Abstract

The influence of the surface nanostructured relief on the near IR-spectral shift and on the structural properties of the nematic liquid crystal (NLC) materials doped with nanoparticles from lanthanide group has been considered. The relief mentioned above has been made on the interface between glass substrate with ITO-coatings and the LC mesophase. The specific feature of this relief is based on the applying of the contactless laser deposition technique and on the its modification by using surface electromagnetic waves (SEW) or carbon nanotubes (CNTs) treated with SEW. The modified relief permits to orient LC molecules without direct polymer orienting layers and can be used as conducting layer too. The features mentioned above lead to decrease drastically the resistivity and the bias voltage as well as that permits to increase the transparency and reveal the near IR-shift in the spectral characteristics of the lanthanide-doped LC mesophase.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

10 February 2016: A correction was made to the author listing.


OSA Recommended Articles
Large-area bulk self-assembly of plasmonic nanorods in nematic liquid crystal via surface-mediated alignment

Qingkun Liu, Nan Wang, Pengxin Chen, Yuan Zhang, and Sailing He
Opt. Mater. Express 3(11) 1918-1924 (2013)

Cholesteric liquid crystal–carbon nanotube composites with photo-settable reversible and memory electro-optic modes

Oleg Yaroshchuk, Sergiy Tomylko, Igor Gvozdovskyy, and Rumiko Yamaguchi
Appl. Opt. 52(22) E53-E59 (2013)

Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping

Yong-Seok Ha, Hyung-Jun Kim, Hong-Gyu Park, and Dae-Shik Seo
Opt. Express 20(6) 6448-6455 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Schadt, “Linear and non-linear liquid crystal materials, electro-optical effects and surface interactions:their application in present and future devices,” Liq. Cryst. 14(1), 73–104 (1993).
    [Crossref]
  2. I. C. Khoo, “Holographic grating formation in dye- and fullerene C60-doped nematic liquid-crystal film,” Opt. Lett. 20(20), 2137–2139 (1995).
    [Crossref] [PubMed]
  3. H. Ono and N. Kawatsuki, “Orientational photorefractive gratings observed in polymer dispersed liquid crystals doped with fullerene,” Jpn. J. Appl. Phys. 36(10), 6444–6448 (1997).
    [Crossref]
  4. H. Ono, I. Saito, and N. Kawatsuki, “Orientational photorefractive effects observed in poly(vinyl alcohol)/liquid crystal composites,” Appl. Phys. B 66(4), 527–529 (1998).
    [Crossref]
  5. I. I. Smalyukh and O. D. Lavrentovich, “Anchoring-mediated interaction of edge dislocations with bounding surfaces in confined cholesteric liquid crystals,” Phys. Rev. Lett. 90(8), 085503 (2003).
    [Crossref] [PubMed]
  6. J. S. Gwag, M. Oh-E, K. R. Kim, S. H. Cho, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “A functionally separated nanoimprinting material tailored for homeotropic liquid crystal alignment,” Nanotechnology 19(39), 395301 (2008).
    [Crossref] [PubMed]
  7. W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
    [Crossref]
  8. M. Wahle, O. Kasdorf, H.-S. Kitzerow, Ya. Liang, X. Feng, and K. Müllen, “Electrooptic switching in graphene-based liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
    [Crossref]
  9. E. Ouskova, J. Vapaavuori, and M. Kaivola, “Self-orienting liquid crystal doped with polymer-azo-dye complex,” Opt. Mater. Express 1(8), 1463–1470 (2011).
    [Crossref]
  10. Ch. Blanc, D. Coursault, and E. Lacaze, “Ordering nano- and microparticles assemblies with liquid crystals,” Liq. Cryst. Rev. 1(2), 83–109 (2013).
    [Crossref]
  11. N. V. Kamanina, “Optical investigations of a C70-doped 2-cyclooctylamino-5-nitropyridine–liquid crystal system,” J. Opt. A, Pure Appl. Opt. 4(5), 571–574 (2002).
    [Crossref]
  12. N. V. Kamanina, “Nonlinear optical study of fullerene-doped conjugated systems: new materials for nanophotonics applications,” Proceedings of the NATO Advanced Research Workshop on Organic Nanophotonics II/100, 177–192 (2003).
    [Crossref]
  13. N. V. Kamanina, “Fullerene-dispersed liquid crystal structure: dynamic characteristics and self-organization processes,” Physics-Uspekhi 48(4), 419–427 (2005).
    [Crossref]
  14. N. V. Kamanina, A. V. Komolkin, and N. P. Yevlampieva, “Variation of the orientational order parameter in a nematic liquid crystal–COANP–C70 composite structure,” Tech. Phys. Lett. 31(6), 478–480 (2005).
    [Crossref]
  15. N. V. Kamanina, Y. M. Voronin, I. V. Kityk, A. Danel, and E. Gondek, “Spectroscopy of PVK-phenyl derivatives disturbed the long-range ordering of liquid crystalline phase,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 66(3), 781–785 (2007).
    [Crossref] [PubMed]
  16. N. V. Kamanina and D. P. Uskokovic, “Refractive index of organic systems doped with nano-objects,” Mater. Manuf. Process. 23(6), 552–556 (2008).
    [Crossref]
  17. A. Kamanin and N. Kamanina, “Self-organization of liquid crystals induced by aligning of human erythrocytes,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 486(1), 50–56 (2008).
    [Crossref]
  18. N. V. Kamanina, A. Emandi, F. Kajzar, and A.-J. Attias, “Laser-induced change in the refractive index in the systems based on nanostructured polyimide: comparative study with other photosensitive structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 486(1), 1–11 (2008).
    [Crossref]
  19. N. V. Kamanina, P. Ya. Vasilyev, A. I. Vangonen, V. I. Studeonov, Yu. E. Usanov, and F. Kajzar, “Photophysics of organic structures doped with nanoobjects: optical limiting, switching and laser strength,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 485(1), 197–206 (2008).
    [Crossref]
  20. N. V. Kamanina, S. V. Serov, Y. Bretonniere, and C. Andraud, “Organic Systems and their photorefractive properties under the nano- and biostructuration: scientific view and sustainable development,” J. Nanomater. 2015, 278902 (2015), doi:.
    [Crossref]
  21. N. V. Kamanina, P. Ya. Vasilyev, and V. I. Studeonov, “Orientation of liquid crystalline materials by using carbon nanotubes,” Theoret. Appl. Mech. 38(1), 37–46 (2011).
    [Crossref]
  22. N. V. Kamanina, Yu. A. Zubtsova, V. A. Shulev, M. M. Mikhaĭlova, S. V. Murashov, A. I. Denisyuk, S. V. Butyanov, and I. Yu. Sapurina, “Self-organization and dynamic characteristics study of nanostructured liquid crystal compounds,” Solid State Phenomena 106, 145–148 (2005).
    [Crossref]

