Abstract

We investigate the thermal radiative emission of few-layer structures deposited on a metallic substrate and its dependence on temperature with the Fluctuational Electrodynamics approach. We highlight the impact of the variations of the optical properties of metallic layers on their temperature-dependent emissivity. Fabry-Pérot spectral selection involving at most two transparent layers and one thin reflective layer leads to well-defined peaks and to the amplification of the substrate emission. For a single Fabry-Pérot layer on a reflective substrate, an optimal thickness that maximizes the emissivity of the structure can be determined at each temperature. A thin lossy layer deposited on the previous structure can enhance interference phenomena, and the analysis of the participation of each layer to the emission shows that the thin layer is the main source of emission. Eventually, we investigate a system with two Fabry-Pérot layers and a metallic thin layer, and we show that an optimal architecture can be found. The total hemispherical emissivity can be increased by one order of magnitude compared to the substrate emissivity.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures

Etienne Blandre, Makoto Shimizu, Asaka Kohiyama, Hiroo Yugami, Pierre-Olivier Chapuis, and Rodolphe Vaillon
Opt. Express 26(4) 4346-4357 (2018)

Ultra-thin titanium nitride films for refractory spectral selectivity [Invited]

Alexander S. Roberts, Manohar Chirumamilla, Deyong Wang, Liqiong An, Kjeld Pedersen, N. Asger Mortensen, and Sergey I. Bozhevolnyi
Opt. Mater. Express 8(12) 3717-3728 (2018)

Taming parasitic thermal emission by Tamm plasmon polaritons for the mid-infrared

Gerald Pühringer and Bernhard Jakoby
J. Opt. Soc. Am. B 35(7) 1490-1503 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Drevillon, K. Joulain, P. Ben-Abdallah, and E. Nefzaoui, “Far-field coherent thermal emission from a bilayer structure,” J. Appl. Phys. 109, 034315 (2011).
    [Crossref]
  2. E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys 111, 084316 (2012).
    [Crossref]
  3. E. Nefzaoui, J. Drevillon, Y. Ezzahri, and K. Joulain, “Simple far-field radiative thermal rectifier using Fabry-Pérot cavities based infrared selective emitters,” Appl. Opt. 53, 3479–3485 (2014).
    [Crossref]
  4. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
    [Crossref]
  5. Y. Tsurimaki, P. O. Chapuis, R. Vaillon, J. Okajima, A. Komiya, and S. Murayama, “Reducing thermal radiation between parallel plates in the far-to-near field transition regime,” in “Proceedings of the 15th International Heat Transfer Conference, Kyoto, Japan,” (Aug. 10–15, 2014).
  6. E. Blandre, P. O. Chapuis, M. Francoeur, and R. Vaillon, “Spatial and spectral distributions of thermal radiation emitted by a semi-infinite body and absorbed by a flat film,” AIP Adv. 5, 057106 (2015).
    [Crossref]
  7. L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Pérot resonance cavities,” Int. J. Heat Mass Transf. 52, 3024–3031 (2009).
    [Crossref]
  8. L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry-Pérot cavity resonator,” J. Heat Transf. 134, 072701 (2012).
    [Crossref]
  9. B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).
    [Crossref]
  10. P. Hanzelka, T. Kralik, A. Maskova, V. Musilova, and J. Vyskocil, “Thermal radiative properties of a DLC coating,” Cryogenics 48, 455–457 (2008).
    [Crossref]
  11. V. Musilova, T. Kralik, P. Hanzelka, and A. Srnka, “Effect of different treatments of copper surface on its total hemispherical absorptivity bellow 77 K,” Cryogenics 47, 257–261 (2007).
    [Crossref]
  12. V. Musilova, P. Hanzelka, T. Kralik, and A. Srnka, “Low temperature radiative properties of materials used in cryogenics,” Cryogenics 45, 529–536 (2005).
    [Crossref]
  13. S. M. Rytov, I. U. A. Kravtsov, and V. Tatarskii, Principles of Statistical Radiophysics: Elements of random fields, Principles of Statistical Radiophysics (Springer-Verlag, 1989).
  14. D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
    [Crossref]
  15. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transf. 110, 2002–2018 (2009).
    [Crossref]
  16. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D: Appl. Phys. 43, 075501 (2010).
    [Crossref]
  17. J. Drevillon, “Design ab-initio de matériaux micro et nanostructurés pour l’émission thermique cohérente en champ proche et en champ lointain,” Thesis, Université de Nantes (2007).
  18. L. P. Wang, S. Basu, and Z. M. Zhang, “Direct and indirect methods for calculating thermal emission from layered structures with nonuniform temperatures,” J. Heat Transf. 133, 072701 (2011).
    [Crossref]
  19. P. O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J. J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77, 035431 (2008).
    [Crossref]
  20. K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59–112 (2005).
    [Crossref]
  21. F. Marquier, K. Joulain, J. Mulet, R. Carminati, and J. Greffet, “Engineering infrared emission properties of silicon in the near-field and the far-field,” Opt. Commun. 237, 379–388 (2004).
    [Crossref]
  22. R. Bauer, A. Schmid, P. Pavone, and D. Strauch, “Electron-phonon coupling in the metallic elements al, au, na, and nb: A first-principles study,” Phys. Rev. B 57, 11276–11282 (1998).
    [Crossref]
  23. A. G. Mathewson and H. P. Myers, “Optical absorption in aluminium and the effect of temperature,” J. Phys. F 2, 403 (1972).
    [Crossref]
  24. C. J. Fu and Z. M. Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transf. 49, 1703–1718 (2006).
    [Crossref]
  25. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data9 (1980).
  26. E. Hecht, Optics2nd edition (Addison-Wesley, 1987).
  27. M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, “Tailoring silicon radiative properties,” Opt. Commun. 250, 316–320 (2005).
    [Crossref]
  28. S. Edalatpour and M. Francoeur, “Size effect on the emissivity of thin films,” J. Quant. Spectrosc. Radiat. Transf. 118, 75–85 (2013).
    [Crossref]
  29. A. Bid, A. Bora, and A. K. Raychaudhuri, “Temperature dependence of the resistance of metallic nanowires of diameter ≥15 nm : Applicability of Bloch-Grüneisen theorem,” Phys. Rev. B 74, 035426 (2006).
    [Crossref]

