Abstract

Periodic arrays of metallic nanoparticles can be used to enhance the emission of light in certain directions. We fabricated hexagonal arrays of aluminium nanoparticles combined with thin layers of luminescent material and optimized period (275 nm) and thickness (1500 nm) to obtain sideward directional emission into glass for a wavelength band around 620 nm. The key physics is that the luminescent layer acts as a waveguide, from which light is emitted at preferential angles using diffractive effects. This phenomenon has applications in the field of solid-state lighting, where there is a desire for small, bright and directional sources.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Guided mode caused by silicon nanopillar array for light emission enhancement in color-converting LED

Pei Ding, Mingyu Li, Jinna He, Junqiao Wang, Chunzhen Fan, and Fanguang Zeng
Opt. Express 23(16) 21477-21489 (2015)

Enhancement of light emission from nanostructured In2O3 via surface plasmons

Dongjiang Qiu, Zhengfen Wan, Xikun Cai, Zijian Yuan, Lian Hu, Bingpo Zhang, Chunfeng Cai, and Huizhen Wu
Opt. Express 18(22) 23385-23393 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. Roelandt, Y. Meuret, D. K. G. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “In- and outcoupling of light from a luminescent rod using a compound parabolic concentrator (CPC),” Opt. Eng. 54(5), 055101 (2015).
    [Crossref]
  2. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
    [Crossref] [PubMed]
  3. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
    [Crossref]
  4. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
    [Crossref] [PubMed]
  5. L. Langguth, D. Punj, J. Wenger, and A. F. Koenderink, “Plasmonic band structure controls single-molecule fluorescence,” ACS Nano 7(10), 8840–8848 (2013).
    [Crossref] [PubMed]
  6. G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
    [Crossref]
  7. S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100(11), 111103 (2012).
    [Crossref]
  8. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
    [Crossref] [PubMed]
  9. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref] [PubMed]
  10. S. R. K. Rodriguez, Y. T. Chen, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab,” Phys. Rev. B 90(23), 235406 (2014).
    [Crossref]
  11. S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
    [Crossref]
  12. G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. G. Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6(15), 9223–9229 (2014).
    [Crossref] [PubMed]
  13. M. Lunz, D. de Boer, G. Lozano, S. R. K. Rodriguez, J. Gomez Rivas, and M. A. Verschuuren, “Plasmonic LED device,” Proc. SPIE 9127, 91270N (2014).
    [Crossref]
  14. J. Bures, Guided Optics (Wiley-VCH, Weinheim, 2009).
  15. I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13(8), 083019 (2011).
    [Crossref]
  16. J. Gómez Rivas, G. Vecchi, and V. Giannini, “Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings,” New J. Phys. 10(10), 105007 (2008).
    [Crossref]
  17. COMSOL, www.comsol.com
  18. A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
    [Crossref]
  19. M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
    [Crossref]
  20. D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(10), A395–A405 (2012).
    [Crossref] [PubMed]
  21. N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
    [Crossref]

2015 (2)

S. Roelandt, Y. Meuret, D. K. G. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “In- and outcoupling of light from a luminescent rod using a compound parabolic concentrator (CPC),” Opt. Eng. 54(5), 055101 (2015).
[Crossref]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

2014 (4)

S. R. K. Rodriguez, Y. T. Chen, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab,” Phys. Rev. B 90(23), 235406 (2014).
[Crossref]

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. G. Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6(15), 9223–9229 (2014).
[Crossref] [PubMed]

M. Lunz, D. de Boer, G. Lozano, S. R. K. Rodriguez, J. Gomez Rivas, and M. A. Verschuuren, “Plasmonic LED device,” Proc. SPIE 9127, 91270N (2014).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

2013 (2)

L. Langguth, D. Punj, J. Wenger, and A. F. Koenderink, “Plasmonic band structure controls single-molecule fluorescence,” ACS Nano 7(10), 8840–8848 (2013).
[Crossref] [PubMed]

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

2012 (3)

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100(11), 111103 (2012).
[Crossref]

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(10), A395–A405 (2012).
[Crossref] [PubMed]

2011 (4)

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
[Crossref]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
[Crossref]

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13(8), 083019 (2011).
[Crossref]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

2010 (1)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

2009 (1)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

2008 (1)

J. Gómez Rivas, G. Vecchi, and V. Giannini, “Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings,” New J. Phys. 10(10), 105007 (2008).
[Crossref]

1977 (1)

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

Abass, A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
[Crossref]

Akselrod, G. M.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Aouani, H.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

Argyropoulos, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Broer, D. J.