2015 (1)

N. V. Kamanina, S. V. Serov, Y. Bretonniere, and C. Andraud, “Organic Systems and their photorefractive properties under the nano- and biostructuration: scientific view and sustainable development,” J. Nanomater. 2015, 278902 (2015), doi:.
[Crossref]

2013 (1)

Ch. Blanc, D. Coursault, and E. Lacaze, “Ordering nano- and microparticles assemblies with liquid crystals,” Liq. Cryst. Rev. 1(2), 83–109 (2013).
[Crossref]

2011 (3)

M. Wahle, O. Kasdorf, H.-S. Kitzerow, Ya. Liang, X. Feng, and K. Müllen, “Electrooptic switching in graphene-based liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
[Crossref]

E. Ouskova, J. Vapaavuori, and M. Kaivola, “Self-orienting liquid crystal doped with polymer-azo-dye complex,” Opt. Mater. Express 1(8), 1463–1470 (2011).
[Crossref]

N. V. Kamanina, P. Ya. Vasilyev, and V. I. Studeonov, “Orientation of liquid crystalline materials by using carbon nanotubes,” Theoret. Appl. Mech. 38(1), 37–46 (2011).
[Crossref]

2009 (1)

W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
[Crossref]

2008 (5)

J. S. Gwag, M. Oh-E, K. R. Kim, S. H. Cho, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “A functionally separated nanoimprinting material tailored for homeotropic liquid crystal alignment,” Nanotechnology 19(39), 395301 (2008).
[Crossref] [PubMed]

N. V. Kamanina and D. P. Uskokovic, “Refractive index of organic systems doped with nano-objects,” Mater. Manuf. Process. 23(6), 552–556 (2008).
[Crossref]

