Abstract

Colloidal phase-shift lithography, the illumination of a two-dimensional (2D) ordered array of self-assembled colloidal nanospheres, is an effective method for the fabrication of periodic three-dimensional (3D) nanostructures. In this work, we investigate the design and control of the unit-cell geometry by examining the relative ratio of the illumination wavelength and colloidal nanosphere diameter. Using analytical and finite-difference time-domain (FDTD) modeling, we examine the effect of the wavelength-diameter ratio on intensity pattern, lattice constants, and unit-cell geometry. These models were validated by experimental fabrication for various combination of wavelength and colloid diameter. The developed models and fabrication tools can facilitate the design and engineering of 3D periodic nanostructure for photonic crystals, volumetric electrodes, and porous materials.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells

Christos Trompoukis, Inès Massiot, Valérie Depauw, Ounsi El Daif, Kidong Lee, Alexandre Dmitriev, Ivan Gordon, Robert Mertens, and Jef Poortmans
Opt. Express 24(2) A191-A201 (2016)

Fabricating three dimensional nanostructures using two photon lithography in a single exposure step

Seokwoo Jeon, Viktor Malyarchuk, John A. Rogers, and Gary P. Wiederrecht
Opt. Express 14(6) 2300-2308 (2006)

Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes

Seyed Milad Mahpeykar, Qiuyang Xiong, and Xihua Wang
Opt. Express 22(S6) A1576-A1588 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
  2. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
    [Crossref] [PubMed]
  3. D. Mei, B. Cheng, W. Hu, Z. Li, and D. Zhang, “Three-dimensional ordered patterns by light interference,” Opt. Lett. 20(5), 429–431 (1995).
    [Crossref] [PubMed]
  4. T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas, “Hypersonic phononic crystals,” Phys. Rev. Lett. 94(11), 115501 (2005).
    [Crossref] [PubMed]
  5. J.-H. Jang, C. K. Ullal, T. Choi, M. C. Lemieux, V. V. Tsukruk, and E. L. Thomas, “3D polymer microframes that exploit length-scale-dependent mechanical behavior,” Adv. Mater. 18(16), 2123–2127 (2006).
    [Crossref]
  6. J.-W. Jang, Z. Zheng, O.-S. Lee, W. Shim, G. Zheng, G. C. Schatz, and C. A. Mirkin, “Arrays of nanoscale lenses for subwavelength optical lithography,” Nano Lett. 10(11), 4399–4404 (2010).
    [Crossref] [PubMed]
  7. I. Wathuthanthri, Y. Liu, K. Du, W. Xu, and C.-H. Choi, “Simple holographic patterning for high-aspect-ratio three-dimensional nanostructures with large coverage area,” Adv. Funct. Mater. 23(5), 608–618 (2013).
    [Crossref]
  8. X. A. Zhang, A. Bagal, E. C. Dandley, J. Zhao, C. J. Oldham, B. Wu, G. N. Parsons, and C. Chang, “Ordered 3D thin-shell nanolattice materials with near-unity refractive Indices,” Adv. Funct. Mater. 25(42) 6644–6649 (2015).
  9. S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
    [Crossref] [PubMed]
  10. J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
    [Crossref]
  11. D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, “Three-dimensional nanofabrication with elastomeric phase masks,” J. Phys. Chem. B 111(45), 12945–12958 (2007).
    [Crossref] [PubMed]
  12. J. Park, S. Yoon, K. Kang, and S. Jeon, “Antireflection behavior of multidimensional nanostructures patterned using a conformable elastomeric phase mask in a single exposure step,” Small 6(18), 1981–1985 (2010).
    [Crossref] [PubMed]
  13. Y. S. Nam, S. Jeon, D. J. Shir, A. Hamza, and J. A. Rogers, “Thick, three-dimensional nanoporous density-graded materials formed by optical exposures of photopolymers with controlled levels of absorption,” Appl. Opt. 46(25), 6350–6354 (2007).
    [Crossref] [PubMed]
  14. M. K. Kwak, J. G. Ok, J. Y. Lee, and L. J. Guo, “Continuous phase-shift lithography with a roll-type mask and application to transparent conductor fabrication,” Nanotechnology 23(34), 344008 (2012).
    [Crossref] [PubMed]
  15. J. K. Hyun, J. Park, E. Kim, L. J. Lauhon, and S. Jeon, “Rational control of diffraction and interference from conformal phase gratings: toward high-resolution 3D nanopatterning,” Adv. Opt. Mater. 2(12), 1213–1220 (2014).
    [Crossref]
  16. H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
    [Crossref] [PubMed]
  17. C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
    [Crossref] [PubMed]
  18. J. C. Hulteen, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 13, 1553 (1995).
  19. X. A. Zhang, J. Elek, and C.-H. Chang, “Three-dimensional nanolithography using light scattering from colloidal particles,” ACS Nano 7(7), 6212–6218 (2013).
    [Crossref] [PubMed]
  20. X. A. Zhang, B. Dai, Z. Xu, and C.-H. Chang, “Sculpting asymmetric, hollow-core, three-dimensional nanostructures using colloidal particles,” Small 11(11), 1285–1292 (2015).
    [Crossref] [PubMed]
  21. J. E. Elek, X. A. Zhang, B. Dai, Z. Xu, and C.-H. Chang, “Fabrication of three-dimensional hierarchical nanostructures using template-directed colloidal assembly,” Nanoscale 7(10), 4406–4410 (2015).
    [Crossref] [PubMed]
  22. S.-G. Park, T. Y. Jeon, H. C. Jeon, S.-M. Yang, J.-D. Kwon, C.-W. Mun, B. Cho, C. S. Kim, and D.-H. Kim, “Fabrication of 3D ZnO hollow shell structures by prism holographic lithography and atomic layer deposition,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(11), 1957 (2014).
    [Crossref]
  23. T. Y. Jeon, H. C. Jeon, S. Y. Lee, T. S. Shim, J.-D. Kwon, S.-G. Park, and S.-M. Yang, “3D hierarchical architectures prepared by single exposure through a highly durable colloidal phase mask,” Adv. Mater. 26(9), 1422–1426 (2014).
    [Crossref] [PubMed]
  24. M. Fang, H. Lin, H.-Y. Cheung, F. Xiu, L. Shen, S. Yip, E. Y.-B. Pun, C.-Y. Wong, and J. C. Ho, “Polymer-confined colloidal monolayer: a reusable soft photomask for rapid wafer-scale nanopatterning,” ACS Appl. Mater. Interfaces 6(23), 20837–20841 (2014).
    [Crossref] [PubMed]
  25. C. Geng, Q. Yan, C. Du, P. Dong, L. Zhang, T. Wei, Z. Hao, X. Wang, and D. Shen, “Large-Area and Ordered Sexfoil Pore Arrays by Spherical-Lens Photolithography,” ACS Photonics 1(8), 754–760 (2014).
    [Crossref]
  26. H. F. Talbot, “LXXVI. Facts relating to optical science. No. IV,” Philos. Mag. Ser. 3 9, 401–407 (1836).
  27. L. Rayleigh, “XXV. On copying diffraction-gratings, and on some phenomena connected therewith,” Philos, Mag. Ser. 5 11(67), 196–205 (1881).
    [Crossref]
  28. J. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt. Photonics 5(1), 83 (2013).
    [Crossref]
  29. J. T. Winthrop and C. R. Worthington, “Theory of fresnel images. i. plane periodic objects in monochromatic light,” J. Opt. Soc. Am. 55(4), 373–381 (1965).
    [Crossref]
  30. A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. B Microelectron, Nanom. Struct. 27, 2931 (2009).
  31. M.-S. Kim, T. Scharf, C. Menzel, C. Rockstuhl, and H. P. Herzig, “Talbot images of wavelength-scale amplitude gratings,” Opt. Express 20(5), 4903–4920 (2012).
    [Crossref] [PubMed]
  32. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  33. J. Li, Y. Cho, I.-S. Choi, and S. Yang, “Transforming one-dimensional nanowalls to long-range ordered two-dimensional nanowaves: exploiting buckling instability and nanofibers effect in holographic lithography,” Adv. Funct. Mater. 24(16), 2361–2366 (2014).
    [Crossref]