Bruls, D.

S. Roelandt, Y. Meuret, D. K. G. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “In- and outcoupling of light from a luminescent rod using a compound parabolic concentrator (CPC),” Opt. Eng. 54(5), 055101 (2015).
[Crossref]

Chen, Y. T.

S. R. K. Rodriguez, Y. T. Chen, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab,” Phys. Rev. B 90(23), 235406 (2014).
[Crossref]

Ciracì, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

de Boer, D.

M. Lunz, D. de Boer, G. Lozano, S. R. K. Rodriguez, J. Gomez Rivas, and M. A. Verschuuren, “Plasmonic LED device,” Proc. SPIE 9127, 91270N (2014).
[Crossref]

de Boer, D. K. G.

S. Roelandt, Y. Meuret, D. K. G. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “In- and outcoupling of light from a luminescent rod using a compound parabolic concentrator (CPC),” Opt. Eng. 54(5), 055101 (2015).
[Crossref]

D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(10), A395–A405 (2012).
[Crossref] [PubMed]

De Geyter, B.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100(11), 111103 (2012).
[Crossref]

Debije, M. G.

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(10), A395–A405 (2012).
[Crossref] [PubMed]

Devaux, E.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

Ebbesen, T. W.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

Fang, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Giannini, V.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

J. Gómez Rivas, G. Vecchi, and V. Giannini, “Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings,” New J. Phys. 10(10), 105007 (2008).
[Crossref]

Giebink, N. C.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
[Crossref]

Goetzberger, A.

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

Gomes, R.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100(11), 111103 (2012).
[Crossref]

Gomez Rivas, J.

M. Lunz, D. de Boer, G. Lozano, S. R. K. Rodriguez, J. Gomez Rivas, and M. A. Verschuuren, “Plasmonic LED device,” Proc. SPIE 9127, 91270N (2014).
[Crossref]

Gómez Rivas, J.

S. R. K. Rodriguez, Y. T. Chen, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab,” Phys. Rev. B 90(23), 235406 (2014).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100(11), 111103 (2012).
[Crossref]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
[Crossref]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

J. Gómez Rivas, G. Vecchi, and V. Giannini, “Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings,” New J. Phys. 10(10), 105007 (2008).
[Crossref]

Greubel, W.

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

Grzela, G.

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. G. Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6(15), 9223–9229 (2014).
[Crossref] [PubMed]

Hassinen, A.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100(11), 111103 (2012).
[Crossref]

Hens, Z.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100(11), 111103 (2012).
[Crossref]

Hoang, T. B.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Huang, J.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Jansen, O. T. A.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Janssen, O. T. A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
[Crossref]

Keur, W.

Koenderink, A. F.

S. R. K. Rodriguez, Y. T. Chen, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab,” Phys. Rev. B 90(23), 235406 (2014).
[Crossref]

L. Langguth, D. Punj, J. Wenger, and A. F. Koenderink, “Plasmonic band structure controls single-molecule fluorescence,” ACS Nano 7(10), 8840–8848 (2013).
[Crossref] [PubMed]

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13(8), 083019 (2011).
[Crossref]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Lambert, K.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100(11), 111103 (2012).
[Crossref]

Langguth, L.

L. Langguth, D. Punj, J. Wenger, and A. F. Koenderink, “Plasmonic band structure controls single-molecule fluorescence,” ACS Nano 7(10), 8840–8848 (2013).
[Crossref] [PubMed]

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Lozano, G.

M. Lunz, D. de Boer, G. Lozano, S. R. K. Rodriguez, J. Gomez Rivas, and M. A. Verschuuren, “Plasmonic LED device,” Proc. SPIE 9127, 91270N (2014).
[Crossref]

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. G. Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6(15), 9223–9229 (2014).
[Crossref] [PubMed]

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100(11), 111103 (2012).
[Crossref]

Lunz, M.