A. Kamanin and N. Kamanina, “Self-organization of liquid crystals induced by aligning of human erythrocytes,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 486(1), 50–56 (2008).
[Crossref]

N. V. Kamanina, A. Emandi, F. Kajzar, and A.-J. Attias, “Laser-induced change in the refractive index in the systems based on nanostructured polyimide: comparative study with other photosensitive structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 486(1), 1–11 (2008).
[Crossref]

N. V. Kamanina, P. Ya. Vasilyev, A. I. Vangonen, V. I. Studeonov, Yu. E. Usanov, and F. Kajzar, “Photophysics of organic structures doped with nanoobjects: optical limiting, switching and laser strength,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 485(1), 197–206 (2008).
[Crossref]

2007 (1)

N. V. Kamanina, Y. M. Voronin, I. V. Kityk, A. Danel, and E. Gondek, “Spectroscopy of PVK-phenyl derivatives disturbed the long-range ordering of liquid crystalline phase,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 66(3), 781–785 (2007).
[Crossref] [PubMed]

2005 (3)

N. V. Kamanina, Yu. A. Zubtsova, V. A. Shulev, M. M. Mikhaĭlova, S. V. Murashov, A. I. Denisyuk, S. V. Butyanov, and I. Yu. Sapurina, “Self-organization and dynamic characteristics study of nanostructured liquid crystal compounds,” Solid State Phenomena 106, 145–148 (2005).
[Crossref]

N. V. Kamanina, “Fullerene-dispersed liquid crystal structure: dynamic characteristics and self-organization processes,” Physics-Uspekhi 48(4), 419–427 (2005).
[Crossref]

N. V. Kamanina, A. V. Komolkin, and N. P. Yevlampieva, “Variation of the orientational order parameter in a nematic liquid crystal–COANP–C70 composite structure,” Tech. Phys. Lett. 31(6), 478–480 (2005).
[Crossref]

2003 (1)

I. I. Smalyukh and O. D. Lavrentovich, “Anchoring-mediated interaction of edge dislocations with bounding surfaces in confined cholesteric liquid crystals,” Phys. Rev. Lett. 90(8), 085503 (2003).
[Crossref] [PubMed]

2002 (1)

N. V. Kamanina, “Optical investigations of a C70-doped 2-cyclooctylamino-5-nitropyridine–liquid crystal system,” J. Opt. A, Pure Appl. Opt. 4(5), 571–574 (2002).
[Crossref]

1998 (1)

H. Ono, I. Saito, and N. Kawatsuki, “Orientational photorefractive effects observed in poly(vinyl alcohol)/liquid crystal composites,” Appl. Phys. B 66(4), 527–529 (1998).
[Crossref]

1997 (1)

H. Ono and N. Kawatsuki, “Orientational photorefractive gratings observed in polymer dispersed liquid crystals doped with fullerene,” Jpn. J. Appl. Phys. 36(10), 6444–6448 (1997).
[Crossref]

1995 (1)

1993 (1)

M. Schadt, “Linear and non-linear liquid crystal materials, electro-optical effects and surface interactions:their application in present and future devices,” Liq. Cryst. 14(1), 73–104 (1993).
[Crossref]

Andraud, C.

N. V. Kamanina, S. V. Serov, Y. Bretonniere, and C. Andraud, “Organic Systems and their photorefractive properties under the nano- and biostructuration: scientific view and sustainable development,” J. Nanomater. 2015, 278902 (2015), doi:.
[Crossref]

Attias, A.-J.

N. V. Kamanina, A. Emandi, F. Kajzar, and A.-J. Attias, “Laser-induced change in the refractive index in the systems based on nanostructured polyimide: comparative study with other photosensitive structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 486(1), 1–11 (2008).
[Crossref]

Blanc, Ch.

Ch. Blanc, D. Coursault, and E. Lacaze, “Ordering nano- and microparticles assemblies with liquid crystals,” Liq. Cryst. Rev. 1(2), 83–109 (2013).
[Crossref]

Bretonniere, Y.

N. V. Kamanina, S. V. Serov, Y. Bretonniere, and C. Andraud, “Organic Systems and their photorefractive properties under the nano- and biostructuration: scientific view and sustainable development,” J. Nanomater. 2015, 278902 (2015), doi:.
[Crossref]

Butyanov, S. V.