2015 (1)

E. Blandre, P. O. Chapuis, M. Francoeur, and R. Vaillon, “Spatial and spectral distributions of thermal radiation emitted by a semi-infinite body and absorbed by a flat film,” AIP Adv. 5, 057106 (2015).
[Crossref]

2014 (1)

2013 (1)

S. Edalatpour and M. Francoeur, “Size effect on the emissivity of thin films,” J. Quant. Spectrosc. Radiat. Transf. 118, 75–85 (2013).
[Crossref]

2012 (2)

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys 111, 084316 (2012).
[Crossref]

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry-Pérot cavity resonator,” J. Heat Transf. 134, 072701 (2012).
[Crossref]

2011 (2)

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct and indirect methods for calculating thermal emission from layered structures with nonuniform temperatures,” J. Heat Transf. 133, 072701 (2011).
[Crossref]

J. Drevillon, K. Joulain, P. Ben-Abdallah, and E. Nefzaoui, “Far-field coherent thermal emission from a bilayer structure,” J. Appl. Phys. 109, 034315 (2011).
[Crossref]

2010 (1)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D: Appl. Phys. 43, 075501 (2010).
[Crossref]

2009 (2)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transf. 110, 2002–2018 (2009).
[Crossref]

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Pérot resonance cavities,” Int. J. Heat Mass Transf. 52, 3024–3031 (2009).
[Crossref]

2008 (2)

P. Hanzelka, T. Kralik, A. Maskova, V. Musilova, and J. Vyskocil, “Thermal radiative properties of a DLC coating,” Cryogenics 48, 455–457 (2008).
[Crossref]

P. O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J. J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77, 035431 (2008).
[Crossref]

2007 (1)

V. Musilova, T. Kralik, P. Hanzelka, and A. Srnka, “Effect of different treatments of copper surface on its total hemispherical absorptivity bellow 77 K,” Cryogenics 47, 257–261 (2007).
[Crossref]

2006 (3)

B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).
[Crossref]

C. J. Fu and Z. M. Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transf. 49, 1703–1718 (2006).
[Crossref]

A. Bid, A. Bora, and A. K. Raychaudhuri, “Temperature dependence of the resistance of metallic nanowires of diameter ≥15 nm : Applicability of Bloch-Grüneisen theorem,” Phys. Rev. B 74, 035426 (2006).
[Crossref]

2005 (4)

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, “Tailoring silicon radiative properties,” Opt. Commun. 250, 316–320 (2005).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59–112 (2005).
[Crossref]

