Abstract

We present in-coupling gratings for improving the performance of thin film organic solar cells. The impact of the grating on the absorption in the active layer is modeled and explained using a standard cell architecture. An increase in absorption of 14.8% is predicted and is shown to be independent from the active material. The structure is then applied on blade-coated devices and yields an efficiency improvement of 12%. The angular behavior of the structures is measured showing superior performance for two dimensional gratings. By simulating the current generation for different angles and illumination conditions, we predict a total yearly increase of the generated current of 12% using an optimized grating. The fabrication of these structures, moreover, is compatible with roll-to-roll production techniques, thus making them an optimal solution for printed photovoltaics.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical enhancement of a printed organic tandem solar cell using diffractive nanostructures

Jan A. Mayer, Ton Offermans, Marek Chrapa, Martin Pfannmöller, Sara Bals, Rolando Ferrini, and Giovanni Nisato
Opt. Express 26(6) A240-A250 (2018)

Visibly transparent organic photovoltaic with improved transparency and absorption based on tandem photonic crystal for greenhouse application

Fan Yang, Ye Zhang, Yuying Hao, Yanxia Cui, Wenyan Wang, Ting Ji, Fang Shi, and Bin Wei
Appl. Opt. 54(34) 10232-10239 (2015)

Design of light-trapping microscale-textured surfaces for efficient organic solar cells

Kanwar S. Nalwa and Sumit Chaudhary
Opt. Express 18(5) 5168-5178 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9, 174–179 (2015).
    [Crossref]
  2. L. K. Jagadamma, M. Al-Senani, A. El-Labban, I. Gereige, G. O. N. Ndjawa, J. C. D. Faria, T. Kim, K. Zhao, F. Cruciani, D. H. Anjum, M. A. McLachlan, P. M. Beaujuge, and A. Amassian, “Polymer solar cells with efficiency >10% enabled via a facile solution-processed al-doped ZnO electron transporting layer,” Adv. Energy Mater.5, n/a–n/a (2015).
  3. J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2014).
    [Crossref]
  4. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
    [Crossref] [PubMed]
  5. Heliatek GmbH, “Heliatek consolidates its technology leadership by establishing a new world record for organic solar technology with a cell efficiency of 12%,” http://www.heliatek.com/en/press/press-releases/details/ (2013). Accessed: July, 2015.
  6. T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
    [Crossref]
  7. CSEM Brazil, “New phase for printed organic photovoltaics with productionscale facility in brazil,” http://www.csem.ch/site/card.asp?pId=27160 (2014). Accessed: July, 2015.
  8. H. Zervos, R. Das, and K. Ghaffarzadeh, “Organic photovoltaics (opv) 2013–2023: Technologies, markets, players,” http://www.idtechex.com/research/reports/organic-photovoltaics-opv-2013-2023-technologies-markets-players-000349.asp (2014). Accessed: August, 2015.
  9. Z. Tang, W. Tress, and O. Inganäs, “Light trapping in thin film organic solar cells,” Mater. Today 17, 389–396 (2014).
    [Crossref]
  10. K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
    [Crossref]
  11. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref] [PubMed]
  12. M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010).
    [Crossref] [PubMed]
  13. Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-enhanced organic photovoltaics: Breaking the 10% efficiency barrier,” Adv. Mater. 25, 2385–2396 (2013).
    [Crossref] [PubMed]
  14. C.-H. Chou and F.-C. Chen, “Plasmonic nanostructures for light trapping in organic photovoltaic devices,” Nanoscale 6, 8444 (2014).
    [Crossref] [PubMed]
  15. X. Li, X. Ren, F. Xie, Y. Zhang, T. Xu, B. Wei, and W. C. H. Choy, “High-performance organic solar cells with broadband absorption enhancement and reliable reproducibility enabled by collective plasmonic effects,” Adv. Opt. Mater. 3, 1220–1231 (2015).
    [Crossref]
  16. K. R. Catchpole, “A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells,” J. Appl. Phys. 102, 013102 (2007).
    [Crossref]
  17. K. Tvingstedt, S. D. Zilio, O. Inganäs, and M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Opt. Express 16, 21608–21615 (2008).
    [Crossref] [PubMed]
  18. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366 (2010).
    [Crossref] [PubMed]
  19. S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
    [Crossref]
  20. C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Sci. Rep.3 (2013).
    [Crossref]
  21. A. Peer and R. Biswas, “Nanophotonic organic solar cell architecture for advanced light trapping with dual photonic crystals,” ACS Photonics 1, 840–847 (2014).
    [Crossref]
  22. L. Stolz Roman, O. Ingans, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
    [Crossref]
  23. M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
    [Crossref]
  24. S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
    [Crossref]
  25. J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17, 7670 (2009).
    [Crossref] [PubMed]
  26. X. Zhu, W. C. Choy, F. Xie, C. Duan, C. Wang, W. He, F. Huang, and Y. Cao, “A study of optical properties enhancement in low-bandgap polymer solar cells with embedded PEDOT:PSS gratings,” Sol. Energy Mater. Sol. Cells 99, 327–332 (2012).
    [Crossref]
  27. K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20, A39 (2011).
    [Crossref]
  28. J.-Y. Chen, M.-H. Yu, C.-Y. Chang, Y.-H. Chao, K. W. Sun, and C.-S. Hsu, “Enhanced performance of organic thin film solar cells using electrodes with nanoimprinted light-diffraction and light-diffusion structures,” ACS Appl. Mater. Interfaces 6, 6164–6169 (2014).
    [Crossref] [PubMed]
  29. J.-D. Chen, L. Zhou, Q.-D. Ou, Y.-Q. Li, S. Shen, S.-T. Lee, and J.-X. Tang, “Enhanced light harvesting in organic solar cells featuring a biomimetic active layer and a self-cleaning antireflective coating,” Adv. Energy Mater.4, n/a–n/a (2014).
    [Crossref]
  30. A. J. Smith, C. Wang, D. Guo, C. Sun, and J. Huang, “Repurposing blu-ray movie discs as quasi-random nanoimprinting templates for photon management,” Nat. Commun. 5, 5517 (2014).
    [Crossref] [PubMed]
  31. L. Zhou, Q.-D. Ou, J.-D. Chen, S. Shen, J.-X. Tang, Y.-Q. Li, and S.-T. Lee, “Light manipulation for organic optoelectronics using bio-inspired moth’s eye nanostructures,” Sci. Rep. 4, 4040 (2014).
  32. J. Kong, I.-W. Hwang, and K. Lee, “Top-down approach for nanophase reconstruction in bulk heterojunction solar cells,” Adv. Mater. 26, 6275–6283 (2014).
    [Crossref] [PubMed]
  33. M. Graetzel, R. A. J. Janssen, D. B. Mitzi, and E. H. Sargent, “Materials interface engineering for solution-processed photovoltaics,” Nature 488, 304–312 (2012).
    [Crossref] [PubMed]
  34. F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
    [Crossref] [PubMed]
  35. C. Cho, H. Kim, S. Jeong, S.-W. Baek, J.-W. Seo, D. Han, K. Kim, Y. Park, S. Yoo, and J.-Y. Lee, “Random and v-groove texturing for efficient light trapping in organic photovoltaic cells,” Solar Energy Materials and Solar Cells 115, 36–41 (2013).
    [Crossref]
  36. J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5, 6900 (2012).
    [Crossref]
  37. Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15, 4297 (2013).
    [Crossref] [PubMed]
  38. K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516, 7167–7170 (2008).
    [Crossref]
  39. S. Esiner, T. Bus, M. M. Wienk, K. Hermans, and R. A. J. Janssen, “Quantification and validation of the efficiency enhancement reached by application of a retroreflective light trapping texture on a polymer solar cell,” Adv. Energy Mater. 3, 1013–1017 (2013).
    [Crossref]
  40. F. Lütolf, M. Stalder, and O. J. F. Martin, “Up-scalable method to amplify the diffraction efficiency of simple gratings,” Optics Letters 39, 6557 (2014).
    [Crossref] [PubMed]
  41. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811 (1981).
    [Crossref]
  42. Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35, 276 (2010).
    [Crossref] [PubMed]
  43. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  44. S. Zhang, L. Ye, W. Zhao, D. Liu, H. Yao, and J. Hou, “Side chain selection for designing highly efficient photovoltaic polymers with 2d-conjugated structure,” Macromolecules 47, 4653–4659 (2014).
    [Crossref]
  45. M. R. Lenze, T. E. Umbach, C. Lentjes, and K. Meerholz, “Determination of the optical constants of bulk heterojunction active layers from standard solar cell measurements,” Org. Electron. 15, 3584–3589 (2014).
    [Crossref]
  46. U.S. Department of Energy (DOE)/NREL/ALLIANCE, “Reference solar spectral irradiance: Air mass 1.5; bird simple spectral model:spctral2,” http://rredc.nrel.gov/solar/ . Accessed: July, 2015.
  47. T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110, 033111 (2011).
    [Crossref]