N. V. Kamanina, Yu. A. Zubtsova, V. A. Shulev, M. M. Mikhaĭlova, S. V. Murashov, A. I. Denisyuk, S. V. Butyanov, and I. Yu. Sapurina, “Self-organization and dynamic characteristics study of nanostructured liquid crystal compounds,” Solid State Phenomena 106, 145–148 (2005).
[Crossref]

Chen, W.-Z.

W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
[Crossref]

Cho, S. H.

J. S. Gwag, M. Oh-E, K. R. Kim, S. H. Cho, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “A functionally separated nanoimprinting material tailored for homeotropic liquid crystal alignment,” Nanotechnology 19(39), 395301 (2008).
[Crossref] [PubMed]

Coursault, D.

Ch. Blanc, D. Coursault, and E. Lacaze, “Ordering nano- and microparticles assemblies with liquid crystals,” Liq. Cryst. Rev. 1(2), 83–109 (2013).
[Crossref]

Danel, A.

N. V. Kamanina, Y. M. Voronin, I. V. Kityk, A. Danel, and E. Gondek, “Spectroscopy of PVK-phenyl derivatives disturbed the long-range ordering of liquid crystalline phase,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 66(3), 781–785 (2007).
[Crossref] [PubMed]

Denisyuk, A. I.

N. V. Kamanina, Yu. A. Zubtsova, V. A. Shulev, M. M. Mikhaĭlova, S. V. Murashov, A. I. Denisyuk, S. V. Butyanov, and I. Yu. Sapurina, “Self-organization and dynamic characteristics study of nanostructured liquid crystal compounds,” Solid State Phenomena 106, 145–148 (2005).
[Crossref]

Emandi, A.

N. V. Kamanina, A. Emandi, F. Kajzar, and A.-J. Attias, “Laser-induced change in the refractive index in the systems based on nanostructured polyimide: comparative study with other photosensitive structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 486(1), 1–11 (2008).
[Crossref]

Feng, X.

M. Wahle, O. Kasdorf, H.-S. Kitzerow, Ya. Liang, X. Feng, and K. Müllen, “Electrooptic switching in graphene-based liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
[Crossref]

Gondek, E.

N. V. Kamanina, Y. M. Voronin, I. V. Kityk, A. Danel, and E. Gondek, “Spectroscopy of PVK-phenyl derivatives disturbed the long-range ordering of liquid crystalline phase,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 66(3), 781–785 (2007).
[Crossref] [PubMed]

Gwag, J. S.

J. S. Gwag, M. Oh-E, K. R. Kim, S. H. Cho, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “A functionally separated nanoimprinting material tailored for homeotropic liquid crystal alignment,” Nanotechnology 19(39), 395301 (2008).
[Crossref] [PubMed]

Itami, S.

J. S. Gwag, M. Oh-E, K. R. Kim, S. H. Cho, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “A functionally separated nanoimprinting material tailored for homeotropic liquid crystal alignment,” Nanotechnology 19(39), 395301 (2008).
[Crossref] [PubMed]

Kaivola, M.

Kajzar, F.

N. V. Kamanina, A. Emandi, F. Kajzar, and A.-J. Attias, “Laser-induced change in the refractive index in the systems based on nanostructured polyimide: comparative study with other photosensitive structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 486(1), 1–11 (2008).
[Crossref]

N. V. Kamanina, P. Ya. Vasilyev, A. I. Vangonen, V. I. Studeonov, Yu. E. Usanov, and F. Kajzar, “Photophysics of organic structures doped with nanoobjects: optical limiting, switching and laser strength,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 485(1), 197–206 (2008).
[Crossref]

Kamanin, A.

A. Kamanin and N. Kamanina, “Self-organization of liquid crystals induced by aligning of human erythrocytes,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 486(1), 50–56 (2008).
[Crossref]

Kamanina, N.

A. Kamanin and N. Kamanina, “Self-organization of liquid crystals induced by aligning of human erythrocytes,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 486(1), 50–56 (2008).
[Crossref]

Kamanina, N. V.