V. Musilova, P. Hanzelka, T. Kralik, and A. Srnka, “Low temperature radiative properties of materials used in cryogenics,” Cryogenics 45, 529–536 (2005).
[Crossref]

2004 (1)

F. Marquier, K. Joulain, J. Mulet, R. Carminati, and J. Greffet, “Engineering infrared emission properties of silicon in the near-field and the far-field,” Opt. Commun. 237, 379–388 (2004).
[Crossref]

1998 (1)

R. Bauer, A. Schmid, P. Pavone, and D. Strauch, “Electron-phonon coupling in the metallic elements al, au, na, and nb: A first-principles study,” Phys. Rev. B 57, 11276–11282 (1998).
[Crossref]

1972 (1)

A. G. Mathewson and H. P. Myers, “Optical absorption in aluminium and the effect of temperature,” J. Phys. F 2, 403 (1972).
[Crossref]

1971 (1)

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]

Basu, S.

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry-Pérot cavity resonator,” J. Heat Transf. 134, 072701 (2012).
[Crossref]

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct and indirect methods for calculating thermal emission from layered structures with nonuniform temperatures,” J. Heat Transf. 133, 072701 (2011).
[Crossref]

Bauer, R.

R. Bauer, A. Schmid, P. Pavone, and D. Strauch, “Electron-phonon coupling in the metallic elements al, au, na, and nb: A first-principles study,” Phys. Rev. B 57, 11276–11282 (1998).
[Crossref]

Ben-Abdallah, P.

J. Drevillon, K. Joulain, P. Ben-Abdallah, and E. Nefzaoui, “Far-field coherent thermal emission from a bilayer structure,” J. Appl. Phys. 109, 034315 (2011).
[Crossref]

Bid, A.

A. Bid, A. Bora, and A. K. Raychaudhuri, “Temperature dependence of the resistance of metallic nanowires of diameter ≥15 nm : Applicability of Bloch-Grüneisen theorem,” Phys. Rev. B 74, 035426 (2006).
[Crossref]

Blandre, E.

E. Blandre, P. O. Chapuis, M. Francoeur, and R. Vaillon, “Spatial and spectral distributions of thermal radiation emitted by a semi-infinite body and absorbed by a flat film,” AIP Adv. 5, 057106 (2015).
[Crossref]

Bora, A.

A. Bid, A. Bora, and A. K. Raychaudhuri, “Temperature dependence of the resistance of metallic nanowires of diameter ≥15 nm : Applicability of Bloch-Grüneisen theorem,” Phys. Rev. B 74, 035426 (2006).
[Crossref]

Carminati, R.

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, “Tailoring silicon radiative properties,” Opt. Commun. 250, 316–320 (2005).
[Crossref]

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59–112 (2005).
[Crossref]

F. Marquier, K. Joulain, J. Mulet, R. Carminati, and J. Greffet, “Engineering infrared emission properties of silicon in the near-field and the far-field,” Opt. Commun. 237, 379–388 (2004).
[Crossref]

Celanovic, I.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

Chapuis, P. O.

E. Blandre, P. O. Chapuis, M. Francoeur, and R. Vaillon, “Spatial and spectral distributions of thermal radiation emitted by a semi-infinite body and absorbed by a flat film,” AIP Adv. 5, 057106 (2015).
[Crossref]

P. O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J. J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77, 035431 (2008).
[Crossref]

Y. Tsurimaki, P. O. Chapuis, R. Vaillon, J. Okajima, A. Komiya, and S. Murayama, “Reducing thermal radiation between parallel plates in the far-to-near field transition regime,” in “Proceedings of the 15th International Heat Transfer Conference, Kyoto, Japan,” (Aug. 10–15, 2014).

Drevillon, J.

E. Nefzaoui, J. Drevillon, Y. Ezzahri, and K. Joulain, “Simple far-field radiative thermal rectifier using Fabry-Pérot cavities based infrared selective emitters,” Appl. Opt. 53, 3479–3485 (2014).
[Crossref]

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys 111, 084316 (2012).
[Crossref]

J. Drevillon, K. Joulain, P. Ben-Abdallah, and E. Nefzaoui, “Far-field coherent thermal emission from a bilayer structure,” J. Appl. Phys. 109, 034315 (2011).
[Crossref]

J. Drevillon, “Design ab-initio de matériaux micro et nanostructurés pour l’émission thermique cohérente en champ proche et en champ lointain,” Thesis, Université de Nantes (2007).

Edalatpour, S.