2015 (2)

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9, 174–179 (2015).
[Crossref]

X. Li, X. Ren, F. Xie, Y. Zhang, T. Xu, B. Wei, and W. C. H. Choy, “High-performance organic solar cells with broadband absorption enhancement and reliable reproducibility enabled by collective plasmonic effects,” Adv. Opt. Mater. 3, 1220–1231 (2015).
[Crossref]

2014 (14)

A. Peer and R. Biswas, “Nanophotonic organic solar cell architecture for advanced light trapping with dual photonic crystals,” ACS Photonics 1, 840–847 (2014).
[Crossref]

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2014).
[Crossref]

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Z. Tang, W. Tress, and O. Inganäs, “Light trapping in thin film organic solar cells,” Mater. Today 17, 389–396 (2014).
[Crossref]

C.-H. Chou and F.-C. Chen, “Plasmonic nanostructures for light trapping in organic photovoltaic devices,” Nanoscale 6, 8444 (2014).
[Crossref] [PubMed]

J.-Y. Chen, M.-H. Yu, C.-Y. Chang, Y.-H. Chao, K. W. Sun, and C.-S. Hsu, “Enhanced performance of organic thin film solar cells using electrodes with nanoimprinted light-diffraction and light-diffusion structures,” ACS Appl. Mater. Interfaces 6, 6164–6169 (2014).
[Crossref] [PubMed]

A. J. Smith, C. Wang, D. Guo, C. Sun, and J. Huang, “Repurposing blu-ray movie discs as quasi-random nanoimprinting templates for photon management,” Nat. Commun. 5, 5517 (2014).
[Crossref] [PubMed]

L. Zhou, Q.-D. Ou, J.-D. Chen, S. Shen, J.-X. Tang, Y.-Q. Li, and S.-T. Lee, “Light manipulation for organic optoelectronics using bio-inspired moth’s eye nanostructures,” Sci. Rep. 4, 4040 (2014).

J. Kong, I.-W. Hwang, and K. Lee, “Top-down approach for nanophase reconstruction in bulk heterojunction solar cells,” Adv. Mater. 26, 6275–6283 (2014).
[Crossref] [PubMed]

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref] [PubMed]

F. Lütolf, M. Stalder, and O. J. F. Martin, “Up-scalable method to amplify the diffraction efficiency of simple gratings,” Optics Letters 39, 6557 (2014).
[Crossref] [PubMed]

S. Zhang, L. Ye, W. Zhao, D. Liu, H. Yao, and J. Hou, “Side chain selection for designing highly efficient photovoltaic polymers with 2d-conjugated structure,” Macromolecules 47, 4653–4659 (2014).
[Crossref]

M. R. Lenze, T. E. Umbach, C. Lentjes, and K. Meerholz, “Determination of the optical constants of bulk heterojunction active layers from standard solar cell measurements,” Org. Electron. 15, 3584–3589 (2014).
[Crossref]

2013 (4)

S. Esiner, T. Bus, M. M. Wienk, K. Hermans, and R. A. J. Janssen, “Quantification and validation of the efficiency enhancement reached by application of a retroreflective light trapping texture on a polymer solar cell,” Adv. Energy Mater. 3, 1013–1017 (2013).
[Crossref]

C. Cho, H. Kim, S. Jeong, S.-W. Baek, J.-W. Seo, D. Han, K. Kim, Y. Park, S. Yoo, and J.-Y. Lee, “Random and v-groove texturing for efficient light trapping in organic photovoltaic cells,” Solar Energy Materials and Solar Cells 115, 36–41 (2013).
[Crossref]

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15, 4297 (2013).
[Crossref] [PubMed]

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-enhanced organic photovoltaics: Breaking the 10% efficiency barrier,” Adv. Mater. 25, 2385–2396 (2013).
[Crossref] [PubMed]

2012 (4)

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
[Crossref]

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5, 6900 (2012).
[Crossref]

M. Graetzel, R. A. J. Janssen, D. B. Mitzi, and E. H. Sargent, “Materials interface engineering for solution-processed photovoltaics,” Nature 488, 304–312 (2012).
[Crossref] [PubMed]

X. Zhu, W. C. Choy, F. Xie, C. Duan, C. Wang, W. He, F. Huang, and Y. Cao, “A study of optical properties enhancement in low-bandgap polymer solar cells with embedded PEDOT:PSS gratings,” Sol. Energy Mater. Sol. Cells 99, 327–332 (2012).
[Crossref]

2011 (2)

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20, A39 (2011).
[Crossref]

T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110, 033111 (2011).
[Crossref]

2010 (4)

Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35, 276 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
[Crossref]

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516, 7167–7170 (2008).
[Crossref]

K. Tvingstedt, S. D. Zilio, O. Inganäs, and M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Opt. Express 16, 21608–21615 (2008).
[Crossref] [PubMed]

2007 (3)

K. R. Catchpole, “A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells,” J. Appl. Phys. 102, 013102 (2007).
[Crossref]

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
[Crossref]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

2004 (1)

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[Crossref]

2000 (1)

L. Stolz Roman, O. Ingans, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[Crossref]

1981 (1)

Abass, A.

Adams, J.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Ade, H.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Al-Senani, M.

L. K. Jagadamma, M. Al-Senani, A. El-Labban, I. Gereige, G. O. N. Ndjawa, J. C. D. Faria, T. Kim, K. Zhao, F. Cruciani, D. H. Anjum, M. A. McLachlan, P. M. Beaujuge, and A. Amassian, “Polymer solar cells with efficiency >10% enabled via a facile solution-processed al-doped ZnO electron transporting layer,” Adv. Energy Mater.5, n/a–n/a (2015).

Alù, A.

Amassian, A.

L. K. Jagadamma, M. Al-Senani, A. El-Labban, I. Gereige, G. O. N. Ndjawa, J. C. D. Faria, T. Kim, K. Zhao, F. Cruciani, D. H. Anjum, M. A. McLachlan, P. M. Beaujuge, and A. Amassian, “Polymer solar cells with efficiency >10% enabled via a facile solution-processed al-doped ZnO electron transporting layer,” Adv. Energy Mater.5, n/a–n/a (2015).

Ameri, T.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Andersen, T. R.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Andersson, M. R.

L. Stolz Roman, O. Ingans, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[Crossref]

Andreasen, J. W.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Anjum, D. H.

L. K. Jagadamma, M. Al-Senani, A. El-Labban, I. Gereige, G. O. N. Ndjawa, J. C. D. Faria, T. Kim, K. Zhao, F. Cruciani, D. H. Anjum, M. A. McLachlan, P. M. Beaujuge, and A. Amassian, “Polymer solar cells with efficiency >10% enabled via a facile solution-processed al-doped ZnO electron transporting layer,” Adv. Energy Mater.5, n/a–n/a (2015).

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Baek, S.-W.

C. Cho, H. Kim, S. Jeong, S.-W. Baek, J.-W. Seo, D. Han, K. Kim, Y. Park, S. Yoo, and J.-Y. Lee, “Random and v-groove texturing for efficient light trapping in organic photovoltaic cells,” Solar Energy Materials and Solar Cells 115, 36–41 (2013).
[Crossref]

Ballif, C.

T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110, 033111 (2011).
[Crossref]

Bartoli, F. J.

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-enhanced organic photovoltaics: Breaking the 10% efficiency barrier,” Adv. Mater. 25, 2385–2396 (2013).
[Crossref] [PubMed]

Battaglia, C.

T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110, 033111 (2011).
[Crossref]

Beaujuge, P. M.