2015 (3)

X. A. Zhang, A. Bagal, E. C. Dandley, J. Zhao, C. J. Oldham, B. Wu, G. N. Parsons, and C. Chang, “Ordered 3D thin-shell nanolattice materials with near-unity refractive Indices,” Adv. Funct. Mater. 25(42) 6644–6649 (2015).

X. A. Zhang, B. Dai, Z. Xu, and C.-H. Chang, “Sculpting asymmetric, hollow-core, three-dimensional nanostructures using colloidal particles,” Small 11(11), 1285–1292 (2015).
[Crossref] [PubMed]

J. E. Elek, X. A. Zhang, B. Dai, Z. Xu, and C.-H. Chang, “Fabrication of three-dimensional hierarchical nanostructures using template-directed colloidal assembly,” Nanoscale 7(10), 4406–4410 (2015).
[Crossref] [PubMed]

2014 (6)

S.-G. Park, T. Y. Jeon, H. C. Jeon, S.-M. Yang, J.-D. Kwon, C.-W. Mun, B. Cho, C. S. Kim, and D.-H. Kim, “Fabrication of 3D ZnO hollow shell structures by prism holographic lithography and atomic layer deposition,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(11), 1957 (2014).
[Crossref]

T. Y. Jeon, H. C. Jeon, S. Y. Lee, T. S. Shim, J.-D. Kwon, S.-G. Park, and S.-M. Yang, “3D hierarchical architectures prepared by single exposure through a highly durable colloidal phase mask,” Adv. Mater. 26(9), 1422–1426 (2014).
[Crossref] [PubMed]

M. Fang, H. Lin, H.-Y. Cheung, F. Xiu, L. Shen, S. Yip, E. Y.-B. Pun, C.-Y. Wong, and J. C. Ho, “Polymer-confined colloidal monolayer: a reusable soft photomask for rapid wafer-scale nanopatterning,” ACS Appl. Mater. Interfaces 6(23), 20837–20841 (2014).
[Crossref] [PubMed]

C. Geng, Q. Yan, C. Du, P. Dong, L. Zhang, T. Wei, Z. Hao, X. Wang, and D. Shen, “Large-Area and Ordered Sexfoil Pore Arrays by Spherical-Lens Photolithography,” ACS Photonics 1(8), 754–760 (2014).
[Crossref]

J. K. Hyun, J. Park, E. Kim, L. J. Lauhon, and S. Jeon, “Rational control of diffraction and interference from conformal phase gratings: toward high-resolution 3D nanopatterning,” Adv. Opt. Mater. 2(12), 1213–1220 (2014).
[Crossref]

J. Li, Y. Cho, I.-S. Choi, and S. Yang, “Transforming one-dimensional nanowalls to long-range ordered two-dimensional nanowaves: exploiting buckling instability and nanofibers effect in holographic lithography,” Adv. Funct. Mater. 24(16), 2361–2366 (2014).
[Crossref]

2013 (3)

J. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt. Photonics 5(1), 83 (2013).
[Crossref]

X. A. Zhang, J. Elek, and C.-H. Chang, “Three-dimensional nanolithography using light scattering from colloidal particles,” ACS Nano 7(7), 6212–6218 (2013).
[Crossref] [PubMed]

I. Wathuthanthri, Y. Liu, K. Du, W. Xu, and C.-H. Choi, “Simple holographic patterning for high-aspect-ratio three-dimensional nanostructures with large coverage area,” Adv. Funct. Mater. 23(5), 608–618 (2013).
[Crossref]

2012 (2)

M. K. Kwak, J. G. Ok, J. Y. Lee, and L. J. Guo, “Continuous phase-shift lithography with a roll-type mask and application to transparent conductor fabrication,” Nanotechnology 23(34), 344008 (2012).
[Crossref] [PubMed]

M.-S. Kim, T. Scharf, C. Menzel, C. Rockstuhl, and H. P. Herzig, “Talbot images of wavelength-scale amplitude gratings,” Opt. Express 20(5), 4903–4920 (2012).
[Crossref] [PubMed]

2011 (2)

H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
[Crossref] [PubMed]

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

2010 (3)

J. Park, S. Yoon, K. Kang, and S. Jeon, “Antireflection behavior of multidimensional nanostructures patterned using a conformable elastomeric phase mask in a single exposure step,” Small 6(18), 1981–1985 (2010).
[Crossref] [PubMed]

J.-W. Jang, Z. Zheng, O.-S. Lee, W. Shim, G. Zheng, G. C. Schatz, and C. A. Mirkin, “Arrays of nanoscale lenses for subwavelength optical lithography,” Nano Lett. 10(11), 4399–4404 (2010).
[Crossref] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2009 (1)

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. B Microelectron, Nanom. Struct. 27, 2931 (2009).

2007 (3)

Y. S. Nam, S. Jeon, D. J. Shir, A. Hamza, and J. A. Rogers, “Thick, three-dimensional nanoporous density-graded materials formed by optical exposures of photopolymers with controlled levels of absorption,” Appl. Opt. 46(25), 6350–6354 (2007).
[Crossref] [PubMed]

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, “Three-dimensional nanofabrication with elastomeric phase masks,” J. Phys. Chem. B 111(45), 12945–12958 (2007).
[Crossref] [PubMed]

2006 (1)

J.-H. Jang, C. K. Ullal, T. Choi, M. C. Lemieux, V. V. Tsukruk, and E. L. Thomas, “3D polymer microframes that exploit length-scale-dependent mechanical behavior,” Adv. Mater. 18(16), 2123–2127 (2006).
[Crossref]

2005 (1)

T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas, “Hypersonic phononic crystals,” Phys. Rev. Lett. 94(11), 115501 (2005).
[Crossref] [PubMed]

2004 (1)

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

2000 (1)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

1998 (1)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).

1995 (2)

D. Mei, B. Cheng, W. Hu, Z. Li, and D. Zhang, “Three-dimensional ordered patterns by light interference,” Opt. Lett. 20(5), 429–431 (1995).
[Crossref] [PubMed]

J. C. Hulteen, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 13, 1553 (1995).

1965 (1)

1881 (1)

L. Rayleigh, “XXV. On copying diffraction-gratings, and on some phenomena connected therewith,” Philos, Mag. Ser. 5 11(67), 196–205 (1881).
[Crossref]

1836 (1)

H. F. Talbot, “LXXVI. Facts relating to optical science. No. IV,” Philos. Mag. Ser. 3 9, 401–407 (1836).

Bagal, A.