S. Edalatpour and M. Francoeur, “Size effect on the emissivity of thin films,” J. Quant. Spectrosc. Radiat. Transf. 118, 75–85 (2013).
[Crossref]

Ezzahri, Y.

Francoeur, M.

E. Blandre, P. O. Chapuis, M. Francoeur, and R. Vaillon, “Spatial and spectral distributions of thermal radiation emitted by a semi-infinite body and absorbed by a flat film,” AIP Adv. 5, 057106 (2015).
[Crossref]

S. Edalatpour and M. Francoeur, “Size effect on the emissivity of thin films,” J. Quant. Spectrosc. Radiat. Transf. 118, 75–85 (2013).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D: Appl. Phys. 43, 075501 (2010).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transf. 110, 2002–2018 (2009).
[Crossref]

Fu, C. J.

C. J. Fu and Z. M. Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transf. 49, 1703–1718 (2006).
[Crossref]

Greffet, J.

F. Marquier, K. Joulain, J. Mulet, R. Carminati, and J. Greffet, “Engineering infrared emission properties of silicon in the near-field and the far-field,” Opt. Commun. 237, 379–388 (2004).
[Crossref]

Greffet, J. J.

P. O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J. J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77, 035431 (2008).
[Crossref]

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59–112 (2005).
[Crossref]

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, “Tailoring silicon radiative properties,” Opt. Commun. 250, 316–320 (2005).
[Crossref]

Hanzelka, P.

P. Hanzelka, T. Kralik, A. Maskova, V. Musilova, and J. Vyskocil, “Thermal radiative properties of a DLC coating,” Cryogenics 48, 455–457 (2008).
[Crossref]

V. Musilova, T. Kralik, P. Hanzelka, and A. Srnka, “Effect of different treatments of copper surface on its total hemispherical absorptivity bellow 77 K,” Cryogenics 47, 257–261 (2007).
[Crossref]

V. Musilova, P. Hanzelka, T. Kralik, and A. Srnka, “Low temperature radiative properties of materials used in cryogenics,” Cryogenics 45, 529–536 (2005).
[Crossref]

Hecht, E.

E. Hecht, Optics2nd edition (Addison-Wesley, 1987).

Henkel, C.

P. O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J. J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77, 035431 (2008).
[Crossref]

Joulain, K.

E. Nefzaoui, J. Drevillon, Y. Ezzahri, and K. Joulain, “Simple far-field radiative thermal rectifier using Fabry-Pérot cavities based infrared selective emitters,” Appl. Opt. 53, 3479–3485 (2014).
[Crossref]

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys 111, 084316 (2012).
[Crossref]

J. Drevillon, K. Joulain, P. Ben-Abdallah, and E. Nefzaoui, “Far-field coherent thermal emission from a bilayer structure,” J. Appl. Phys. 109, 034315 (2011).
[Crossref]

P. O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J. J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77, 035431 (2008).
[Crossref]

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59–112 (2005).
[Crossref]

F. Marquier, K. Joulain, J. Mulet, R. Carminati, and J. Greffet, “Engineering infrared emission properties of silicon in the near-field and the far-field,” Opt. Commun. 237, 379–388 (2004).
[Crossref]

Kassakian, J.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

Komiya, A.

Y. Tsurimaki, P. O. Chapuis, R. Vaillon, J. Okajima, A. Komiya, and S. Murayama, “Reducing thermal radiation between parallel plates in the far-to-near field transition regime,” in “Proceedings of the 15th International Heat Transfer Conference, Kyoto, Japan,” (Aug. 10–15, 2014).

Kralik, T.

P. Hanzelka, T. Kralik, A. Maskova, V. Musilova, and J. Vyskocil, “Thermal radiative properties of a DLC coating,” Cryogenics 48, 455–457 (2008).
[Crossref]

V. Musilova, T. Kralik, P. Hanzelka, and A. Srnka, “Effect of different treatments of copper surface on its total hemispherical absorptivity bellow 77 K,” Cryogenics 47, 257–261 (2007).
[Crossref]

V. Musilova, P. Hanzelka, T. Kralik, and A. Srnka, “Low temperature radiative properties of materials used in cryogenics,” Cryogenics 45, 529–536 (2005).
[Crossref]

Kravtsov, I. U. A.

S. M. Rytov, I. U. A. Kravtsov, and V. Tatarskii, Principles of Statistical Radiophysics: Elements of random fields, Principles of Statistical Radiophysics (Springer-Verlag, 1989).

Laroche, M.