L. K. Jagadamma, M. Al-Senani, A. El-Labban, I. Gereige, G. O. N. Ndjawa, J. C. D. Faria, T. Kim, K. Zhao, F. Cruciani, D. H. Anjum, M. A. McLachlan, P. M. Beaujuge, and A. Amassian, “Polymer solar cells with efficiency >10% enabled via a facile solution-processed al-doped ZnO electron transporting layer,” Adv. Energy Mater.5, n/a–n/a (2015).

Berny, S.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Bienstman, P.

Biswas, R.

A. Peer and R. Biswas, “Nanophotonic organic solar cell architecture for advanced light trapping with dual photonic crystals,” ACS Photonics 1, 840–847 (2014).
[Crossref]

Brabec, C. J.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516, 7167–7170 (2008).
[Crossref]

Bus, T.

S. Esiner, T. Bus, M. M. Wienk, K. Hermans, and R. A. J. Janssen, “Quantification and validation of the efficiency enhancement reached by application of a retroreflective light trapping texture on a polymer solar cell,” Adv. Energy Mater. 3, 1013–1017 (2013).
[Crossref]

Cao, W.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5, 6900 (2012).
[Crossref]

Cao, Y.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9, 174–179 (2015).
[Crossref]

X. Zhu, W. C. Choy, F. Xie, C. Duan, C. Wang, W. He, F. Huang, and Y. Cao, “A study of optical properties enhancement in low-bandgap polymer solar cells with embedded PEDOT:PSS gratings,” Sol. Energy Mater. Sol. Cells 99, 327–332 (2012).
[Crossref]

Carlé, J. E.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Cassidy, V.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5, 6900 (2012).
[Crossref]

Catchpole, K. R.

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
[Crossref]

K. R. Catchpole, “A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells,” J. Appl. Phys. 102, 013102 (2007).
[Crossref]

Chang, C.-Y.

J.-Y. Chen, M.-H. Yu, C.-Y. Chang, Y.-H. Chao, K. W. Sun, and C.-S. Hsu, “Enhanced performance of organic thin film solar cells using electrodes with nanoimprinted light-diffraction and light-diffusion structures,” ACS Appl. Mater. Interfaces 6, 6164–6169 (2014).
[Crossref] [PubMed]

Chao, Y.-H.

J.-Y. Chen, M.-H. Yu, C.-Y. Chang, Y.-H. Chao, K. W. Sun, and C.-S. Hsu, “Enhanced performance of organic thin film solar cells using electrodes with nanoimprinted light-diffraction and light-diffusion structures,” ACS Appl. Mater. Interfaces 6, 6164–6169 (2014).
[Crossref] [PubMed]

Chaudhary, S.

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15, 4297 (2013).
[Crossref] [PubMed]

Chen, F.-C.

C.-H. Chou and F.-C. Chen, “Plasmonic nanostructures for light trapping in organic photovoltaic devices,” Nanoscale 6, 8444 (2014).
[Crossref] [PubMed]

Chen, J.-D.

L. Zhou, Q.-D. Ou, J.-D. Chen, S. Shen, J.-X. Tang, Y.-Q. Li, and S.-T. Lee, “Light manipulation for organic optoelectronics using bio-inspired moth’s eye nanostructures,” Sci. Rep. 4, 4040 (2014).

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2014).
[Crossref]

J.-D. Chen, L. Zhou, Q.-D. Ou, Y.-Q. Li, S. Shen, S.-T. Lee, and J.-X. Tang, “Enhanced light harvesting in organic solar cells featuring a biomimetic active layer and a self-cleaning antireflective coating,” Adv. Energy Mater.4, n/a–n/a (2014).
[Crossref]

Chen, J.-Y.

J.-Y. Chen, M.-H. Yu, C.-Y. Chang, Y.-H. Chao, K. W. Sun, and C.-S. Hsu, “Enhanced performance of organic thin film solar cells using electrodes with nanoimprinted light-diffraction and light-diffusion structures,” ACS Appl. Mater. Interfaces 6, 6164–6169 (2014).
[Crossref] [PubMed]

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Chen, W.

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Sci. Rep.3 (2013).
[Crossref]

Chen, Y.

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15, 4297 (2013).
[Crossref] [PubMed]

Cho, C.

C. Cho, H. Kim, S. Jeong, S.-W. Baek, J.-W. Seo, D. Han, K. Kim, Y. Park, S. Yoo, and J.-Y. Lee, “Random and v-groove texturing for efficient light trapping in organic photovoltaic cells,” Solar Energy Materials and Solar Cells 115, 36–41 (2013).
[Crossref]

Chou, C.-H.

C.-H. Chou and F.-C. Chen, “Plasmonic nanostructures for light trapping in organic photovoltaic devices,” Nanoscale 6, 8444 (2014).
[Crossref] [PubMed]

Choy, W. C.

X. Zhu, W. C. Choy, F. Xie, C. Duan, C. Wang, W. He, F. Huang, and Y. Cao, “A study of optical properties enhancement in low-bandgap polymer solar cells with embedded PEDOT:PSS gratings,” Sol. Energy Mater. Sol. Cells 99, 327–332 (2012).
[Crossref]

Choy, W. C. H.

X. Li, X. Ren, F. Xie, Y. Zhang, T. Xu, B. Wei, and W. C. H. Choy, “High-performance organic solar cells with broadband absorption enhancement and reliable reproducibility enabled by collective plasmonic effects,” Adv. Opt. Mater. 3, 1220–1231 (2015).
[Crossref]

Cruciani, F.

L. K. Jagadamma, M. Al-Senani, A. El-Labban, I. Gereige, G. O. N. Ndjawa, J. C. D. Faria, T. Kim, K. Zhao, F. Cruciani, D. H. Anjum, M. A. McLachlan, P. M. Beaujuge, and A. Amassian, “Polymer solar cells with efficiency >10% enabled via a facile solution-processed al-doped ZnO electron transporting layer,” Adv. Energy Mater.5, n/a–n/a (2015).

Cui, C.

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2014).
[Crossref]

Dam, H. F.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Das, R.

H. Zervos, R. Das, and K. Ghaffarzadeh, “Organic photovoltaics (opv) 2013–2023: Technologies, markets, players,” http://www.idtechex.com/research/reports/organic-photovoltaics-opv-2013-2023-technologies-markets-players-000349.asp (2014). Accessed: August, 2015.

Dennler, G.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516, 7167–7170 (2008).
[Crossref]

Duan, C.

X. Zhu, W. C. Choy, F. Xie, C. Duan, C. Wang, W. He, F. Huang, and Y. Cao, “A study of optical properties enhancement in low-bandgap polymer solar cells with embedded PEDOT:PSS gratings,” Sol. Energy Mater. Sol. Cells 99, 327–332 (2012).
[Crossref]

El-Labban, A.

L. K. Jagadamma, M. Al-Senani, A. El-Labban, I. Gereige, G. O. N. Ndjawa, J. C. D. Faria, T. Kim, K. Zhao, F. Cruciani, D. H. Anjum, M. A. McLachlan, P. M. Beaujuge, and A. Amassian, “Polymer solar cells with efficiency >10% enabled via a facile solution-processed al-doped ZnO electron transporting layer,” Adv. Energy Mater.5, n/a–n/a (2015).

Elshobaki, M.

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15, 4297 (2013).
[Crossref] [PubMed]

Eom, S.-H.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5, 6900 (2012).
[Crossref]

Esiner, S.

S. Esiner, T. Bus, M. M. Wienk, K. Hermans, and R. A. J. Janssen, “Quantification and validation of the efficiency enhancement reached by application of a retroreflective light trapping texture on a polymer solar cell,” Adv. Energy Mater. 3, 1013–1017 (2013).
[Crossref]

Fan, S.

Faria, J. C. D.

L. K. Jagadamma, M. Al-Senani, A. El-Labban, I. Gereige, G. O. N. Ndjawa, J. C. D. Faria, T. Kim, K. Zhao, F. Cruciani, D. H. Anjum, M. A. McLachlan, P. M. Beaujuge, and A. Amassian, “Polymer solar cells with efficiency >10% enabled via a facile solution-processed al-doped ZnO electron transporting layer,” Adv. Energy Mater.5, n/a–n/a (2015).