N. V. Kamanina, S. V. Serov, Y. Bretonniere, and C. Andraud, “Organic Systems and their photorefractive properties under the nano- and biostructuration: scientific view and sustainable development,” J. Nanomater. 2015, 278902 (2015), doi:.
[Crossref]

N. V. Kamanina, P. Ya. Vasilyev, and V. I. Studeonov, “Orientation of liquid crystalline materials by using carbon nanotubes,” Theoret. Appl. Mech. 38(1), 37–46 (2011).
[Crossref]

N. V. Kamanina, P. Ya. Vasilyev, A. I. Vangonen, V. I. Studeonov, Yu. E. Usanov, and F. Kajzar, “Photophysics of organic structures doped with nanoobjects: optical limiting, switching and laser strength,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 485(1), 197–206 (2008).
[Crossref]

N. V. Kamanina, A. Emandi, F. Kajzar, and A.-J. Attias, “Laser-induced change in the refractive index in the systems based on nanostructured polyimide: comparative study with other photosensitive structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 486(1), 1–11 (2008).
[Crossref]

N. V. Kamanina and D. P. Uskokovic, “Refractive index of organic systems doped with nano-objects,” Mater. Manuf. Process. 23(6), 552–556 (2008).
[Crossref]

N. V. Kamanina, Y. M. Voronin, I. V. Kityk, A. Danel, and E. Gondek, “Spectroscopy of PVK-phenyl derivatives disturbed the long-range ordering of liquid crystalline phase,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 66(3), 781–785 (2007).
[Crossref] [PubMed]

N. V. Kamanina, “Fullerene-dispersed liquid crystal structure: dynamic characteristics and self-organization processes,” Physics-Uspekhi 48(4), 419–427 (2005).
[Crossref]

N. V. Kamanina, A. V. Komolkin, and N. P. Yevlampieva, “Variation of the orientational order parameter in a nematic liquid crystal–COANP–C70 composite structure,” Tech. Phys. Lett. 31(6), 478–480 (2005).
[Crossref]

N. V. Kamanina, Yu. A. Zubtsova, V. A. Shulev, M. M. Mikhaĭlova, S. V. Murashov, A. I. Denisyuk, S. V. Butyanov, and I. Yu. Sapurina, “Self-organization and dynamic characteristics study of nanostructured liquid crystal compounds,” Solid State Phenomena 106, 145–148 (2005).
[Crossref]

N. V. Kamanina, “Optical investigations of a C70-doped 2-cyclooctylamino-5-nitropyridine–liquid crystal system,” J. Opt. A, Pure Appl. Opt. 4(5), 571–574 (2002).
[Crossref]

Kasdorf, O.

M. Wahle, O. Kasdorf, H.-S. Kitzerow, Ya. Liang, X. Feng, and K. Müllen, “Electrooptic switching in graphene-based liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
[Crossref]

Kawatsuki, N.

H. Ono, I. Saito, and N. Kawatsuki, “Orientational photorefractive effects observed in poly(vinyl alcohol)/liquid crystal composites,” Appl. Phys. B 66(4), 527–529 (1998).
[Crossref]

H. Ono and N. Kawatsuki, “Orientational photorefractive gratings observed in polymer dispersed liquid crystals doped with fullerene,” Jpn. J. Appl. Phys. 36(10), 6444–6448 (1997).
[Crossref]

Khoo, I. C.

Kim, K. R.

J. S. Gwag, M. Oh-E, K. R. Kim, S. H. Cho, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “A functionally separated nanoimprinting material tailored for homeotropic liquid crystal alignment,” Nanotechnology 19(39), 395301 (2008).
[Crossref] [PubMed]

Kityk, I. V.

N. V. Kamanina, Y. M. Voronin, I. V. Kityk, A. Danel, and E. Gondek, “Spectroscopy of PVK-phenyl derivatives disturbed the long-range ordering of liquid crystalline phase,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 66(3), 781–785 (2007).
[Crossref] [PubMed]

Kitzerow, H.-S.

M. Wahle, O. Kasdorf, H.-S. Kitzerow, Ya. Liang, X. Feng, and K. Müllen, “Electrooptic switching in graphene-based liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
[Crossref]

Komolkin, A. V.

N. V. Kamanina, A. V. Komolkin, and N. P. Yevlampieva, “Variation of the orientational order parameter in a nematic liquid crystal–COANP–C70 composite structure,” Tech. Phys. Lett. 31(6), 478–480 (2005).
[Crossref]

Lacaze, E.