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, “Tailoring silicon radiative properties,” Opt. Commun. 250, 316–320 (2005).
[Crossref]

Lee, B. J.

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Pérot resonance cavities,” Int. J. Heat Mass Transf. 52, 3024–3031 (2009).
[Crossref]

B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data9 (1980).

Marquier, F.

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59–112 (2005).
[Crossref]

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, “Tailoring silicon radiative properties,” Opt. Commun. 250, 316–320 (2005).
[Crossref]

F. Marquier, K. Joulain, J. Mulet, R. Carminati, and J. Greffet, “Engineering infrared emission properties of silicon in the near-field and the far-field,” Opt. Commun. 237, 379–388 (2004).
[Crossref]

Maskova, A.

P. Hanzelka, T. Kralik, A. Maskova, V. Musilova, and J. Vyskocil, “Thermal radiative properties of a DLC coating,” Cryogenics 48, 455–457 (2008).
[Crossref]

Mathewson, A. G.

A. G. Mathewson and H. P. Myers, “Optical absorption in aluminium and the effect of temperature,” J. Phys. F 2, 403 (1972).
[Crossref]

Mengüç, M. P.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D: Appl. Phys. 43, 075501 (2010).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transf. 110, 2002–2018 (2009).
[Crossref]

Mulet, J.

F. Marquier, K. Joulain, J. Mulet, R. Carminati, and J. Greffet, “Engineering infrared emission properties of silicon in the near-field and the far-field,” Opt. Commun. 237, 379–388 (2004).
[Crossref]

Mulet, J. P.

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59–112 (2005).
[Crossref]

Murayama, S.

Y. Tsurimaki, P. O. Chapuis, R. Vaillon, J. Okajima, A. Komiya, and S. Murayama, “Reducing thermal radiation between parallel plates in the far-to-near field transition regime,” in “Proceedings of the 15th International Heat Transfer Conference, Kyoto, Japan,” (Aug. 10–15, 2014).

Musilova, V.

P. Hanzelka, T. Kralik, A. Maskova, V. Musilova, and J. Vyskocil, “Thermal radiative properties of a DLC coating,” Cryogenics 48, 455–457 (2008).
[Crossref]

V. Musilova, T. Kralik, P. Hanzelka, and A. Srnka, “Effect of different treatments of copper surface on its total hemispherical absorptivity bellow 77 K,” Cryogenics 47, 257–261 (2007).
[Crossref]

V. Musilova, P. Hanzelka, T. Kralik, and A. Srnka, “Low temperature radiative properties of materials used in cryogenics,” Cryogenics 45, 529–536 (2005).
[Crossref]

Myers, H. P.

A. G. Mathewson and H. P. Myers, “Optical absorption in aluminium and the effect of temperature,” J. Phys. F 2, 403 (1972).
[Crossref]

Nefzaoui, E.

E. Nefzaoui, J. Drevillon, Y. Ezzahri, and K. Joulain, “Simple far-field radiative thermal rectifier using Fabry-Pérot cavities based infrared selective emitters,” Appl. Opt. 53, 3479–3485 (2014).
[Crossref]

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys 111, 084316 (2012).
[Crossref]

J. Drevillon, K. Joulain, P. Ben-Abdallah, and E. Nefzaoui, “Far-field coherent thermal emission from a bilayer structure,” J. Appl. Phys. 109, 034315 (2011).
[Crossref]

Okajima, J.

Y. Tsurimaki, P. O. Chapuis, R. Vaillon, J. Okajima, A. Komiya, and S. Murayama, “Reducing thermal radiation between parallel plates in the far-to-near field transition regime,” in “Proceedings of the 15th International Heat Transfer Conference, Kyoto, Japan,” (Aug. 10–15, 2014).

Pavone, P.

R. Bauer, A. Schmid, P. Pavone, and D. Strauch, “Electron-phonon coupling in the metallic elements al, au, na, and nb: A first-principles study,” Phys. Rev. B 57, 11276–11282 (1998).
[Crossref]

Perreault, D.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

Polder, D.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]

Raychaudhuri, A. K.

A. Bid, A. Bora, and A. K. Raychaudhuri, “Temperature dependence of the resistance of metallic nanowires of diameter ≥15 nm : Applicability of Bloch-Grüneisen theorem,” Phys. Rev. B 74, 035426 (2006).
[Crossref]

Rytov, S. M.