Forberich, K.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516, 7167–7170 (2008).
[Crossref]

Fromherz, T.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516, 7167–7170 (2008).
[Crossref]

Gaiser, D.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Galli, M.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref] [PubMed]

Gan, Q.

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-enhanced organic photovoltaics: Breaking the 10% efficiency barrier,” Adv. Mater. 25, 2385–2396 (2013).
[Crossref] [PubMed]

Gaylord, T. K.

Gereige, I.

L. K. Jagadamma, M. Al-Senani, A. El-Labban, I. Gereige, G. O. N. Ndjawa, J. C. D. Faria, T. Kim, K. Zhao, F. Cruciani, D. H. Anjum, M. A. McLachlan, P. M. Beaujuge, and A. Amassian, “Polymer solar cells with efficiency >10% enabled via a facile solution-processed al-doped ZnO electron transporting layer,” Adv. Energy Mater.5, n/a–n/a (2015).

Gevorgyan, S. A.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Ghaffarzadeh, K.

H. Zervos, R. Das, and K. Ghaffarzadeh, “Organic photovoltaics (opv) 2013–2023: Technologies, markets, players,” http://www.idtechex.com/research/reports/organic-photovoltaics-opv-2013-2023-technologies-markets-players-000349.asp (2014). Accessed: August, 2015.

Glatthaar, M.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[Crossref]

Gombert, A.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[Crossref]

Graetzel, M.

M. Graetzel, R. A. J. Janssen, D. B. Mitzi, and E. H. Sargent, “Materials interface engineering for solution-processed photovoltaics,” Nature 488, 304–312 (2012).
[Crossref] [PubMed]

Granlund, T.

L. Stolz Roman, O. Ingans, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[Crossref]

Gregorkiewicz, T.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref] [PubMed]

Guo, D.

A. J. Smith, C. Wang, D. Guo, C. Sun, and J. Huang, “Repurposing blu-ray movie discs as quasi-random nanoimprinting templates for photon management,” Nat. Commun. 5, 5517 (2014).
[Crossref] [PubMed]

Guo, L. J.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010).
[Crossref] [PubMed]

Han, D.

C. Cho, H. Kim, S. Jeong, S.-W. Baek, J.-W. Seo, D. Han, K. Kim, Y. Park, S. Yoo, and J.-Y. Lee, “Random and v-groove texturing for efficient light trapping in organic photovoltaic cells,” Solar Energy Materials and Solar Cells 115, 36–41 (2013).
[Crossref]

He, W.

X. Zhu, W. C. Choy, F. Xie, C. Duan, C. Wang, W. He, F. Huang, and Y. Cao, “A study of optical properties enhancement in low-bandgap polymer solar cells with embedded PEDOT:PSS gratings,” Sol. Energy Mater. Sol. Cells 99, 327–332 (2012).
[Crossref]

He, Z.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9, 174–179 (2015).
[Crossref]

Helgesen, M.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Hermans, K.

S. Esiner, T. Bus, M. M. Wienk, K. Hermans, and R. A. J. Janssen, “Quantification and validation of the efficiency enhancement reached by application of a retroreflective light trapping texture on a polymer solar cell,” Adv. Energy Mater. 3, 1013–1017 (2013).
[Crossref]

Hingerl, K.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516, 7167–7170 (2008).
[Crossref]

Hinsch, A.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[Crossref]

Ho, K.-M.

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15, 4297 (2013).
[Crossref] [PubMed]

Hösel, M.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Hou, J.

S. Zhang, L. Ye, W. Zhao, D. Liu, H. Yao, and J. Hou, “Side chain selection for designing highly efficient photovoltaic polymers with 2d-conjugated structure,” Macromolecules 47, 4653–4659 (2014).
[Crossref]

Hsu, C.-S.

J.-Y. Chen, M.-H. Yu, C.-Y. Chang, Y.-H. Chao, K. W. Sun, and C.-S. Hsu, “Enhanced performance of organic thin film solar cells using electrodes with nanoimprinted light-diffraction and light-diffusion structures,” ACS Appl. Mater. Interfaces 6, 6164–6169 (2014).
[Crossref] [PubMed]

Hu, H.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Huang, F.

X. Zhu, W. C. Choy, F. Xie, C. Duan, C. Wang, W. He, F. Huang, and Y. Cao, “A study of optical properties enhancement in low-bandgap polymer solar cells with embedded PEDOT:PSS gratings,” Sol. Energy Mater. Sol. Cells 99, 327–332 (2012).
[Crossref]

Huang, J.

A. J. Smith, C. Wang, D. Guo, C. Sun, and J. Huang, “Repurposing blu-ray movie discs as quasi-random nanoimprinting templates for photon management,” Nat. Commun. 5, 5517 (2014).
[Crossref] [PubMed]

Hummelen, J. C.

L. Stolz Roman, O. Ingans, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[Crossref]

Hwang, I.-W.

J. Kong, I.-W. Hwang, and K. Lee, “Top-down approach for nanophase reconstruction in bulk heterojunction solar cells,” Adv. Mater. 26, 6275–6283 (2014).
[Crossref] [PubMed]

Inganas, O.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
[Crossref]

Inganäs, O.

Ingans, O.

L. Stolz Roman, O. Ingans, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[Crossref]

Jagadamma, L. K.

L. K. Jagadamma, M. Al-Senani, A. El-Labban, I. Gereige, G. O. N. Ndjawa, J. C. D. Faria, T. Kim, K. Zhao, F. Cruciani, D. H. Anjum, M. A. McLachlan, P. M. Beaujuge, and A. Amassian, “Polymer solar cells with efficiency >10% enabled via a facile solution-processed al-doped ZnO electron transporting layer,” Adv. Energy Mater.5, n/a–n/a (2015).

Janssen, R. A. J.

S. Esiner, T. Bus, M. M. Wienk, K. Hermans, and R. A. J. Janssen, “Quantification and validation of the efficiency enhancement reached by application of a retroreflective light trapping texture on a polymer solar cell,” Adv. Energy Mater. 3, 1013–1017 (2013).
[Crossref]

M. Graetzel, R. A. J. Janssen, D. B. Mitzi, and E. H. Sargent, “Materials interface engineering for solution-processed photovoltaics,” Nature 488, 304–312 (2012).
[Crossref] [PubMed]

Jeong, S.

C. Cho, H. Kim, S. Jeong, S.-W. Baek, J.-W. Seo, D. Han, K. Kim, Y. Park, S. Yoo, and J.-Y. Lee, “Random and v-groove texturing for efficient light trapping in organic photovoltaic cells,” Solar Energy Materials and Solar Cells 115, 36–41 (2013).
[Crossref]

Jiang, K.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Jo, J.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
[Crossref]

Jørgensen, M.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Kafafi, Z. H.

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-enhanced organic photovoltaics: Breaking the 10% efficiency barrier,” Adv. Mater. 25, 2385–2396 (2013).
[Crossref] [PubMed]

Kang, M.-G.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010).
[Crossref] [PubMed]

Kim, D.-Y.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
[Crossref]

Kim, H.

C. Cho, H. Kim, S. Jeong, S.-W. Baek, J.-W. Seo, D. Han, K. Kim, Y. Park, S. Yoo, and J.-Y. Lee, “Random and v-groove texturing for efficient light trapping in organic photovoltaic cells,” Solar Energy Materials and Solar Cells 115, 36–41 (2013).
[Crossref]

Kim, J.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
[Crossref]

Kim, J. K.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Kim, K.

C. Cho, H. Kim, S. Jeong, S.-W. Baek, J.-W. Seo, D. Han, K. Kim, Y. Park, S. Yoo, and J.-Y. Lee, “Random and v-groove texturing for efficient light trapping in organic photovoltaic cells,” Solar Energy Materials and Solar Cells 115, 36–41 (2013).
[Crossref]

Kim, S.-S.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
[Crossref]

Kim, T.

L. K. Jagadamma, M. Al-Senani, A. El-Labban, I. Gereige, G. O. N. Ndjawa, J. C. D. Faria, T. Kim, K. Zhao, F. Cruciani, D. H. Anjum, M. A. McLachlan, P. M. Beaujuge, and A. Amassian, “Polymer solar cells with efficiency >10% enabled via a facile solution-processed al-doped ZnO electron transporting layer,” Adv. Energy Mater.5, n/a–n/a (2015).