Ch. Blanc, D. Coursault, and E. Lacaze, “Ordering nano- and microparticles assemblies with liquid crystals,” Liq. Cryst. Rev. 1(2), 83–109 (2013).
[Crossref]

Lavrentovich, O. D.

I. I. Smalyukh and O. D. Lavrentovich, “Anchoring-mediated interaction of edge dislocations with bounding surfaces in confined cholesteric liquid crystals,” Phys. Rev. Lett. 90(8), 085503 (2003).
[Crossref] [PubMed]

Liang, Ya.

M. Wahle, O. Kasdorf, H.-S. Kitzerow, Ya. Liang, X. Feng, and K. Müllen, “Electrooptic switching in graphene-based liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
[Crossref]

Lin, T.-H.

W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
[Crossref]

Mikhailova, M. M.

N. V. Kamanina, Yu. A. Zubtsova, V. A. Shulev, M. M. Mikhaĭlova, S. V. Murashov, A. I. Denisyuk, S. V. Butyanov, and I. Yu. Sapurina, “Self-organization and dynamic characteristics study of nanostructured liquid crystal compounds,” Solid State Phenomena 106, 145–148 (2005).
[Crossref]

Müllen, K.

M. Wahle, O. Kasdorf, H.-S. Kitzerow, Ya. Liang, X. Feng, and K. Müllen, “Electrooptic switching in graphene-based liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
[Crossref]

Murashov, S. V.

N. V. Kamanina, Yu. A. Zubtsova, V. A. Shulev, M. M. Mikhaĭlova, S. V. Murashov, A. I. Denisyuk, S. V. Butyanov, and I. Yu. Sapurina, “Self-organization and dynamic characteristics study of nanostructured liquid crystal compounds,” Solid State Phenomena 106, 145–148 (2005).
[Crossref]

Oh-E, M.

J. S. Gwag, M. Oh-E, K. R. Kim, S. H. Cho, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “A functionally separated nanoimprinting material tailored for homeotropic liquid crystal alignment,” Nanotechnology 19(39), 395301 (2008).
[Crossref] [PubMed]

Ono, H.

H. Ono, I. Saito, and N. Kawatsuki, “Orientational photorefractive effects observed in poly(vinyl alcohol)/liquid crystal composites,” Appl. Phys. B 66(4), 527–529 (1998).
[Crossref]

H. Ono and N. Kawatsuki, “Orientational photorefractive gratings observed in polymer dispersed liquid crystals doped with fullerene,” Jpn. J. Appl. Phys. 36(10), 6444–6448 (1997).
[Crossref]

Ouskova, E.

Saito, I.

H. Ono, I. Saito, and N. Kawatsuki, “Orientational photorefractive effects observed in poly(vinyl alcohol)/liquid crystal composites,” Appl. Phys. B 66(4), 527–529 (1998).
[Crossref]

Sapurina, I. Yu.

N. V. Kamanina, Yu. A. Zubtsova, V. A. Shulev, M. M. Mikhaĭlova, S. V. Murashov, A. I. Denisyuk, S. V. Butyanov, and I. Yu. Sapurina, “Self-organization and dynamic characteristics study of nanostructured liquid crystal compounds,” Solid State Phenomena 106, 145–148 (2005).
[Crossref]

Satou, H.

J. S. Gwag, M. Oh-E, K. R. Kim, S. H. Cho, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “A functionally separated nanoimprinting material tailored for homeotropic liquid crystal alignment,” Nanotechnology 19(39), 395301 (2008).
[Crossref] [PubMed]

Schadt, M.

M. Schadt, “Linear and non-linear liquid crystal materials, electro-optical effects and surface interactions:their application in present and future devices,” Liq. Cryst. 14(1), 73–104 (1993).
[Crossref]

Serov, S. V.

N. V. Kamanina, S. V. Serov, Y. Bretonniere, and C. Andraud, “Organic Systems and their photorefractive properties under the nano- and biostructuration: scientific view and sustainable development,” J. Nanomater. 2015, 278902 (2015), doi:.
[Crossref]

Shulev, V. A.

N. V. Kamanina, Yu. A. Zubtsova, V. A. Shulev, M. M. Mikhaĭlova, S. V. Murashov, A. I. Denisyuk, S. V. Butyanov, and I. Yu. Sapurina, “Self-organization and dynamic characteristics study of nanostructured liquid crystal compounds,” Solid State Phenomena 106, 145–148 (2005).
[Crossref]

Smalyukh, I. I.