S. M. Rytov, I. U. A. Kravtsov, and V. Tatarskii, Principles of Statistical Radiophysics: Elements of random fields, Principles of Statistical Radiophysics (Springer-Verlag, 1989).

Schmid, A.

R. Bauer, A. Schmid, P. Pavone, and D. Strauch, “Electron-phonon coupling in the metallic elements al, au, na, and nb: A first-principles study,” Phys. Rev. B 57, 11276–11282 (1998).
[Crossref]

Srnka, A.

V. Musilova, T. Kralik, P. Hanzelka, and A. Srnka, “Effect of different treatments of copper surface on its total hemispherical absorptivity bellow 77 K,” Cryogenics 47, 257–261 (2007).
[Crossref]

V. Musilova, P. Hanzelka, T. Kralik, and A. Srnka, “Low temperature radiative properties of materials used in cryogenics,” Cryogenics 45, 529–536 (2005).
[Crossref]

Strauch, D.

R. Bauer, A. Schmid, P. Pavone, and D. Strauch, “Electron-phonon coupling in the metallic elements al, au, na, and nb: A first-principles study,” Phys. Rev. B 57, 11276–11282 (1998).
[Crossref]

Tatarskii, V.

S. M. Rytov, I. U. A. Kravtsov, and V. Tatarskii, Principles of Statistical Radiophysics: Elements of random fields, Principles of Statistical Radiophysics (Springer-Verlag, 1989).

Tsurimaki, Y.

Y. Tsurimaki, P. O. Chapuis, R. Vaillon, J. Okajima, A. Komiya, and S. Murayama, “Reducing thermal radiation between parallel plates in the far-to-near field transition regime,” in “Proceedings of the 15th International Heat Transfer Conference, Kyoto, Japan,” (Aug. 10–15, 2014).

Vaillon, R.

E. Blandre, P. O. Chapuis, M. Francoeur, and R. Vaillon, “Spatial and spectral distributions of thermal radiation emitted by a semi-infinite body and absorbed by a flat film,” AIP Adv. 5, 057106 (2015).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D: Appl. Phys. 43, 075501 (2010).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transf. 110, 2002–2018 (2009).
[Crossref]

Y. Tsurimaki, P. O. Chapuis, R. Vaillon, J. Okajima, A. Komiya, and S. Murayama, “Reducing thermal radiation between parallel plates in the far-to-near field transition regime,” in “Proceedings of the 15th International Heat Transfer Conference, Kyoto, Japan,” (Aug. 10–15, 2014).

Van Hove, M.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]

Volz, S.

P. O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J. J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77, 035431 (2008).
[Crossref]

Vyskocil, J.

P. Hanzelka, T. Kralik, A. Maskova, V. Musilova, and J. Vyskocil, “Thermal radiative properties of a DLC coating,” Cryogenics 48, 455–457 (2008).
[Crossref]

Wang, L. P.

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry-Pérot cavity resonator,” J. Heat Transf. 134, 072701 (2012).
[Crossref]

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct and indirect methods for calculating thermal emission from layered structures with nonuniform temperatures,” J. Heat Transf. 133, 072701 (2011).
[Crossref]

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Pérot resonance cavities,” Int. J. Heat Mass Transf. 52, 3024–3031 (2009).
[Crossref]

Wang, X. J.

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Pérot resonance cavities,” Int. J. Heat Mass Transf. 52, 3024–3031 (2009).
[Crossref]

Zhang, Z. M.

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry-Pérot cavity resonator,” J. Heat Transf. 134, 072701 (2012).
[Crossref]

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct and indirect methods for calculating thermal emission from layered structures with nonuniform temperatures,” J. Heat Transf. 133, 072701 (2011).
[Crossref]

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Pérot resonance cavities,” Int. J. Heat Mass Transf. 52, 3024–3031 (2009).
[Crossref]

B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).
[Crossref]

C. J. Fu and Z. M. Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transf. 49, 1703–1718 (2006).
[Crossref]

AIP Adv. (1)

E. Blandre, P. O. Chapuis, M. Francoeur, and R. Vaillon, “Spatial and spectral distributions of thermal radiation emitted by a semi-infinite body and absorbed by a flat film,” AIP Adv. 5, 057106 (2015).
[Crossref]

Appl. Opt. (1)

Cryogenics (3)

P. Hanzelka, T. Kralik, A. Maskova, V. Musilova, and J. Vyskocil, “Thermal radiative properties of a DLC coating,” Cryogenics 48, 455–457 (2008).
[Crossref]