Ko, D.-H.

Kong, J.

J. Kong, I.-W. Hwang, and K. Lee, “Top-down approach for nanophase reconstruction in bulk heterojunction solar cells,” Adv. Mater. 26, 6275–6283 (2014).
[Crossref] [PubMed]

Krauss, T. F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref] [PubMed]

Krebs, F. C.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Kreul, K.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Lanz, T.

T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110, 033111 (2011).
[Crossref]

Larsen-Olsen, T. T.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Le, K. Q.

Lee, J.-Y.

C. Cho, H. Kim, S. Jeong, S.-W. Baek, J.-W. Seo, D. Han, K. Kim, Y. Park, S. Yoo, and J.-Y. Lee, “Random and v-groove texturing for efficient light trapping in organic photovoltaic cells,” Solar Energy Materials and Solar Cells 115, 36–41 (2013).
[Crossref]

Lee, K.

J. Kong, I.-W. Hwang, and K. Lee, “Top-down approach for nanophase reconstruction in bulk heterojunction solar cells,” Adv. Mater. 26, 6275–6283 (2014).
[Crossref] [PubMed]

Lee, S.-T.

L. Zhou, Q.-D. Ou, J.-D. Chen, S. Shen, J.-X. Tang, Y.-Q. Li, and S.-T. Lee, “Light manipulation for organic optoelectronics using bio-inspired moth’s eye nanostructures,” Sci. Rep. 4, 4040 (2014).

J.-D. Chen, L. Zhou, Q.-D. Ou, Y.-Q. Li, S. Shen, S.-T. Lee, and J.-X. Tang, “Enhanced light harvesting in organic solar cells featuring a biomimetic active layer and a self-cleaning antireflective coating,” Adv. Energy Mater.4, n/a–n/a (2014).
[Crossref]

Lee, Y. T.

Legros, M.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Lemaître, N.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Lentjes, C.

M. R. Lenze, T. E. Umbach, C. Lentjes, and K. Meerholz, “Determination of the optical constants of bulk heterojunction active layers from standard solar cell measurements,” Org. Electron. 15, 3584–3589 (2014).
[Crossref]

Lenze, M. R.

M. R. Lenze, T. E. Umbach, C. Lentjes, and K. Meerholz, “Determination of the optical constants of bulk heterojunction active layers from standard solar cell measurements,” Org. Electron. 15, 3584–3589 (2014).
[Crossref]

Li, C.

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2014).
[Crossref]

Li, N.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Li, X.

X. Li, X. Ren, F. Xie, Y. Zhang, T. Xu, B. Wei, and W. C. H. Choy, “High-performance organic solar cells with broadband absorption enhancement and reliable reproducibility enabled by collective plasmonic effects,” Adv. Opt. Mater. 3, 1220–1231 (2015).
[Crossref]

Li, Y.

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2014).
[Crossref]

Li, Y.-Q.

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2014).
[Crossref]

L. Zhou, Q.-D. Ou, J.-D. Chen, S. Shen, J.-X. Tang, Y.-Q. Li, and S.-T. Lee, “Light manipulation for organic optoelectronics using bio-inspired moth’s eye nanostructures,” Sci. Rep. 4, 4040 (2014).

J.-D. Chen, L. Zhou, Q.-D. Ou, Y.-Q. Li, S. Shen, S.-T. Lee, and J.-X. Tang, “Enhanced light harvesting in organic solar cells featuring a biomimetic active layer and a self-cleaning antireflective coating,” Adv. Energy Mater.4, n/a–n/a (2014).
[Crossref]

Li, Z.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Lin, H.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Lin, S.-Y.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Liu, D.

S. Zhang, L. Ye, W. Zhao, D. Liu, H. Yao, and J. Hou, “Side chain selection for designing highly efficient photovoltaic polymers with 2d-conjugated structure,” Macromolecules 47, 4653–4659 (2014).
[Crossref]

Liu, F.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9, 174–179 (2015).
[Crossref]

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Liu, Y.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Lopez, R.

Lozman, O. R.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Luo, X.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010).
[Crossref] [PubMed]

Lütolf, F.

F. Lütolf, M. Stalder, and O. J. F. Martin, “Up-scalable method to amplify the diffraction efficiency of simple gratings,” Optics Letters 39, 6557 (2014).
[Crossref] [PubMed]

Ma, W.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Machui, F.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Maes, B.

Martin, O. J. F.

F. Lütolf, M. Stalder, and O. J. F. Martin, “Up-scalable method to amplify the diffraction efficiency of simple gratings,” Optics Letters 39, 6557 (2014).
[Crossref] [PubMed]

McLachlan, M. A.

L. K. Jagadamma, M. Al-Senani, A. El-Labban, I. Gereige, G. O. N. Ndjawa, J. C. D. Faria, T. Kim, K. Zhao, F. Cruciani, D. H. Anjum, M. A. McLachlan, P. M. Beaujuge, and A. Amassian, “Polymer solar cells with efficiency >10% enabled via a facile solution-processed al-doped ZnO electron transporting layer,” Adv. Energy Mater.5, n/a–n/a (2015).

Meerholz, K.

M. R. Lenze, T. E. Umbach, C. Lentjes, and K. Meerholz, “Determination of the optical constants of bulk heterojunction active layers from standard solar cell measurements,” Org. Electron. 15, 3584–3589 (2014).
[Crossref]

Mitzi, D. B.

M. Graetzel, R. A. J. Janssen, D. B. Mitzi, and E. H. Sargent, “Materials interface engineering for solution-processed photovoltaics,” Nature 488, 304–312 (2012).
[Crossref] [PubMed]

Moharam, M. G.

Mokkapati, S.

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
[Crossref]

Mu, C.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Myers, J. D.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5, 6900 (2012).
[Crossref]

Na, S.-I.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
[Crossref]

Ndjawa, G. O. N.

L. K. Jagadamma, M. Al-Senani, A. El-Labban, I. Gereige, G. O. N. Ndjawa, J. C. D. Faria, T. Kim, K. Zhao, F. Cruciani, D. H. Anjum, M. A. McLachlan, P. M. Beaujuge, and A. Amassian, “Polymer solar cells with efficiency >10% enabled via a facile solution-processed al-doped ZnO electron transporting layer,” Adv. Energy Mater.5, n/a–n/a (2015).

Niggemann, M.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[Crossref]

Noack, M. A.

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15, 4297 (2013).
[Crossref] [PubMed]

Nordman, S.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Nyberg, T.

L. Stolz Roman, O. Ingans, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[Crossref]

Oh, S.-H.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
[Crossref]

Ou, Q.-D.

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2014).
[Crossref]

L. Zhou, Q.-D. Ou, J.-D. Chen, S. Shen, J.-X. Tang, Y.-Q. Li, and S.-T. Lee, “Light manipulation for organic optoelectronics using bio-inspired moth’s eye nanostructures,” Sci. Rep. 4, 4040 (2014).

J.-D. Chen, L. Zhou, Q.-D. Ou, Y.-Q. Li, S. Shen, S.-T. Lee, and J.-X. Tang, “Enhanced light harvesting in organic solar cells featuring a biomimetic active layer and a self-cleaning antireflective coating,” Adv. Energy Mater.4, n/a–n/a (2014).
[Crossref]

Park, H. J.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010).
[Crossref] [PubMed]

Park, J.-M.

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15, 4297 (2013).
[Crossref] [PubMed]

Park, Y.

C. Cho, H. Kim, S. Jeong, S.-W. Baek, J.-W. Seo, D. Han, K. Kim, Y. Park, S. Yoo, and J.-Y. Lee, “Random and v-groove texturing for efficient light trapping in organic photovoltaic cells,” Solar Energy Materials and Solar Cells 115, 36–41 (2013).
[Crossref]

Peer, A.

A. Peer and R. Biswas, “Nanophotonic organic solar cell architecture for advanced light trapping with dual photonic crystals,” ACS Photonics 1, 840–847 (2014).
[Crossref]

Persson, N.-K.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Priolo, F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref] [PubMed]

Rahachou, A.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
[Crossref]

Raman, A.

Ren, X.