X. A. Zhang, A. Bagal, E. C. Dandley, J. Zhao, C. J. Oldham, B. Wu, G. N. Parsons, and C. Chang, “Ordered 3D thin-shell nanolattice materials with near-unity refractive Indices,” Adv. Funct. Mater. 25(42) 6644–6649 (2015).

Barbastathis, G.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).

Bogart, G. R.

D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, “Three-dimensional nanofabrication with elastomeric phase masks,” J. Phys. Chem. B 111(45), 12945–12958 (2007).
[Crossref] [PubMed]

Braun, P. V.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).

Cahill, D. G.

D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, “Three-dimensional nanofabrication with elastomeric phase masks,” J. Phys. Chem. B 111(45), 12945–12958 (2007).
[Crossref] [PubMed]

Cerrina, F.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. B Microelectron, Nanom. Struct. 27, 2931 (2009).

Chang, C.

X. A. Zhang, A. Bagal, E. C. Dandley, J. Zhao, C. J. Oldham, B. Wu, G. N. Parsons, and C. Chang, “Ordered 3D thin-shell nanolattice materials with near-unity refractive Indices,” Adv. Funct. Mater. 25(42) 6644–6649 (2015).

Chang, C. H.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

Chang, C.-H.

X. A. Zhang, B. Dai, Z. Xu, and C.-H. Chang, “Sculpting asymmetric, hollow-core, three-dimensional nanostructures using colloidal particles,” Small 11(11), 1285–1292 (2015).
[Crossref] [PubMed]

J. E. Elek, X. A. Zhang, B. Dai, Z. Xu, and C.-H. Chang, “Fabrication of three-dimensional hierarchical nanostructures using template-directed colloidal assembly,” Nanoscale 7(10), 4406–4410 (2015).
[Crossref] [PubMed]

X. A. Zhang, J. Elek, and C.-H. Chang, “Three-dimensional nanolithography using light scattering from colloidal particles,” ACS Nano 7(7), 6212–6218 (2013).
[Crossref] [PubMed]

Cheng, B.

Cheng, Y. C.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. B Microelectron, Nanom. Struct. 27, 2931 (2009).

Cheung, H.-Y.

M. Fang, H. Lin, H.-Y. Cheung, F. Xiu, L. Shen, S. Yip, E. Y.-B. Pun, C.-Y. Wong, and J. C. Ho, “Polymer-confined colloidal monolayer: a reusable soft photomask for rapid wafer-scale nanopatterning,” ACS Appl. Mater. Interfaces 6(23), 20837–20841 (2014).
[Crossref] [PubMed]

Cho, B.

S.-G. Park, T. Y. Jeon, H. C. Jeon, S.-M. Yang, J.-D. Kwon, C.-W. Mun, B. Cho, C. S. Kim, and D.-H. Kim, “Fabrication of 3D ZnO hollow shell structures by prism holographic lithography and atomic layer deposition,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(11), 1957 (2014).
[Crossref]

Cho, Y.

J. Li, Y. Cho, I.-S. Choi, and S. Yang, “Transforming one-dimensional nanowalls to long-range ordered two-dimensional nanowaves: exploiting buckling instability and nanofibers effect in holographic lithography,” Adv. Funct. Mater. 24(16), 2361–2366 (2014).
[Crossref]

Choi, C.-H.

I. Wathuthanthri, Y. Liu, K. Du, W. Xu, and C.-H. Choi, “Simple holographic patterning for high-aspect-ratio three-dimensional nanostructures with large coverage area,” Adv. Funct. Mater. 23(5), 608–618 (2013).
[Crossref]

Choi, H. J.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

Choi, I.-S.

J. Li, Y. Cho, I.-S. Choi, and S. Yang, “Transforming one-dimensional nanowalls to long-range ordered two-dimensional nanowaves: exploiting buckling instability and nanofibers effect in holographic lithography,” Adv. Funct. Mater. 24(16), 2361–2366 (2014).
[Crossref]

Choi, T.

J.-H. Jang, C. K. Ullal, T. Choi, M. C. Lemieux, V. V. Tsukruk, and E. L. Thomas, “3D polymer microframes that exploit length-scale-dependent mechanical behavior,” Adv. Mater. 18(16), 2123–2127 (2006).
[Crossref]

Christodoulou, C. G.

D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, “Three-dimensional nanofabrication with elastomeric phase masks,” J. Phys. Chem. B 111(45), 12945–12958 (2007).
[Crossref] [PubMed]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Cirelli, R.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Clube, F.

Dai, B.

X. A. Zhang, B. Dai, Z. Xu, and C.-H. Chang, “Sculpting asymmetric, hollow-core, three-dimensional nanostructures using colloidal particles,” Small 11(11), 1285–1292 (2015).
[Crossref] [PubMed]

J. E. Elek, X. A. Zhang, B. Dai, Z. Xu, and C.-H. Chang, “Fabrication of three-dimensional hierarchical nanostructures using template-directed colloidal assembly,” Nanoscale 7(10), 4406–4410 (2015).
[Crossref] [PubMed]

Dais, C.

Dandley, E. C.

X. A. Zhang, A. Bagal, E. C. Dandley, J. Zhao, C. J. Oldham, B. Wu, G. N. Parsons, and C. Chang, “Ordered 3D thin-shell nanolattice materials with near-unity refractive Indices,” Adv. Funct. Mater. 25(42) 6644–6649 (2015).

Dong, P.

C. Geng, Q. Yan, C. Du, P. Dong, L. Zhang, T. Wei, Z. Hao, X. Wang, and D. Shen, “Large-Area and Ordered Sexfoil Pore Arrays by Spherical-Lens Photolithography,” ACS Photonics 1(8), 754–760 (2014).
[Crossref]

Du, C.

C. Geng, Q. Yan, C. Du, P. Dong, L. Zhang, T. Wei, Z. Hao, X. Wang, and D. Shen, “Large-Area and Ordered Sexfoil Pore Arrays by Spherical-Lens Photolithography,” ACS Photonics 1(8), 754–760 (2014).
[Crossref]

Du, K.

I. Wathuthanthri, Y. Liu, K. Du, W. Xu, and C.-H. Choi, “Simple holographic patterning for high-aspect-ratio three-dimensional nanostructures with large coverage area,” Adv. Funct. Mater. 23(5), 608–618 (2013).
[Crossref]

Elek, J.

X. A. Zhang, J. Elek, and C.-H. Chang, “Three-dimensional nanolithography using light scattering from colloidal particles,” ACS Nano 7(7), 6212–6218 (2013).
[Crossref] [PubMed]

Elek, J. E.

J. E. Elek, X. A. Zhang, B. Dai, Z. Xu, and C.-H. Chang, “Fabrication of three-dimensional hierarchical nanostructures using template-directed colloidal assembly,” Nanoscale 7(10), 4406–4410 (2015).
[Crossref] [PubMed]

El-Kady, I. F.

