amer. Inst. Physics, 2012), pp. 81–85.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the instrumentation used in the METHOD testbench.

Fig. 2
Fig. 2

Dependence of the spectral calibration constant on incident angle to the diffuser for each filter.

Fig. 3
Fig. 3

Cross-sections of the intensity profile for transmission through each filter.

Fig. 4
Fig. 4

Spectral irradiance is represented for 3 positions of the cross-section in Fig. 3. The spectra are normalized to their power under concentration for better comparison.

Fig. 5
Fig. 5

Comparison of photogenerated currents determined by the mean of spot imaging and from electrical measurements of top (a) and middle isotypes (b). Measure average corresponds to an average on a 50 µs period, equivalent to the integration time used for image acquisition.

Fig. 6
Fig. 6

Top and middle subcells current densities determined with the imaging system, and the resulting Jtop/Jmid ratio showing its dependence on lens temperature for a 376 cm2 SOG lens focusing light on a 1 cm2 area. For helping comparisons, Jsc values at elevated temperatures are based on normalised values of the current Isc at standard temperature conditions.

Fig. 7
Fig. 7

I-V curves of two different concentrator technologies for two lens temperatures. (a) Device A is a single optical element concentrator (SOG lens); and (b) Device B is a 2 stage Fresnel-Köhler concentrator.

Fig. 8
Fig. 8

Jtop/Jmid ratio and the current density normlized by the average value on the cell for a centered cross-section of the spot for 2 different concentrators, (a) Device A, and (b) Device B.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F i ( x,y )= S i ( x,y ) C i tot ( x,y )
C i tot (x,y)= C i pow C i unif (x,y) C i lin C i adj
J i ( x,y )= λ qλ hc .e( λ,x,y ).EQ E i ( λ )
I sc,i = x,y J i ( x,y ). A pixel

Metrics