X. Li, X. Ren, F. Xie, Y. Zhang, T. Xu, B. Wei, and W. C. H. Choy, “High-performance organic solar cells with broadband absorption enhancement and reliable reproducibility enabled by collective plasmonic effects,” Adv. Opt. Mater. 3, 1220–1231 (2015).
[Crossref]

Ruhstaller, B.

T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110, 033111 (2011).
[Crossref]

Russell, T. P.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9, 174–179 (2015).
[Crossref]

Samulski, E. T.

Sargent, E. H.

M. Graetzel, R. A. J. Janssen, D. B. Mitzi, and E. H. Sargent, “Materials interface engineering for solution-processed photovoltaics,” Nature 488, 304–312 (2012).
[Crossref] [PubMed]

Scharber, M. C.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516, 7167–7170 (2008).
[Crossref]

Scheel, A.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Schubert, E. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Schubert, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Seo, J.-W.

C. Cho, H. Kim, S. Jeong, S.-W. Baek, J.-W. Seo, D. Han, K. Kim, Y. Park, S. Yoo, and J.-Y. Lee, “Random and v-groove texturing for efficient light trapping in organic photovoltaic cells,” Solar Energy Materials and Solar Cells 115, 36–41 (2013).
[Crossref]

Shen, S.

L. Zhou, Q.-D. Ou, J.-D. Chen, S. Shen, J.-X. Tang, Y.-Q. Li, and S.-T. Lee, “Light manipulation for organic optoelectronics using bio-inspired moth’s eye nanostructures,” Sci. Rep. 4, 4040 (2014).

J.-D. Chen, L. Zhou, Q.-D. Ou, Y.-Q. Li, S. Shen, S.-T. Lee, and J.-X. Tang, “Enhanced light harvesting in organic solar cells featuring a biomimetic active layer and a self-cleaning antireflective coating,” Adv. Energy Mater.4, n/a–n/a (2014).
[Crossref]

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Smith, A. J.

A. J. Smith, C. Wang, D. Guo, C. Sun, and J. Huang, “Repurposing blu-ray movie discs as quasi-random nanoimprinting templates for photon management,” Nat. Commun. 5, 5517 (2014).
[Crossref] [PubMed]

Søndergaard, R. R.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Song, Y. M.

Spyropoulos, G. D.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Stalder, M.

F. Lütolf, M. Stalder, and O. J. F. Martin, “Up-scalable method to amplify the diffraction efficiency of simple gratings,” Optics Letters 39, 6557 (2014).
[Crossref] [PubMed]

Stolz Roman, L.

L. Stolz Roman, O. Ingans, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[Crossref]

Sun, C.

A. J. Smith, C. Wang, D. Guo, C. Sun, and J. Huang, “Repurposing blu-ray movie discs as quasi-random nanoimprinting templates for photon management,” Nat. Commun. 5, 5517 (2014).
[Crossref] [PubMed]

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Sci. Rep.3 (2013).
[Crossref]

Sun, K. W.

J.-Y. Chen, M.-H. Yu, C.-Y. Chang, Y.-H. Chao, K. W. Sun, and C.-S. Hsu, “Enhanced performance of organic thin film solar cells using electrodes with nanoimprinted light-diffraction and light-diffusion structures,” ACS Appl. Mater. Interfaces 6, 6164–6169 (2014).
[Crossref] [PubMed]

Svensson, M.

L. Stolz Roman, O. Ingans, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[Crossref]

Tang, J.-X.

L. Zhou, Q.-D. Ou, J.-D. Chen, S. Shen, J.-X. Tang, Y.-Q. Li, and S.-T. Lee, “Light manipulation for organic optoelectronics using bio-inspired moth’s eye nanostructures,” Sci. Rep. 4, 4040 (2014).

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2014).
[Crossref]

J.-D. Chen, L. Zhou, Q.-D. Ou, Y.-Q. Li, S. Shen, S.-T. Lee, and J.-X. Tang, “Enhanced light harvesting in organic solar cells featuring a biomimetic active layer and a self-cleaning antireflective coating,” Adv. Energy Mater.4, n/a–n/a (2014).
[Crossref]

Tang, Z.

Z. Tang, W. Tress, and O. Inganäs, “Light trapping in thin film organic solar cells,” Mater. Today 17, 389–396 (2014).
[Crossref]

Tormen, M.

Tress, W.

Z. Tang, W. Tress, and O. Inganäs, “Light trapping in thin film organic solar cells,” Mater. Today 17, 389–396 (2014).
[Crossref]

Tumbleston, J. R.

Tvingstedt, K.

K. Tvingstedt, S. D. Zilio, O. Inganäs, and M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Opt. Express 16, 21608–21615 (2008).
[Crossref] [PubMed]

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
[Crossref]

Umbach, T. E.

M. R. Lenze, T. E. Umbach, C. Lentjes, and K. Meerholz, “Determination of the optical constants of bulk heterojunction active layers from standard solar cell measurements,” Org. Electron. 15, 3584–3589 (2014).
[Crossref]

Välimäki, M.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Vilkman, M.

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

Wang, C.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9, 174–179 (2015).
[Crossref]

A. J. Smith, C. Wang, D. Guo, C. Sun, and J. Huang, “Repurposing blu-ray movie discs as quasi-random nanoimprinting templates for photon management,” Nat. Commun. 5, 5517 (2014).
[Crossref] [PubMed]

X. Zhu, W. C. Choy, F. Xie, C. Duan, C. Wang, W. He, F. Huang, and Y. Cao, “A study of optical properties enhancement in low-bandgap polymer solar cells with embedded PEDOT:PSS gratings,” Sol. Energy Mater. Sol. Cells 99, 327–332 (2012).
[Crossref]

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Sci. Rep.3 (2013).
[Crossref]

Wei, B.

X. Li, X. Ren, F. Xie, Y. Zhang, T. Xu, B. Wei, and W. C. H. Choy, “High-performance organic solar cells with broadband absorption enhancement and reliable reproducibility enabled by collective plasmonic effects,” Adv. Opt. Mater. 3, 1220–1231 (2015).
[Crossref]

Wienk, M. M.

S. Esiner, T. Bus, M. M. Wienk, K. Hermans, and R. A. J. Janssen, “Quantification and validation of the efficiency enhancement reached by application of a retroreflective light trapping texture on a polymer solar cell,” Adv. Energy Mater. 3, 1013–1017 (2013).
[Crossref]

Wittwer, V.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[Crossref]

Wu, H.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9, 174–179 (2015).
[Crossref]

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Xiao, B.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9, 174–179 (2015).
[Crossref]

Xiao, S.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9, 174–179 (2015).
[Crossref]

Xie, F.

X. Li, X. Ren, F. Xie, Y. Zhang, T. Xu, B. Wei, and W. C. H. Choy, “High-performance organic solar cells with broadband absorption enhancement and reliable reproducibility enabled by collective plasmonic effects,” Adv. Opt. Mater. 3, 1220–1231 (2015).
[Crossref]

X. Zhu, W. C. Choy, F. Xie, C. Duan, C. Wang, W. He, F. Huang, and Y. Cao, “A study of optical properties enhancement in low-bandgap polymer solar cells with embedded PEDOT:PSS gratings,” Sol. Energy Mater. Sol. Cells 99, 327–332 (2012).
[Crossref]

Xu, T.

X. Li, X. Ren, F. Xie, Y. Zhang, T. Xu, B. Wei, and W. C. H. Choy, “High-performance organic solar cells with broadband absorption enhancement and reliable reproducibility enabled by collective plasmonic effects,” Adv. Opt. Mater. 3, 1220–1231 (2015).
[Crossref]

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010).
[Crossref] [PubMed]

Xue, J.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5, 6900 (2012).
[Crossref]

Yan, H.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Yang, L.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5, 6900 (2012).
[Crossref]

Yang, Y.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9, 174–179 (2015).
[Crossref]

Yao, H.

S. Zhang, L. Ye, W. Zhao, D. Liu, H. Yao, and J. Hou, “Side chain selection for designing highly efficient photovoltaic polymers with 2d-conjugated structure,” Macromolecules 47, 4653–4659 (2014).
[Crossref]

Ye, L.