D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, “Three-dimensional nanofabrication with elastomeric phase masks,” J. Phys. Chem. B 111(45), 12945–12958 (2007).
[Crossref] [PubMed]

Fang, M.

M. Fang, H. Lin, H.-Y. Cheung, F. Xiu, L. Shen, S. Yip, E. Y.-B. Pun, C.-Y. Wong, and J. C. Ho, “Polymer-confined colloidal monolayer: a reusable soft photomask for rapid wafer-scale nanopatterning,” ACS Appl. Mater. Interfaces 6(23), 20837–20841 (2014).
[Crossref] [PubMed]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).

Fytas, G.

T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas, “Hypersonic phononic crystals,” Phys. Rev. Lett. 94(11), 115501 (2005).
[Crossref] [PubMed]

Gao, H.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

Geng, C.

C. Geng, Q. Yan, C. Du, P. Dong, L. Zhang, T. Wei, Z. Hao, X. Wang, and D. Shen, “Large-Area and Ordered Sexfoil Pore Arrays by Spherical-Lens Photolithography,” ACS Photonics 1(8), 754–760 (2014).
[Crossref]

Gorishnyy, T.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas, “Hypersonic phononic crystals,” Phys. Rev. Lett. 94(11), 115501 (2005).
[Crossref] [PubMed]

Guo, L. J.

M. K. Kwak, J. G. Ok, J. Y. Lee, and L. J. Guo, “Continuous phase-shift lithography with a roll-type mask and application to transparent conductor fabrication,” Nanotechnology 23(34), 344008 (2012).
[Crossref] [PubMed]

Hamza, A.

Hamza, A. V.

D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, “Three-dimensional nanofabrication with elastomeric phase masks,” J. Phys. Chem. B 111(45), 12945–12958 (2007).
[Crossref] [PubMed]

Hao, Z.

C. Geng, Q. Yan, C. Du, P. Dong, L. Zhang, T. Wei, Z. Hao, X. Wang, and D. Shen, “Large-Area and Ordered Sexfoil Pore Arrays by Spherical-Lens Photolithography,” ACS Photonics 1(8), 754–760 (2014).
[Crossref]

Heitzman, C. E.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Herzig, H. P.

Hesse, W. R.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).

Highland, M.

D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, “Three-dimensional nanofabrication with elastomeric phase masks,” J. Phys. Chem. B 111(45), 12945–12958 (2007).
[Crossref] [PubMed]

Ho, J. C.

M. Fang, H. Lin, H.-Y. Cheung, F. Xiu, L. Shen, S. Yip, E. Y.-B. Pun, C.-Y. Wong, and J. C. Ho, “Polymer-confined colloidal monolayer: a reusable soft photomask for rapid wafer-scale nanopatterning,” ACS Appl. Mater. Interfaces 6(23), 20837–20841 (2014).
[Crossref] [PubMed]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).

Hu, W.

Hulteen, J. C.

J. C. Hulteen, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 13, 1553 (1995).

Hyun, J. K.

J. K. Hyun, J. Park, E. Kim, L. J. Lauhon, and S. Jeon, “Rational control of diffraction and interference from conformal phase gratings: toward high-resolution 3D nanopatterning,” Adv. Opt. Mater. 2(12), 1213–1220 (2014).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Isoyan, A.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. B Microelectron, Nanom. Struct. 27, 2931 (2009).

Jang, J.-H.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

J.-H. Jang, C. K. Ullal, T. Choi, M. C. Lemieux, V. V. Tsukruk, and E. L. Thomas, “3D polymer microframes that exploit length-scale-dependent mechanical behavior,” Adv. Mater. 18(16), 2123–2127 (2006).
[Crossref]

Jang, J.-W.

J.-W. Jang, Z. Zheng, O.-S. Lee, W. Shim, G. Zheng, G. C. Schatz, and C. A. Mirkin, “Arrays of nanoscale lenses for subwavelength optical lithography,” Nano Lett. 10(11), 4399–4404 (2010).
[Crossref] [PubMed]

Jeon, H. C.

T. Y. Jeon, H. C. Jeon, S. Y. Lee, T. S. Shim, J.-D. Kwon, S.-G. Park, and S.-M. Yang, “3D hierarchical architectures prepared by single exposure through a highly durable colloidal phase mask,” Adv. Mater. 26(9), 1422–1426 (2014).
[Crossref] [PubMed]

S.-G. Park, T. Y. Jeon, H. C. Jeon, S.-M. Yang, J.-D. Kwon, C.-W. Mun, B. Cho, C. S. Kim, and D.-H. Kim, “Fabrication of 3D ZnO hollow shell structures by prism holographic lithography and atomic layer deposition,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(11), 1957 (2014).
[Crossref]

Jeon, S.

J. K. Hyun, J. Park, E. Kim, L. J. Lauhon, and S. Jeon, “Rational control of diffraction and interference from conformal phase gratings: toward high-resolution 3D nanopatterning,” Adv. Opt. Mater. 2(12), 1213–1220 (2014).
[Crossref]

J. Park, S. Yoon, K. Kang, and S. Jeon, “Antireflection behavior of multidimensional nanostructures patterned using a conformable elastomeric phase mask in a single exposure step,” Small 6(18), 1981–1985 (2010).
[Crossref] [PubMed]

D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, “Three-dimensional nanofabrication with elastomeric phase masks,” J. Phys. Chem. B 111(45), 12945–12958 (2007).
[Crossref] [PubMed]

Y. S. Nam, S. Jeon, D. J. Shir, A. Hamza, and J. A. Rogers, “Thick, three-dimensional nanoporous density-graded materials formed by optical exposures of photopolymers with controlled levels of absorption,” Appl. Opt. 46(25), 6350–6354 (2007).
[Crossref] [PubMed]

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Jeon, T. Y.

S.-G. Park, T. Y. Jeon, H. C. Jeon, S.-M. Yang, J.-D. Kwon, C.-W. Mun, B. Cho, C. S. Kim, and D.-H. Kim, “Fabrication of 3D ZnO hollow shell structures by prism holographic lithography and atomic layer deposition,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(11), 1957 (2014).
[Crossref]

T. Y. Jeon, H. C. Jeon, S. Y. Lee, T. S. Shim, J.-D. Kwon, S.-G. Park, and S.-M. Yang, “3D hierarchical architectures prepared by single exposure through a highly durable colloidal phase mask,” Adv. Mater. 26(9), 1422–1426 (2014).
[Crossref] [PubMed]

Jiang, F.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. B Microelectron, Nanom. Struct. 27, 2931 (2009).

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Kang, K.

J. Park, S. Yoon, K. Kang, and S. Jeon, “Antireflection behavior of multidimensional nanostructures patterned using a conformable elastomeric phase mask in a single exposure step,” Small 6(18), 1981–1985 (2010).
[Crossref] [PubMed]

Kenis, P. J.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Kim, C. S.

S.-G. Park, T. Y. Jeon, H. C. Jeon, S.-M. Yang, J.-D. Kwon, C.-W. Mun, B. Cho, C. S. Kim, and D.-H. Kim, “Fabrication of 3D ZnO hollow shell structures by prism holographic lithography and atomic layer deposition,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(11), 1957 (2014).
[Crossref]

Kim, D.-H.