V. Musilova, T. Kralik, P. Hanzelka, and A. Srnka, “Effect of different treatments of copper surface on its total hemispherical absorptivity bellow 77 K,” Cryogenics 47, 257–261 (2007).
[Crossref]

V. Musilova, P. Hanzelka, T. Kralik, and A. Srnka, “Low temperature radiative properties of materials used in cryogenics,” Cryogenics 45, 529–536 (2005).
[Crossref]

Int. J. Heat Mass Transf. (2)

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Pérot resonance cavities,” Int. J. Heat Mass Transf. 52, 3024–3031 (2009).
[Crossref]

C. J. Fu and Z. M. Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transf. 49, 1703–1718 (2006).
[Crossref]

J. Appl. Phys (1)

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys 111, 084316 (2012).
[Crossref]

J. Appl. Phys. (2)

J. Drevillon, K. Joulain, P. Ben-Abdallah, and E. Nefzaoui, “Far-field coherent thermal emission from a bilayer structure,” J. Appl. Phys. 109, 034315 (2011).
[Crossref]

B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).
[Crossref]

J. Heat Transf. (2)

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry-Pérot cavity resonator,” J. Heat Transf. 134, 072701 (2012).
[Crossref]

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct and indirect methods for calculating thermal emission from layered structures with nonuniform temperatures,” J. Heat Transf. 133, 072701 (2011).
[Crossref]

J. Phys. D: Appl. Phys. (1)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D: Appl. Phys. 43, 075501 (2010).
[Crossref]

J. Phys. F (1)

A. G. Mathewson and H. P. Myers, “Optical absorption in aluminium and the effect of temperature,” J. Phys. F 2, 403 (1972).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (2)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transf. 110, 2002–2018 (2009).
[Crossref]

S. Edalatpour and M. Francoeur, “Size effect on the emissivity of thin films,” J. Quant. Spectrosc. Radiat. Transf. 118, 75–85 (2013).
[Crossref]

Opt. Commun. (2)

F. Marquier, K. Joulain, J. Mulet, R. Carminati, and J. Greffet, “Engineering infrared emission properties of silicon in the near-field and the far-field,” Opt. Commun. 237, 379–388 (2004).
[Crossref]

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, “Tailoring silicon radiative properties,” Opt. Commun. 250, 316–320 (2005).
[Crossref]

Phys. Rev. B (5)

R. Bauer, A. Schmid, P. Pavone, and D. Strauch, “Electron-phonon coupling in the metallic elements al, au, na, and nb: A first-principles study,” Phys. Rev. B 57, 11276–11282 (1998).
[Crossref]

A. Bid, A. Bora, and A. K. Raychaudhuri, “Temperature dependence of the resistance of metallic nanowires of diameter ≥15 nm : Applicability of Bloch-Grüneisen theorem,” Phys. Rev. B 74, 035426 (2006).
[Crossref]

P. O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J. J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77, 035431 (2008).
[Crossref]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

Surf. Sci. Rep. (1)

K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59–112 (2005).
[Crossref]

Other (5)

J. Drevillon, “Design ab-initio de matériaux micro et nanostructurés pour l’émission thermique cohérente en champ proche et en champ lointain,” Thesis, Université de Nantes (2007).

Y. Tsurimaki, P. O. Chapuis, R. Vaillon, J. Okajima, A. Komiya, and S. Murayama, “Reducing thermal radiation between parallel plates in the far-to-near field transition regime,” in “Proceedings of the 15th International Heat Transfer Conference, Kyoto, Japan,” (Aug. 10–15, 2014).

S. M. Rytov, I. U. A. Kravtsov, and V. Tatarskii, Principles of Statistical Radiophysics: Elements of random fields, Principles of Statistical Radiophysics (Springer-Verlag, 1989).

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data9 (1980).