S. Zhang, L. Ye, W. Zhao, D. Liu, H. Yao, and J. Hou, “Side chain selection for designing highly efficient photovoltaic polymers with 2d-conjugated structure,” Macromolecules 47, 4653–4659 (2014).
[Crossref]

Ye, Z.

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15, 4297 (2013).
[Crossref] [PubMed]

Yoo, S.

C. Cho, H. Kim, S. Jeong, S.-W. Baek, J.-W. Seo, D. Han, K. Kim, Y. Park, S. Yoo, and J.-Y. Lee, “Random and v-groove texturing for efficient light trapping in organic photovoltaic cells,” Solar Energy Materials and Solar Cells 115, 36–41 (2013).
[Crossref]

You, W.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5, 6900 (2012).
[Crossref]

Yu, J. S.

Yu, M.-H.

J.-Y. Chen, M.-H. Yu, C.-Y. Chang, Y.-H. Chao, K. W. Sun, and C.-S. Hsu, “Enhanced performance of organic thin film solar cells using electrodes with nanoimprinted light-diffraction and light-diffusion structures,” ACS Appl. Mater. Interfaces 6, 6164–6169 (2014).
[Crossref] [PubMed]

Yu, S.

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Sci. Rep.3 (2013).
[Crossref]

Yu, Z.

Zervos, H.

H. Zervos, R. Das, and K. Ghaffarzadeh, “Organic photovoltaics (opv) 2013–2023: Technologies, markets, players,” http://www.idtechex.com/research/reports/organic-photovoltaics-opv-2013-2023-technologies-markets-players-000349.asp (2014). Accessed: August, 2015.

Zhang, S.

S. Zhang, L. Ye, W. Zhao, D. Liu, H. Yao, and J. Hou, “Side chain selection for designing highly efficient photovoltaic polymers with 2d-conjugated structure,” Macromolecules 47, 4653–4659 (2014).
[Crossref]

Zhang, Y.

X. Li, X. Ren, F. Xie, Y. Zhang, T. Xu, B. Wei, and W. C. H. Choy, “High-performance organic solar cells with broadband absorption enhancement and reliable reproducibility enabled by collective plasmonic effects,” Adv. Opt. Mater. 3, 1220–1231 (2015).
[Crossref]

Zhao, J.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Zhao, K.

L. K. Jagadamma, M. Al-Senani, A. El-Labban, I. Gereige, G. O. N. Ndjawa, J. C. D. Faria, T. Kim, K. Zhao, F. Cruciani, D. H. Anjum, M. A. McLachlan, P. M. Beaujuge, and A. Amassian, “Polymer solar cells with efficiency >10% enabled via a facile solution-processed al-doped ZnO electron transporting layer,” Adv. Energy Mater.5, n/a–n/a (2015).

Zhao, W.

S. Zhang, L. Ye, W. Zhao, D. Liu, H. Yao, and J. Hou, “Side chain selection for designing highly efficient photovoltaic polymers with 2d-conjugated structure,” Macromolecules 47, 4653–4659 (2014).
[Crossref]

Zhou, L.

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2014).
[Crossref]

L. Zhou, Q.-D. Ou, J.-D. Chen, S. Shen, J.-X. Tang, Y.-Q. Li, and S.-T. Lee, “Light manipulation for organic optoelectronics using bio-inspired moth’s eye nanostructures,” Sci. Rep. 4, 4040 (2014).

J.-D. Chen, L. Zhou, Q.-D. Ou, Y.-Q. Li, S. Shen, S.-T. Lee, and J.-X. Tang, “Enhanced light harvesting in organic solar cells featuring a biomimetic active layer and a self-cleaning antireflective coating,” Adv. Energy Mater.4, n/a–n/a (2014).
[Crossref]

Zhou, R.

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5, 6900 (2012).
[Crossref]

Zhu, X.

X. Zhu, W. C. Choy, F. Xie, C. Duan, C. Wang, W. He, F. Huang, and Y. Cao, “A study of optical properties enhancement in low-bandgap polymer solar cells with embedded PEDOT:PSS gratings,” Sol. Energy Mater. Sol. Cells 99, 327–332 (2012).
[Crossref]

Zilio, S. D.

Zozoulenko, I. V.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
[Crossref]

ACS Appl. Mater. Interfaces (1)

J.-Y. Chen, M.-H. Yu, C.-Y. Chang, Y.-H. Chao, K. W. Sun, and C.-S. Hsu, “Enhanced performance of organic thin film solar cells using electrodes with nanoimprinted light-diffraction and light-diffusion structures,” ACS Appl. Mater. Interfaces 6, 6164–6169 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

A. Peer and R. Biswas, “Nanophotonic organic solar cell architecture for advanced light trapping with dual photonic crystals,” ACS Photonics 1, 840–847 (2014).
[Crossref]

Adv. Energy Mater. (1)

S. Esiner, T. Bus, M. M. Wienk, K. Hermans, and R. A. J. Janssen, “Quantification and validation of the efficiency enhancement reached by application of a retroreflective light trapping texture on a polymer solar cell,” Adv. Energy Mater. 3, 1013–1017 (2013).
[Crossref]

Adv. Funct. Mater. (1)

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
[Crossref]

Adv. Mater. (5)

L. Stolz Roman, O. Ingans, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[Crossref]

J. Kong, I.-W. Hwang, and K. Lee, “Top-down approach for nanophase reconstruction in bulk heterojunction solar cells,” Adv. Mater. 26, 6275–6283 (2014).
[Crossref] [PubMed]

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes,” Adv. Mater. 22, 4378–4383 (2010).
[Crossref] [PubMed]

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-enhanced organic photovoltaics: Breaking the 10% efficiency barrier,” Adv. Mater. 25, 2385–2396 (2013).
[Crossref] [PubMed]

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2014).
[Crossref]

Adv. Opt. Mater. (1)

X. Li, X. Ren, F. Xie, Y. Zhang, T. Xu, B. Wei, and W. C. H. Choy, “High-performance organic solar cells with broadband absorption enhancement and reliable reproducibility enabled by collective plasmonic effects,” Adv. Opt. Mater. 3, 1220–1231 (2015).
[Crossref]

Appl. Phys. Lett. (1)

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
[Crossref]

Energy Environ. Sci. (2)

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, and F. C. Krebs, “Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 2925 (2014).
[Crossref]

J. D. Myers, W. Cao, V. Cassidy, S.-H. Eom, R. Zhou, L. Yang, W. You, and J. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energy Environ. Sci. 5, 6900 (2012).
[Crossref]

J. Appl. Phys. (3)

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
[Crossref]

K. R. Catchpole, “A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells,” J. Appl. Phys. 102, 013102 (2007).
[Crossref]

T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys. 110, 033111 (2011).
[Crossref]

J. Opt. Soc. Am. (1)

Macromolecules (1)

S. Zhang, L. Ye, W. Zhao, D. Liu, H. Yao, and J. Hou, “Side chain selection for designing highly efficient photovoltaic polymers with 2d-conjugated structure,” Macromolecules 47, 4653–4659 (2014).
[Crossref]

Mater. Today (1)

Z. Tang, W. Tress, and O. Inganäs, “Light trapping in thin film organic solar cells,” Mater. Today 17, 389–396 (2014).
[Crossref]

Nanoscale (1)

C.-H. Chou and F.-C. Chen, “Plasmonic nanostructures for light trapping in organic photovoltaic devices,” Nanoscale 6, 8444 (2014).
[Crossref] [PubMed]

Nat. Commun. (2)

A. J. Smith, C. Wang, D. Guo, C. Sun, and J. Huang, “Repurposing blu-ray movie discs as quasi-random nanoimprinting templates for photon management,” Nat. Commun. 5, 5517 (2014).
[Crossref] [PubMed]

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9, 174–179 (2015).
[Crossref]

Nature (1)

M. Graetzel, R. A. J. Janssen, D. B. Mitzi, and E. H. Sargent, “Materials interface engineering for solution-processed photovoltaics,” Nature 488, 304–312 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Optics Letters (1)

F. Lütolf, M. Stalder, and O. J. F. Martin, “Up-scalable method to amplify the diffraction efficiency of simple gratings,” Optics Letters 39, 6557 (2014).
[Crossref] [PubMed]

Org. Electron. (1)

M. R. Lenze, T. E. Umbach, C. Lentjes, and K. Meerholz, “Determination of the optical constants of bulk heterojunction active layers from standard solar cell measurements,” Org. Electron. 15, 3584–3589 (2014).
[Crossref]

Phys. Chem. Chem. Phys. (1)

Y. Chen, M. Elshobaki, Z. Ye, J.-M. Park, M. A. Noack, K.-M. Ho, and S. Chaudhary, “Microlens array induced light absorption enhancement in polymer solar cells,” Phys. Chem. Chem. Phys. 15, 4297 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

L. Zhou, Q.-D. Ou, J.-D. Chen, S. Shen, J.-X. Tang, Y.-Q. Li, and S.-T. Lee, “Light manipulation for organic optoelectronics using bio-inspired moth’s eye nanostructures,” Sci. Rep. 4, 4040 (2014).