S.-G. Park, T. Y. Jeon, H. C. Jeon, S.-M. Yang, J.-D. Kwon, C.-W. Mun, B. Cho, C. S. Kim, and D.-H. Kim, “Fabrication of 3D ZnO hollow shell structures by prism holographic lithography and atomic layer deposition,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(11), 1957 (2014).
[Crossref]

Kim, E.

J. K. Hyun, J. Park, E. Kim, L. J. Lauhon, and S. Jeon, “Rational control of diffraction and interference from conformal phase gratings: toward high-resolution 3D nanopatterning,” Adv. Opt. Mater. 2(12), 1213–1220 (2014).
[Crossref]

Kim, J. G.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

Kim, M.-S.

Koh, C.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

Kooi, S.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).

Kwak, M. K.

M. K. Kwak, J. G. Ok, J. Y. Lee, and L. J. Guo, “Continuous phase-shift lithography with a roll-type mask and application to transparent conductor fabrication,” Nanotechnology 23(34), 344008 (2012).
[Crossref] [PubMed]

Kwon, J.-D.

S.-G. Park, T. Y. Jeon, H. C. Jeon, S.-M. Yang, J.-D. Kwon, C.-W. Mun, B. Cho, C. S. Kim, and D.-H. Kim, “Fabrication of 3D ZnO hollow shell structures by prism holographic lithography and atomic layer deposition,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(11), 1957 (2014).
[Crossref]

T. Y. Jeon, H. C. Jeon, S. Y. Lee, T. S. Shim, J.-D. Kwon, S.-G. Park, and S.-M. Yang, “3D hierarchical architectures prepared by single exposure through a highly durable colloidal phase mask,” Adv. Mater. 26(9), 1422–1426 (2014).
[Crossref] [PubMed]

Lauhon, L. J.

J. K. Hyun, J. Park, E. Kim, L. J. Lauhon, and S. Jeon, “Rational control of diffraction and interference from conformal phase gratings: toward high-resolution 3D nanopatterning,” Adv. Opt. Mater. 2(12), 1213–1220 (2014).
[Crossref]

Lee, J. Y.

M. K. Kwak, J. G. Ok, J. Y. Lee, and L. J. Guo, “Continuous phase-shift lithography with a roll-type mask and application to transparent conductor fabrication,” Nanotechnology 23(34), 344008 (2012).
[Crossref] [PubMed]

Lee, O.-S.

J.-W. Jang, Z. Zheng, O.-S. Lee, W. Shim, G. Zheng, G. C. Schatz, and C. A. Mirkin, “Arrays of nanoscale lenses for subwavelength optical lithography,” Nano Lett. 10(11), 4399–4404 (2010).
[Crossref] [PubMed]

Lee, S. Y.

T. Y. Jeon, H. C. Jeon, S. Y. Lee, T. S. Shim, J.-D. Kwon, S.-G. Park, and S.-M. Yang, “3D hierarchical architectures prepared by single exposure through a highly durable colloidal phase mask,” Adv. Mater. 26(9), 1422–1426 (2014).
[Crossref] [PubMed]

Lemieux, M. C.

J.-H. Jang, C. K. Ullal, T. Choi, M. C. Lemieux, V. V. Tsukruk, and E. L. Thomas, “3D polymer microframes that exploit length-scale-dependent mechanical behavior,” Adv. Mater. 18(16), 2123–2127 (2006).
[Crossref]

Li, J.

J. Li, Y. Cho, I.-S. Choi, and S. Yang, “Transforming one-dimensional nanowalls to long-range ordered two-dimensional nanowaves: exploiting buckling instability and nanofibers effect in holographic lithography,” Adv. Funct. Mater. 24(16), 2361–2366 (2014).
[Crossref]

Li, Z.

Liao, H.

D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, “Three-dimensional nanofabrication with elastomeric phase masks,” J. Phys. Chem. B 111(45), 12945–12958 (2007).
[Crossref] [PubMed]

Lin, H.

M. Fang, H. Lin, H.-Y. Cheung, F. Xiu, L. Shen, S. Yip, E. Y.-B. Pun, C.-Y. Wong, and J. C. Ho, “Polymer-confined colloidal monolayer: a reusable soft photomask for rapid wafer-scale nanopatterning,” ACS Appl. Mater. Interfaces 6(23), 20837–20841 (2014).
[Crossref] [PubMed]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).

Liu, Y.

I. Wathuthanthri, Y. Liu, K. Du, W. Xu, and C.-H. Choi, “Simple holographic patterning for high-aspect-ratio three-dimensional nanostructures with large coverage area,” Adv. Funct. Mater. 23(5), 608–618 (2013).
[Crossref]

Maldovan, M.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas, “Hypersonic phononic crystals,” Phys. Rev. Lett. 94(11), 115501 (2005).
[Crossref] [PubMed]

Marconi, M.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. B Microelectron, Nanom. Struct. 27, 2931 (2009).

Mei, D.

Menoni, C.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. B Microelectron, Nanom. Struct. 27, 2931 (2009).

Menzel, C.

Mirkin, C. A.

J.-W. Jang, Z. Zheng, O.-S. Lee, W. Shim, G. Zheng, G. C. Schatz, and C. A. Mirkin, “Arrays of nanoscale lenses for subwavelength optical lithography,” Nano Lett. 10(11), 4399–4404 (2010).
[Crossref] [PubMed]

Mun, C.-W.

S.-G. Park, T. Y. Jeon, H. C. Jeon, S.-M. Yang, J.-D. Kwon, C.-W. Mun, B. Cho, C. S. Kim, and D.-H. Kim, “Fabrication of 3D ZnO hollow shell structures by prism holographic lithography and atomic layer deposition,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(11), 1957 (2014).
[Crossref]

Nam, Y. S.

Noda, S.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Ok, J. G.

M. K. Kwak, J. G. Ok, J. Y. Lee, and L. J. Guo, “Continuous phase-shift lithography with a roll-type mask and application to transparent conductor fabrication,” Nanotechnology 23(34), 344008 (2012).
[Crossref] [PubMed]

Oldham, C. J.

X. A. Zhang, A. Bagal, E. C. Dandley, J. Zhao, C. J. Oldham, B. Wu, G. N. Parsons, and C. Chang, “Ordered 3D thin-shell nanolattice materials with near-unity refractive Indices,” Adv. Funct. Mater. 25(42) 6644–6649 (2015).

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Park, J.

J. K. Hyun, J. Park, E. Kim, L. J. Lauhon, and S. Jeon, “Rational control of diffraction and interference from conformal phase gratings: toward high-resolution 3D nanopatterning,” Adv. Opt. Mater. 2(12), 1213–1220 (2014).
[Crossref]

J. Park, S. Yoon, K. Kang, and S. Jeon, “Antireflection behavior of multidimensional nanostructures patterned using a conformable elastomeric phase mask in a single exposure step,” Small 6(18), 1981–1985 (2010).
[Crossref] [PubMed]

Park, J.-U.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Park, S.-G.