I. I. Smalyukh and O. D. Lavrentovich, “Anchoring-mediated interaction of edge dislocations with bounding surfaces in confined cholesteric liquid crystals,” Phys. Rev. Lett. 90(8), 085503 (2003).
[Crossref] [PubMed]

Studeonov, V. I.

N. V. Kamanina, P. Ya. Vasilyev, and V. I. Studeonov, “Orientation of liquid crystalline materials by using carbon nanotubes,” Theoret. Appl. Mech. 38(1), 37–46 (2011).
[Crossref]

N. V. Kamanina, P. Ya. Vasilyev, A. I. Vangonen, V. I. Studeonov, Yu. E. Usanov, and F. Kajzar, “Photophysics of organic structures doped with nanoobjects: optical limiting, switching and laser strength,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 485(1), 197–206 (2008).
[Crossref]

Tsai, Y.-T.

W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
[Crossref]

Usanov, Yu. E.

N. V. Kamanina, P. Ya. Vasilyev, A. I. Vangonen, V. I. Studeonov, Yu. E. Usanov, and F. Kajzar, “Photophysics of organic structures doped with nanoobjects: optical limiting, switching and laser strength,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 485(1), 197–206 (2008).
[Crossref]

Uskokovic, D. P.

N. V. Kamanina and D. P. Uskokovic, “Refractive index of organic systems doped with nano-objects,” Mater. Manuf. Process. 23(6), 552–556 (2008).
[Crossref]

Vangonen, A. I.

N. V. Kamanina, P. Ya. Vasilyev, A. I. Vangonen, V. I. Studeonov, Yu. E. Usanov, and F. Kajzar, “Photophysics of organic structures doped with nanoobjects: optical limiting, switching and laser strength,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 485(1), 197–206 (2008).
[Crossref]

Vapaavuori, J.

Vasilyev, P. Ya.

N. V. Kamanina, P. Ya. Vasilyev, and V. I. Studeonov, “Orientation of liquid crystalline materials by using carbon nanotubes,” Theoret. Appl. Mech. 38(1), 37–46 (2011).
[Crossref]

N. V. Kamanina, P. Ya. Vasilyev, A. I. Vangonen, V. I. Studeonov, Yu. E. Usanov, and F. Kajzar, “Photophysics of organic structures doped with nanoobjects: optical limiting, switching and laser strength,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 485(1), 197–206 (2008).
[Crossref]

Voronin, Y. M.

N. V. Kamanina, Y. M. Voronin, I. V. Kityk, A. Danel, and E. Gondek, “Spectroscopy of PVK-phenyl derivatives disturbed the long-range ordering of liquid crystalline phase,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 66(3), 781–785 (2007).
[Crossref] [PubMed]

Wahle, M.

M. Wahle, O. Kasdorf, H.-S. Kitzerow, Ya. Liang, X. Feng, and K. Müllen, “Electrooptic switching in graphene-based liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
[Crossref]

Yevlampieva, N. P.

N. V. Kamanina, A. V. Komolkin, and N. P. Yevlampieva, “Variation of the orientational order parameter in a nematic liquid crystal–COANP–C70 composite structure,” Tech. Phys. Lett. 31(6), 478–480 (2005).
[Crossref]

Yokoyama, H.

J. S. Gwag, M. Oh-E, K. R. Kim, S. H. Cho, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “A functionally separated nanoimprinting material tailored for homeotropic liquid crystal alignment,” Nanotechnology 19(39), 395301 (2008).
[Crossref] [PubMed]

Yoneya, M.

J. S. Gwag, M. Oh-E, K. R. Kim, S. H. Cho, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “A functionally separated nanoimprinting material tailored for homeotropic liquid crystal alignment,” Nanotechnology 19(39), 395301 (2008).
[Crossref] [PubMed]

Zubtsova, Yu. A.