Sol. Energy Mater. Sol. Cells (1)

X. Zhu, W. C. Choy, F. Xie, C. Duan, C. Wang, W. He, F. Huang, and Y. Cao, “A study of optical properties enhancement in low-bandgap polymer solar cells with embedded PEDOT:PSS gratings,” Sol. Energy Mater. Sol. Cells 99, 327–332 (2012).
[Crossref]

Solar Energy Materials and Solar Cells (1)

C. Cho, H. Kim, S. Jeong, S.-W. Baek, J.-W. Seo, D. Han, K. Kim, Y. Park, S. Yoo, and J.-Y. Lee, “Random and v-groove texturing for efficient light trapping in organic photovoltaic cells,” Solar Energy Materials and Solar Cells 115, 36–41 (2013).
[Crossref]

Thin Solid Films (2)

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516, 7167–7170 (2008).
[Crossref]

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[Crossref]

Other (7)

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Sci. Rep.3 (2013).
[Crossref]

U.S. Department of Energy (DOE)/NREL/ALLIANCE, “Reference solar spectral irradiance: Air mass 1.5; bird simple spectral model:spctral2,” http://rredc.nrel.gov/solar/ . Accessed: July, 2015.

J.-D. Chen, L. Zhou, Q.-D. Ou, Y.-Q. Li, S. Shen, S.-T. Lee, and J.-X. Tang, “Enhanced light harvesting in organic solar cells featuring a biomimetic active layer and a self-cleaning antireflective coating,” Adv. Energy Mater.4, n/a–n/a (2014).
[Crossref]

L. K. Jagadamma, M. Al-Senani, A. El-Labban, I. Gereige, G. O. N. Ndjawa, J. C. D. Faria, T. Kim, K. Zhao, F. Cruciani, D. H. Anjum, M. A. McLachlan, P. M. Beaujuge, and A. Amassian, “Polymer solar cells with efficiency >10% enabled via a facile solution-processed al-doped ZnO electron transporting layer,” Adv. Energy Mater.5, n/a–n/a (2015).

Heliatek GmbH, “Heliatek consolidates its technology leadership by establishing a new world record for organic solar technology with a cell efficiency of 12%,” http://www.heliatek.com/en/press/press-releases/details/ (2013). Accessed: July, 2015.

CSEM Brazil, “New phase for printed organic photovoltaics with productionscale facility in brazil,” http://www.csem.ch/site/card.asp?pId=27160 (2014). Accessed: July, 2015.

H. Zervos, R. Das, and K. Ghaffarzadeh, “Organic photovoltaics (opv) 2013–2023: Technologies, markets, players,” http://www.idtechex.com/research/reports/organic-photovoltaics-opv-2013-2023-technologies-markets-players-000349.asp (2014). Accessed: August, 2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Investigated structure. (a) Scheme of the test cell, which is used for simulations and experiments. The light is incident from the top. (b) One- (1D) and two-dimensional (2D) diffraction gratings are added on top of the substrate. The polar angle θI and the azimuthal angle ϕ are indicated.
Fig. 2
Fig. 2 Effect of an incoupling grating on the generated photocurrent in an OPV. (a) Light incident from air can only access propagating angles below θS = 41.8 inside the multilayer structure. The calculated photocurrent in our test cell increases until high surface reflection leads to a decline. (b) If the light is propagating at larger angles in the substrate, interface reflections are reduced and a higher current density can be achieved. (c) The surface grating couples light into higher order modes with θS > 41.8°, leading to an overall enhancement for all incident angles in both azimuthal directions.
Fig. 3
Fig. 3 Contribution of path-length enhancement and thin film interference in the OPV. (a) Attenuation length of the active material in multiples of the active layer thickness d = 90 nm. (b) Absorption in the active layer dependent on the wavelength and the propagation angle θS within the substrate for an incoherent and (c) for a coherent layer. Significant absorption for high propagating angles arise only when interferences are allowed which are stronger than path-length effects.
Fig. 4
Fig. 4 Experimental validation of the 1D in-coupling grating. (a) SEM picture of the grating at the air-glass interface of the OPV stack. (b) Current density versus voltage characteristics of the two best devices without (blue) and with (red) the surface diffraction grating. (c) A set of blade-coated devices shows higher average current densities, if the grating is applied. The devices shown in (b) are marked with a black cross. The diffraction properties and the enhancement is lost, when the grating is removed by filling its grooves. The boxes denote the standard derivation σ, the outer wiskers indicates 1.5σ and the mean value is highlighted by the black bar.
Fig. 5
Fig. 5 Optical influence of the diffraction grating on the absorption in the active layer. (a) External quantum efficiency (EQE) spectra of the two devices of Fig. 4(b) without (blue) and with (red) the surface diffraction grating. (b) The simulated absorption difference (black curve) is compared with the experimental values (red curve), obtained from the EQE spectra. (c) The difference in the modeled absorption shows areas of improved (red) and decreased (blue) absorption in respect θS = 0° for different wavelength and angles inside the substrate θS. Overlayed are the angles of the three diffraction orders of the grating in grey. (d) Simulated and experimental diffraction efficiencies of the grating for different incident wavelengths.
Fig. 6
Fig. 6 Angular dependency of the structures. (a) Measurement of OPVs equipped with a 1D and a 2D grating at standard test conditions compared to a reference device. The 1D grating is measured in the directions perpendicular to the grating grooves. (b) SEM picture of the two dimensional pillar grating.
Fig. 7
Fig. 7 Simulated yearly current enhancement of the light management structure. (a) Shematic visualisation of the variable test conditions for the OPV throughout a year. (b) Additional generated current of a device with an optimized 2D grating in respect to the reference. The overall positive difference for every hour in the year increases the total harvested energy by 12.1%.
Fig. 8
Fig. 8 Pathlength effects and interferences in a homogeneous absorber. (a) The basic test stack in standard configuration with active layer thickness d = 90 nm. (b) An artificial absorber was created, for which the attenuation length is equal to four times the layer thickness d for all wavelength. (c) If the layer is set to be coherent one can a typical path length enhancent (d) If the same layer is set to be coherent in the simulations, however, significant absorption for high propagating angles arises through interferences in the multilayer system.
Fig. 9
Fig. 9 Investigation of the wavelength and angular dependence absorption of different absorber materials in two devoice configurations: (a)–(c) attenuation length in multiples of the active layer thickness d = 90 nm for three absorbers. (d)–(f) angle dependenet absorption spectra in the respective active layer for the standard device configuration and (g)–(i) for the inverted device configuration.

Tables (2)

Tables Icon

Table 1 Mean values, variance, and maximum values for the current densities obtained from EQE measurements for different configurations.

Tables Icon

Table 2 Geometric parameters of the gratings used in simulations and experiments.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k n = [ k z 2 + ( k + m x 2 π Λ x + m y 2 π Λ y ) 2 ] 1 / 2
sin ( θ S j ) = 1 n 1 ( sin ( θ I ) m x λ Λ ) .
Att = 1 I l I 0 = 1 exp ( α L )
EQE ( λ ) exp . = A A ( λ ) calc . IQE const . .
Δ A ( λ , θ S ) = A ( λ , θ S ) A ( λ , 0 ) .
E yr = h = 1 24 × 365 F F ( h ) V oc ( h ) I corr ( h ) ,
f = E grat E ref E ref = h ( I sc , grat ( h ) I sc , ref ( h ) ) h I sc , ref ( h ) .
j sc = IQE Layer e G ( z ) d z

Metrics