S.-G. Park, T. Y. Jeon, H. C. Jeon, S.-M. Yang, J.-D. Kwon, C.-W. Mun, B. Cho, C. S. Kim, and D.-H. Kim, “Fabrication of 3D ZnO hollow shell structures by prism holographic lithography and atomic layer deposition,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(11), 1957 (2014).
[Crossref]

T. Y. Jeon, H. C. Jeon, S. Y. Lee, T. S. Shim, J.-D. Kwon, S.-G. Park, and S.-M. Yang, “3D hierarchical architectures prepared by single exposure through a highly durable colloidal phase mask,” Adv. Mater. 26(9), 1422–1426 (2014).
[Crossref] [PubMed]

Parsons, G. N.

X. A. Zhang, A. Bagal, E. C. Dandley, J. Zhao, C. J. Oldham, B. Wu, G. N. Parsons, and C. Chang, “Ordered 3D thin-shell nanolattice materials with near-unity refractive Indices,” Adv. Funct. Mater. 25(42) 6644–6649 (2015).

Pun, E. Y.-B.

M. Fang, H. Lin, H.-Y. Cheung, F. Xiu, L. Shen, S. Yip, E. Y.-B. Pun, C.-Y. Wong, and J. C. Ho, “Polymer-confined colloidal monolayer: a reusable soft photomask for rapid wafer-scale nanopatterning,” ACS Appl. Mater. Interfaces 6(23), 20837–20841 (2014).
[Crossref] [PubMed]

Rayleigh, L.

L. Rayleigh, “XXV. On copying diffraction-gratings, and on some phenomena connected therewith,” Philos, Mag. Ser. 5 11(67), 196–205 (1881).
[Crossref]

Rocca, J.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. B Microelectron, Nanom. Struct. 27, 2931 (2009).

Rockstuhl, C.

Rogers, J. A.

Y. S. Nam, S. Jeon, D. J. Shir, A. Hamza, and J. A. Rogers, “Thick, three-dimensional nanoporous density-graded materials formed by optical exposures of photopolymers with controlled levels of absorption,” Appl. Opt. 46(25), 6350–6354 (2007).
[Crossref] [PubMed]

D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, “Three-dimensional nanofabrication with elastomeric phase masks,” J. Phys. Chem. B 111(45), 12945–12958 (2007).
[Crossref] [PubMed]

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Scharf, T.

Schatz, G. C.

J.-W. Jang, Z. Zheng, O.-S. Lee, W. Shim, G. Zheng, G. C. Schatz, and C. A. Mirkin, “Arrays of nanoscale lenses for subwavelength optical lithography,” Nano Lett. 10(11), 4399–4404 (2010).
[Crossref] [PubMed]

Shen, D.

C. Geng, Q. Yan, C. Du, P. Dong, L. Zhang, T. Wei, Z. Hao, X. Wang, and D. Shen, “Large-Area and Ordered Sexfoil Pore Arrays by Spherical-Lens Photolithography,” ACS Photonics 1(8), 754–760 (2014).
[Crossref]

Shen, L.

M. Fang, H. Lin, H.-Y. Cheung, F. Xiu, L. Shen, S. Yip, E. Y.-B. Pun, C.-Y. Wong, and J. C. Ho, “Polymer-confined colloidal monolayer: a reusable soft photomask for rapid wafer-scale nanopatterning,” ACS Appl. Mater. Interfaces 6(23), 20837–20841 (2014).
[Crossref] [PubMed]

Shim, T. S.

T. Y. Jeon, H. C. Jeon, S. Y. Lee, T. S. Shim, J.-D. Kwon, S.-G. Park, and S.-M. Yang, “3D hierarchical architectures prepared by single exposure through a highly durable colloidal phase mask,” Adv. Mater. 26(9), 1422–1426 (2014).
[Crossref] [PubMed]

Shim, W.

J.-W. Jang, Z. Zheng, O.-S. Lee, W. Shim, G. Zheng, G. C. Schatz, and C. A. Mirkin, “Arrays of nanoscale lenses for subwavelength optical lithography,” Nano Lett. 10(11), 4399–4404 (2010).
[Crossref] [PubMed]

Shir, D. J.

D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, “Three-dimensional nanofabrication with elastomeric phase masks,” J. Phys. Chem. B 111(45), 12945–12958 (2007).
[Crossref] [PubMed]

Y. S. Nam, S. Jeon, D. J. Shir, A. Hamza, and J. A. Rogers, “Thick, three-dimensional nanoporous density-graded materials formed by optical exposures of photopolymers with controlled levels of absorption,” Appl. Opt. 46(25), 6350–6354 (2007).
[Crossref] [PubMed]

Siddiqui, M.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).

Solak, H. H.

Su, M. F.

D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, “Three-dimensional nanofabrication with elastomeric phase masks,” J. Phys. Chem. B 111(45), 12945–12958 (2007).
[Crossref] [PubMed]

Talbot, H. F.

H. F. Talbot, “LXXVI. Facts relating to optical science. No. IV,” Philos. Mag. Ser. 3 9, 401–407 (1836).

Thomas, E. L.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

J.-H. Jang, C. K. Ullal, T. Choi, M. C. Lemieux, V. V. Tsukruk, and E. L. Thomas, “3D polymer microframes that exploit length-scale-dependent mechanical behavior,” Adv. Mater. 18(16), 2123–2127 (2006).
[Crossref]

T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas, “Hypersonic phononic crystals,” Phys. Rev. Lett. 94(11), 115501 (2005).
[Crossref] [PubMed]

Tian, L.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Tsukruk, V. V.

J.-H. Jang, C. K. Ullal, T. Choi, M. C. Lemieux, V. V. Tsukruk, and E. L. Thomas, “3D polymer microframes that exploit length-scale-dependent mechanical behavior,” Adv. Mater. 18(16), 2123–2127 (2006).
[Crossref]

Ullal, C. K.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

J.-H. Jang, C. K. Ullal, T. Choi, M. C. Lemieux, V. V. Tsukruk, and E. L. Thomas, “3D polymer microframes that exploit length-scale-dependent mechanical behavior,” Adv. Mater. 18(16), 2123–2127 (2006).
[Crossref]

T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas, “Hypersonic phononic crystals,” Phys. Rev. Lett. 94(11), 115501 (2005).
[Crossref] [PubMed]

Urbanski, L.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. B Microelectron, Nanom. Struct. 27, 2931 (2009).

Wachulak, P.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. B Microelectron, Nanom. Struct. 27, 2931 (2009).

Wang, X.

C. Geng, Q. Yan, C. Du, P. Dong, L. Zhang, T. Wei, Z. Hao, X. Wang, and D. Shen, “Large-Area and Ordered Sexfoil Pore Arrays by Spherical-Lens Photolithography,” ACS Photonics 1(8), 754–760 (2014).
[Crossref]

Wathuthanthri, I.

I. Wathuthanthri, Y. Liu, K. Du, W. Xu, and C.-H. Choi, “Simple holographic patterning for high-aspect-ratio three-dimensional nanostructures with large coverage area,” Adv. Funct. Mater. 23(5), 608–618 (2013).
[Crossref]

Wei, T.