M. Lunz, D. de Boer, G. Lozano, S. R. K. Rodriguez, J. Gomez Rivas, and M. A. Verschuuren, “Plasmonic LED device,” Proc. SPIE 9127, 91270N (2014).
[Crossref]

Maes, B.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
[Crossref]

Mahboub, O.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

Meijerink, A.

Meuret, Y.

S. Roelandt, Y. Meuret, D. K. G. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “In- and outcoupling of light from a luminescent rod using a compound parabolic concentrator (CPC),” Opt. Eng. 54(5), 055101 (2015).
[Crossref]

Mikkelsen, M. H.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Murai, S.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Punj, D.

L. Langguth, D. Punj, J. Wenger, and A. F. Koenderink, “Plasmonic band structure controls single-molecule fluorescence,” ACS Nano 7(10), 8840–8848 (2013).
[Crossref] [PubMed]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Ramezani, M.

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. G. Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6(15), 9223–9229 (2014).
[Crossref] [PubMed]

Rigneault, H.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

Rivas, J. G.

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. G. Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6(15), 9223–9229 (2014).
[Crossref] [PubMed]

Rodriguez, S. R. K.

M. Lunz, D. de Boer, G. Lozano, S. R. K. Rodriguez, J. Gomez Rivas, and M. A. Verschuuren, “Plasmonic LED device,” Proc. SPIE 9127, 91270N (2014).
[Crossref]

S. R. K. Rodriguez, Y. T. Chen, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab,” Phys. Rev. B 90(23), 235406 (2014).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100(11), 111103 (2012).
[Crossref]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
[Crossref]

Roelandt, S.

S. Roelandt, Y. Meuret, D. K. G. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “In- and outcoupling of light from a luminescent rod using a compound parabolic concentrator (CPC),” Opt. Eng. 54(5), 055101 (2015).
[Crossref]

Ronda, C. R.

Sersic, I.

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13(8), 083019 (2011).
[Crossref]

Smith, D. R.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Steinbusch, T. P.

S. R. K. Rodriguez, Y. T. Chen, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab,” Phys. Rev. B 90(23), 235406 (2014).
[Crossref]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Thienpont, H.

S. Roelandt, Y. Meuret, D. K. G. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “In- and outcoupling of light from a luminescent rod using a compound parabolic concentrator (CPC),” Opt. Eng. 54(5), 055101 (2015).
[Crossref]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Tuambilangana, C.

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13(8), 083019 (2011).
[Crossref]

Van De Voorde, P.

S. Roelandt, Y. Meuret, D. K. G. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “In- and outcoupling of light from a luminescent rod using a compound parabolic concentrator (CPC),” Opt. Eng. 54(5), 055101 (2015).
[Crossref]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Van Thourhout, D.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100(11), 111103 (2012).
[Crossref]

Vecchi, G.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
[Crossref]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

J. Gómez Rivas, G. Vecchi, and V. Giannini, “Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings,” New J. Phys. 10(10), 105007 (2008).
[Crossref]

Verbunt, P. P. C.

D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(10), A395–A405 (2012).
[Crossref] [PubMed]

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

Verschuuren, M. A.

S. R. K. Rodriguez, Y. T. Chen, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab,” Phys. Rev. B 90(23), 235406 (2014).
[Crossref]

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. G. Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6(15), 9223–9229 (2014).
[Crossref] [PubMed]

M. Lunz, D. de Boer, G. Lozano, S. R. K. Rodriguez, J. Gomez Rivas, and M. A. Verschuuren, “Plasmonic LED device,” Proc. SPIE 9127, 91270N (2014).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100(11), 111103 (2012).
[Crossref]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Wasielewski, M. R.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
[Crossref]

Wenger, J.