E. Hecht, Optics2nd edition (Addison-Wesley, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1:
Fig. 1: Schematic representation of the one-dimensional system under consideration. Each layer l is characterized by its dielectric function l, its temperature Tl and its boundaries zl and zl+1.
Fig. 2:
Fig. 2: (a): Total hemispherical emissivity of an aluminum susbtrate as a function of temperature. The green line represents the values calculated with the dielectric function of Al at ambient temperature. The red line represent the values calculated with the temperature-dependent dielectric function for Al. (b): Spectral hemispherical emissivity of an Al susbtrate at T = 300 K (green curve) and normalized blackbody spectra at different temperatures (blue curves).
Fig. 3:
Fig. 3: Top left and right: wavelength inside the Si layer λn as a function of ω. Bottom left: spectral hemispherical emissivity of a single Si layer. Bottom right: spectral hemispherical emissivity of a Si layer on an Al substrate.
Fig. 4:
Fig. 4: Total hemispherical emissivity of a Si film coated on an Al substrate. (a): Considering the dielectric function of aluminum at room temperature. (b): Considering the temperature-dependent dielectric function of aluminum.
Fig. 5:
Fig. 5: Spectral hemispherical emissivity of the structures (blue lines) and blackbody spectrum at T = 300 K for different thicknesses of the Si layer. (a): t = 10 nm (b): t = 500 nm (c): t = 874 nm (d): t=5 μm.
Fig. 6:
Fig. 6: (a): Total hemispherical emissivity of the Si monolayer on an Al substrate as a function of temperature for different Si layer thickesses. (b): Enhancement factor as a function of temperature for different thicknesses.
Fig. 7:
Fig. 7: Schematic representation of the investigated structures.
Fig. 8:
Fig. 8: (a) Spectral hemispherical emissivity of the bilayer structure on an Al substrate, for t1 = 1 μm and d = 5 nm. (b) Participation of each layer to the hemispherical emissivity.
Fig. 9:
Fig. 9: (a): Total hemispherical emissivity of a trilayer structure at T = 300 K and d = 5 nm as a function of t1 and t2. The horizontal dashed line represents the thickness that maximizes the emissivity of the monolayer structure at the same temperature. (b): Spectral hemispherical emissivity for t1 = 1 μm and t2 = 0.5 μm (conditions fullfilling Eq. (14); blue dotted line), and for the structure maximizing the total hemispherical emissivity (plain blue line). The blackbody spectrum at 300 K is superimposed.

Tables (2)

Tables Icon

Table 1: Resonance conditions for a single Si layer and a Si layer deposited on an Al substrate.

Tables Icon

Table 2: Maximum values of the spectral and total hemispherical emissivities at T = 300 K for each structure. The values for a simple Al substrate and a single Al thin layer are given for comparison.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

q ω = k 0 2 Θ ( ω , T ) π 2 Re { i s ( ω ) 0 k 0 k ρ d k ρ z s z s + 1 ( g ρ ρ E ( k ρ , z , ω ) g θ ρ H * ( k ρ , z , ω ) + g ρ z E ( k ρ , z , ω ) g θ z H * ( k ρ , z , ω ) g θ θ E ( k ρ , z , ω ) g ρ θ H * ( k ρ , z , ω ) ) d z } ,
q ω b b = Θ ( ω , T ) k 0 2 4 π 2 ,
ε ω = 4 Re { i s ( ω ) 0 k 0 k ρ d k ρ z s z s + 1 ( g ρ ρ E ( k ρ , z , ω ) g θ ρ H * ( k ρ , z , ω ) + g ρ ρ E ( k ρ , z , ω ) g θ z H * ( k ρ , z , ω ) g θ θ E ( k ρ , z , ω ) g ρ θ H * ( k ρ , z , ω ) ) d z } .
ε = q tot q b b = q tot σ T 4 ,
ε ω Al substrate alone = 1 k 0 2 0 k 0 k ρ d k ρ γ = s , p ( 1 | r 10 | 2 ) ,
ε ω Al substrate = 1 k 0 2 0 k 0 k ρ d k ρ γ = s , p ( 1 | r 10 γ | 2 ) ( 1 | r 12 γ | 2 ) | 1 r 10 γ r 12 γ e 2 i k z 1 t 1 | 2 ,
ε ω Si layer = 1 k 0 2 0 k 0 k ρ d k ρ γ = s , p ( 1 | R 1 γ | 2 | T 1 γ | 2 ) ,
R 1 γ = r 01 + r 12 e 2 i k z 1 t 1 1 + r 01 r 12 e 2 i k z 1 t 1 ,
T 1 γ = t 01 + t 12 e 2 i k z 1 t 1 1 + r 01 r 12 e 2 i k z 1 t 1 .
( ω ) = 1 ω p 2 ω ( ω + i Γ ) ,
ω p 2 = N e 2 m * 0 ,
Γ = N e 2 ρ m * ,
λ n ( ω ) = 2 t cos φ ( m ϕ 2 π ) ,
λ n = 2 t 1 cos φ ( m ϕ 1 2 π ) = 2 t 2 cos φ ( m ϕ 2 2 π ) ,

Metrics