C. Geng, Q. Yan, C. Du, P. Dong, L. Zhang, T. Wei, Z. Hao, X. Wang, and D. Shen, “Large-Area and Ordered Sexfoil Pore Arrays by Spherical-Lens Photolithography,” ACS Photonics 1(8), 754–760 (2014).
[Crossref]

Wen, J.

J. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt. Photonics 5(1), 83 (2013).
[Crossref]

Winthrop, J. T.

Wong, C.-Y.

M. Fang, H. Lin, H.-Y. Cheung, F. Xiu, L. Shen, S. Yip, E. Y.-B. Pun, C.-Y. Wong, and J. C. Ho, “Polymer-confined colloidal monolayer: a reusable soft photomask for rapid wafer-scale nanopatterning,” ACS Appl. Mater. Interfaces 6(23), 20837–20841 (2014).
[Crossref] [PubMed]

Worthington, C. R.

Wu, B.

X. A. Zhang, A. Bagal, E. C. Dandley, J. Zhao, C. J. Oldham, B. Wu, G. N. Parsons, and C. Chang, “Ordered 3D thin-shell nanolattice materials with near-unity refractive Indices,” Adv. Funct. Mater. 25(42) 6644–6649 (2015).

Xiao, M.

J. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt. Photonics 5(1), 83 (2013).
[Crossref]

Xiu, F.

M. Fang, H. Lin, H.-Y. Cheung, F. Xiu, L. Shen, S. Yip, E. Y.-B. Pun, C.-Y. Wong, and J. C. Ho, “Polymer-confined colloidal monolayer: a reusable soft photomask for rapid wafer-scale nanopatterning,” ACS Appl. Mater. Interfaces 6(23), 20837–20841 (2014).
[Crossref] [PubMed]

Xu, W.

I. Wathuthanthri, Y. Liu, K. Du, W. Xu, and C.-H. Choi, “Simple holographic patterning for high-aspect-ratio three-dimensional nanostructures with large coverage area,” Adv. Funct. Mater. 23(5), 608–618 (2013).
[Crossref]

Xu, Z.

J. E. Elek, X. A. Zhang, B. Dai, Z. Xu, and C.-H. Chang, “Fabrication of three-dimensional hierarchical nanostructures using template-directed colloidal assembly,” Nanoscale 7(10), 4406–4410 (2015).
[Crossref] [PubMed]

X. A. Zhang, B. Dai, Z. Xu, and C.-H. Chang, “Sculpting asymmetric, hollow-core, three-dimensional nanostructures using colloidal particles,” Small 11(11), 1285–1292 (2015).
[Crossref] [PubMed]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Yan, Q.

C. Geng, Q. Yan, C. Du, P. Dong, L. Zhang, T. Wei, Z. Hao, X. Wang, and D. Shen, “Large-Area and Ordered Sexfoil Pore Arrays by Spherical-Lens Photolithography,” ACS Photonics 1(8), 754–760 (2014).
[Crossref]

Yang, S.

J. Li, Y. Cho, I.-S. Choi, and S. Yang, “Transforming one-dimensional nanowalls to long-range ordered two-dimensional nanowaves: exploiting buckling instability and nanofibers effect in holographic lithography,” Adv. Funct. Mater. 24(16), 2361–2366 (2014).
[Crossref]

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Yang, S.-M.

T. Y. Jeon, H. C. Jeon, S. Y. Lee, T. S. Shim, J.-D. Kwon, S.-G. Park, and S.-M. Yang, “3D hierarchical architectures prepared by single exposure through a highly durable colloidal phase mask,” Adv. Mater. 26(9), 1422–1426 (2014).
[Crossref] [PubMed]

S.-G. Park, T. Y. Jeon, H. C. Jeon, S.-M. Yang, J.-D. Kwon, C.-W. Mun, B. Cho, C. S. Kim, and D.-H. Kim, “Fabrication of 3D ZnO hollow shell structures by prism holographic lithography and atomic layer deposition,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(11), 1957 (2014).
[Crossref]

Yip, S.

M. Fang, H. Lin, H.-Y. Cheung, F. Xiu, L. Shen, S. Yip, E. Y.-B. Pun, C.-Y. Wong, and J. C. Ho, “Polymer-confined colloidal monolayer: a reusable soft photomask for rapid wafer-scale nanopatterning,” ACS Appl. Mater. Interfaces 6(23), 20837–20841 (2014).
[Crossref] [PubMed]

Yoon, S.

J. Park, S. Yoon, K. Kang, and S. Jeon, “Antireflection behavior of multidimensional nanostructures patterned using a conformable elastomeric phase mask in a single exposure step,” Small 6(18), 1981–1985 (2010).
[Crossref] [PubMed]

Zhang, D.

Zhang, L.

C. Geng, Q. Yan, C. Du, P. Dong, L. Zhang, T. Wei, Z. Hao, X. Wang, and D. Shen, “Large-Area and Ordered Sexfoil Pore Arrays by Spherical-Lens Photolithography,” ACS Photonics 1(8), 754–760 (2014).
[Crossref]

Zhang, X. A.

X. A. Zhang, B. Dai, Z. Xu, and C.-H. Chang, “Sculpting asymmetric, hollow-core, three-dimensional nanostructures using colloidal particles,” Small 11(11), 1285–1292 (2015).
[Crossref] [PubMed]

J. E. Elek, X. A. Zhang, B. Dai, Z. Xu, and C.-H. Chang, “Fabrication of three-dimensional hierarchical nanostructures using template-directed colloidal assembly,” Nanoscale 7(10), 4406–4410 (2015).
[Crossref] [PubMed]

X. A. Zhang, A. Bagal, E. C. Dandley, J. Zhao, C. J. Oldham, B. Wu, G. N. Parsons, and C. Chang, “Ordered 3D thin-shell nanolattice materials with near-unity refractive Indices,” Adv. Funct. Mater. 25(42) 6644–6649 (2015).

X. A. Zhang, J. Elek, and C.-H. Chang, “Three-dimensional nanolithography using light scattering from colloidal particles,” ACS Nano 7(7), 6212–6218 (2013).
[Crossref] [PubMed]

Zhang, Y.

J. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt. Photonics 5(1), 83 (2013).
[Crossref]

Zhao, J.

X. A. Zhang, A. Bagal, E. C. Dandley, J. Zhao, C. J. Oldham, B. Wu, G. N. Parsons, and C. Chang, “Ordered 3D thin-shell nanolattice materials with near-unity refractive Indices,” Adv. Funct. Mater. 25(42) 6644–6649 (2015).

Zheng, G.

J.-W. Jang, Z. Zheng, O.-S. Lee, W. Shim, G. Zheng, G. C. Schatz, and C. A. Mirkin, “Arrays of nanoscale lenses for subwavelength optical lithography,” Nano Lett. 10(11), 4399–4404 (2010).
[Crossref] [PubMed]

Zheng, Z.

J.-W. Jang, Z. Zheng, O.-S. Lee, W. Shim, G. Zheng, G. C. Schatz, and C. A. Mirkin, “Arrays of nanoscale lenses for subwavelength optical lithography,” Nano Lett. 10(11), 4399–4404 (2010).
[Crossref] [PubMed]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).