L. Langguth, D. Punj, J. Wenger, and A. F. Koenderink, “Plasmonic band structure controls single-molecule fluorescence,” ACS Nano 7(10), 8840–8848 (2013).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

Wiederrecht, G. P.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
[Crossref]

ACS Nano (1)

L. Langguth, D. Punj, J. Wenger, and A. F. Koenderink, “Plasmonic band structure controls single-molecule fluorescence,” ACS Nano 7(10), 8840–8848 (2013).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

Appl. Phys. (Berl.) (1)

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

Appl. Phys. Lett. (1)

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett. 100(11), 111103 (2012).
[Crossref]

Light Sci. Appl. (1)

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Nano Lett. (1)

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

Nanoscale (1)

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. G. Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6(15), 9223–9229 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

New J. Phys. (2)

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13(8), 083019 (2011).
[Crossref]

J. Gómez Rivas, G. Vecchi, and V. Giannini, “Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings,” New J. Phys. 10(10), 105007 (2008).
[Crossref]

Opt. Eng. (1)

S. Roelandt, Y. Meuret, D. K. G. de Boer, D. Bruls, P. Van De Voorde, and H. Thienpont, “In- and outcoupling of light from a luminescent rod using a compound parabolic concentrator (CPC),” Opt. Eng. 54(5), 055101 (2015).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

S. R. K. Rodriguez, Y. T. Chen, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab,” Phys. Rev. B 90(23), 235406 (2014).
[Crossref]

Phys. Rev. Lett. (1)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1(2), 021019 (2011).
[Crossref]

Proc. SPIE (1)

M. Lunz, D. de Boer, G. Lozano, S. R. K. Rodriguez, J. Gomez Rivas, and M. A. Verschuuren, “Plasmonic LED device,” Proc. SPIE 9127, 91270N (2014).
[Crossref]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Science (1)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Other (2)

J. Bures, Guided Optics (Wiley-VCH, Weinheim, 2009).

COMSOL, www.comsol.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of plasmonic phosphor-converted LED injecting light in a light guide (thickness approx. 1 mm) with index n3. The LED light is converted in the phosphor layer with index n2 which acts as a waveguide (thickness approx. 1 μm) and the plasmonic array makes that the converted light is emitted preferentially in directions that are in total internal reflection in the light guide with index n3.

Fig. 2
Fig. 2

(a) Diagram of energy vs two-dimensional parallel wave vector, showing resonances in reciprocal space for a waveguide coupled to a hexagonal lattice. (b) Horizontal cross section of Fig. 2(a) at energy corresponding to emission wavelength λ.

Fig. 3
Fig. 3

Diagram of energy vs parallel wave vector showing the dispersion of Rayleigh anomalies and guided modes for a waveguide with refractive index n2 = 1.59 coupled to a lattice with lattice constant Λ = 238 nm between media with n1 = 1 and n3 = 1.52. Dotted lines: Rayleigh anomalies for n = 1.52 and 1.59, thin solid lines: waveguide modes. Vertical purple lines: border of 1st Brillouin zone.The horizontal red line shows the emission energy of interest.

Fig. 4
Fig. 4

Angular dependent (up to 80° azimuthal angle) photoluminescence enhancement at λ = 620 nm of a luminescent layer (thickness = 700 nm) on top of a hexagonal array of Al particles with various periods p. In the case of p = 400 nm, the maximum enhancement is 8, but for comparison the same scale is used in all panels. The inset shows the schematic experimental set-up in the Fourier microscope, with the incident light entering and the luminescent light exiting via an immersion-oil objective.

Fig. 5
Fig. 5

(a) Photoluminescence enhancement for s-polarized light as a function of dye-layer thickness and polar angle for plasmonic structure (at φ = 0°). Indicated are the positions for the waveguide modes of order 0 and 1 (and diffraction order 1) calculated without (solid lines) and with a metal layer (dashed lines). (b) Cross section of two unit cells (thickness = 1500 nm) showing absolute value of electric field due to light at θ = 42.5°, φ = 0°.

Fig. 6
Fig. 6

Measured (a) and simulated (b) angular dependence of photoluminescence enhancement at λ = 620 nm for a luminescent layer (thickness = 1500 nm) on top of a hexagonal array of Al particles with period 275 nm.

Fig. 7
Fig. 7

Photoluminescence intensities as a function of polar angle for a 1500 nm thick luminescent layer on glass with a hexagonal array of Al particles with period 275 nm for φ = 0° (a) and φ = 90° (b) and for such a layer without nanostructure (c): measured (counts/s, blue solid line) and simulated (relative units, red dashed line). The vertical scales are the same for all panels.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ/Λ=|± n 3 sinθ± n 2,3 |

Metrics