ACS Appl. Mater. Interfaces (1)

M. Fang, H. Lin, H.-Y. Cheung, F. Xiu, L. Shen, S. Yip, E. Y.-B. Pun, C.-Y. Wong, and J. C. Ho, “Polymer-confined colloidal monolayer: a reusable soft photomask for rapid wafer-scale nanopatterning,” ACS Appl. Mater. Interfaces 6(23), 20837–20841 (2014).
[Crossref] [PubMed]

ACS Nano (1)

X. A. Zhang, J. Elek, and C.-H. Chang, “Three-dimensional nanolithography using light scattering from colloidal particles,” ACS Nano 7(7), 6212–6218 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

C. Geng, Q. Yan, C. Du, P. Dong, L. Zhang, T. Wei, Z. Hao, X. Wang, and D. Shen, “Large-Area and Ordered Sexfoil Pore Arrays by Spherical-Lens Photolithography,” ACS Photonics 1(8), 754–760 (2014).
[Crossref]

Adv. Funct. Mater. (4)

I. Wathuthanthri, Y. Liu, K. Du, W. Xu, and C.-H. Choi, “Simple holographic patterning for high-aspect-ratio three-dimensional nanostructures with large coverage area,” Adv. Funct. Mater. 23(5), 608–618 (2013).
[Crossref]

X. A. Zhang, A. Bagal, E. C. Dandley, J. Zhao, C. J. Oldham, B. Wu, G. N. Parsons, and C. Chang, “Ordered 3D thin-shell nanolattice materials with near-unity refractive Indices,” Adv. Funct. Mater. 25(42) 6644–6649 (2015).

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

J. Li, Y. Cho, I.-S. Choi, and S. Yang, “Transforming one-dimensional nanowalls to long-range ordered two-dimensional nanowaves: exploiting buckling instability and nanofibers effect in holographic lithography,” Adv. Funct. Mater. 24(16), 2361–2366 (2014).
[Crossref]

Adv. Mater. (2)

J.-H. Jang, C. K. Ullal, T. Choi, M. C. Lemieux, V. V. Tsukruk, and E. L. Thomas, “3D polymer microframes that exploit length-scale-dependent mechanical behavior,” Adv. Mater. 18(16), 2123–2127 (2006).
[Crossref]

T. Y. Jeon, H. C. Jeon, S. Y. Lee, T. S. Shim, J.-D. Kwon, S.-G. Park, and S.-M. Yang, “3D hierarchical architectures prepared by single exposure through a highly durable colloidal phase mask,” Adv. Mater. 26(9), 1422–1426 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. K. Hyun, J. Park, E. Kim, L. J. Lauhon, and S. Jeon, “Rational control of diffraction and interference from conformal phase gratings: toward high-resolution 3D nanopatterning,” Adv. Opt. Mater. 2(12), 1213–1220 (2014).
[Crossref]

Adv. Opt. Photonics (1)

J. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt. Photonics 5(1), 83 (2013).
[Crossref]

Appl. Opt. (1)

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

S.-G. Park, T. Y. Jeon, H. C. Jeon, S.-M. Yang, J.-D. Kwon, C.-W. Mun, B. Cho, C. S. Kim, and D.-H. Kim, “Fabrication of 3D ZnO hollow shell structures by prism holographic lithography and atomic layer deposition,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(11), 1957 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, “Three-dimensional nanofabrication with elastomeric phase masks,” J. Phys. Chem. B 111(45), 12945–12958 (2007).
[Crossref] [PubMed]

J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. (1)

J. C. Hulteen, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 13, 1553 (1995).

J. Vac. Sci. Technol. B Microelectron, Nanom. Struct. (1)

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. B Microelectron, Nanom. Struct. 27, 2931 (2009).

Nano Lett. (2)

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

J.-W. Jang, Z. Zheng, O.-S. Lee, W. Shim, G. Zheng, G. C. Schatz, and C. A. Mirkin, “Arrays of nanoscale lenses for subwavelength optical lithography,” Nano Lett. 10(11), 4399–4404 (2010).
[Crossref] [PubMed]

Nanoscale (1)

J. E. Elek, X. A. Zhang, B. Dai, Z. Xu, and C.-H. Chang, “Fabrication of three-dimensional hierarchical nanostructures using template-directed colloidal assembly,” Nanoscale 7(10), 4406–4410 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

M. K. Kwak, J. G. Ok, J. Y. Lee, and L. J. Guo, “Continuous phase-shift lithography with a roll-type mask and application to transparent conductor fabrication,” Nanotechnology 23(34), 344008 (2012).
[Crossref] [PubMed]

Nature (1)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).

Opt. Express (2)

Opt. Lett. (1)

Philos, Mag. Ser. 5 (1)

L. Rayleigh, “XXV. On copying diffraction-gratings, and on some phenomena connected therewith,” Philos, Mag. Ser. 5 11(67), 196–205 (1881).
[Crossref]

Philos. Mag. Ser. 3 (1)

H. F. Talbot, “LXXVI. Facts relating to optical science. No. IV,” Philos. Mag. Ser. 3 9, 401–407 (1836).

Phys. Rev. Lett. (1)

T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas, “Hypersonic phononic crystals,” Phys. Rev. Lett. 94(11), 115501 (2005).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Science (1)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Small (2)

J. Park, S. Yoon, K. Kang, and S. Jeon, “Antireflection behavior of multidimensional nanostructures patterned using a conformable elastomeric phase mask in a single exposure step,” Small 6(18), 1981–1985 (2010).
[Crossref] [PubMed]

X. A. Zhang, B. Dai, Z. Xu, and C.-H. Chang, “Sculpting asymmetric, hollow-core, three-dimensional nanostructures using colloidal particles,” Small 11(11), 1285–1292 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The simulated intensity cross-sections by FDTD along with (a) x-direction and (b) y-direction of colloidal nanosphere hexagonal array

Fig. 2
Fig. 2

Numerical FDTD simulation of Talbot intensity pattern for colloidal phase shift lithography under normal illumination. The γ parameter is varied from 0.1 to 0.9, resulting in different unit-cell geometries. Lower γ parameter results show various Talbot sub-images including frequency-doubled and -tripled fractional images. Only primary and secondary images can be observed at higher γ parameter.

Fig. 3
Fig. 3

Fabrication Process and SEM Images with scale bars of 2 μm. (a) Preparation of 2D self-assembled colloidal nanosphere array on photoresist layer; (b) UV exposure over 2D colloidal mask and removal of nanospheres; (c) Development of photoresist and final 3D periodic nanostructure

Fig. 4
Fig. 4

Comparison of FDTD simulations and experimental results with various γ parameters. Lower γ (0.23 and 0.31) shows complex patterns, and higher γ (0.58 and 0.65) results in simple patterns. Scale bars in every SEM images indicate 1 μm.

Fig. 5
Fig. 5

Comparison of analytical, numerical (FDTD), and experimental values of normalized Talbot distance between γ = 0.2 and 0.9. The colored area shows the regions which m diffraction orders are allowed. The boundary values are γ=1/ 3 and γ=1/ 7 .

Tables (1)

Tables Icon

Table 1 Analytical, numerical and experimental Talbot distance data with corresponding γ parameter.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z t = λ n 1 1 ( λ nΛ ) 2 .
z t Λ = γ 1 1 γ 2 .

Metrics