N. V. Kamanina, Yu. A. Zubtsova, V. A. Shulev, M. M. Mikhaĭlova, S. V. Murashov, A. I. Denisyuk, S. V. Butyanov, and I. Yu. Sapurina, “Self-organization and dynamic characteristics study of nanostructured liquid crystal compounds,” Solid State Phenomena 106, 145–148 (2005).
[Crossref]

Appl. Phys. B (1)

H. Ono, I. Saito, and N. Kawatsuki, “Orientational photorefractive effects observed in poly(vinyl alcohol)/liquid crystal composites,” Appl. Phys. B 66(4), 527–529 (1998).
[Crossref]

Appl. Phys. Lett. (1)

W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
[Crossref]

J. Nanomater. (1)

N. V. Kamanina, S. V. Serov, Y. Bretonniere, and C. Andraud, “Organic Systems and their photorefractive properties under the nano- and biostructuration: scientific view and sustainable development,” J. Nanomater. 2015, 278902 (2015), doi:.
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

N. V. Kamanina, “Optical investigations of a C70-doped 2-cyclooctylamino-5-nitropyridine–liquid crystal system,” J. Opt. A, Pure Appl. Opt. 4(5), 571–574 (2002).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Ono and N. Kawatsuki, “Orientational photorefractive gratings observed in polymer dispersed liquid crystals doped with fullerene,” Jpn. J. Appl. Phys. 36(10), 6444–6448 (1997).
[Crossref]

Liq. Cryst. (1)

M. Schadt, “Linear and non-linear liquid crystal materials, electro-optical effects and surface interactions:their application in present and future devices,” Liq. Cryst. 14(1), 73–104 (1993).
[Crossref]

Liq. Cryst. Rev. (1)

Ch. Blanc, D. Coursault, and E. Lacaze, “Ordering nano- and microparticles assemblies with liquid crystals,” Liq. Cryst. Rev. 1(2), 83–109 (2013).
[Crossref]

Mater. Manuf. Process. (1)

N. V. Kamanina and D. P. Uskokovic, “Refractive index of organic systems doped with nano-objects,” Mater. Manuf. Process. 23(6), 552–556 (2008).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (4)

A. Kamanin and N. Kamanina, “Self-organization of liquid crystals induced by aligning of human erythrocytes,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 486(1), 50–56 (2008).
[Crossref]

N. V. Kamanina, A. Emandi, F. Kajzar, and A.-J. Attias, “Laser-induced change in the refractive index in the systems based on nanostructured polyimide: comparative study with other photosensitive structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 486(1), 1–11 (2008).
[Crossref]

N. V. Kamanina, P. Ya. Vasilyev, A. I. Vangonen, V. I. Studeonov, Yu. E. Usanov, and F. Kajzar, “Photophysics of organic structures doped with nanoobjects: optical limiting, switching and laser strength,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 485(1), 197–206 (2008).
[Crossref]

M. Wahle, O. Kasdorf, H.-S. Kitzerow, Ya. Liang, X. Feng, and K. Müllen, “Electrooptic switching in graphene-based liquid crystal cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 543(1), 187–193 (2011).
[Crossref]

Nanotechnology (1)

J. S. Gwag, M. Oh-E, K. R. Kim, S. H. Cho, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “A functionally separated nanoimprinting material tailored for homeotropic liquid crystal alignment,” Nanotechnology 19(39), 395301 (2008).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

I. I. Smalyukh and O. D. Lavrentovich, “Anchoring-mediated interaction of edge dislocations with bounding surfaces in confined cholesteric liquid crystals,” Phys. Rev. Lett. 90(8), 085503 (2003).
[Crossref] [PubMed]

Physics-Uspekhi (1)

N. V. Kamanina, “Fullerene-dispersed liquid crystal structure: dynamic characteristics and self-organization processes,” Physics-Uspekhi 48(4), 419–427 (2005).
[Crossref]

Solid State Phenomena (1)

N. V. Kamanina, Yu. A. Zubtsova, V. A. Shulev, M. M. Mikhaĭlova, S. V. Murashov, A. I. Denisyuk, S. V. Butyanov, and I. Yu. Sapurina, “Self-organization and dynamic characteristics study of nanostructured liquid crystal compounds,” Solid State Phenomena 106, 145–148 (2005).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

N. V. Kamanina, Y. M. Voronin, I. V. Kityk, A. Danel, and E. Gondek, “Spectroscopy of PVK-phenyl derivatives disturbed the long-range ordering of liquid crystalline phase,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 66(3), 781–785 (2007).
[Crossref] [PubMed]

Tech. Phys. Lett. (1)

N. V. Kamanina, A. V. Komolkin, and N. P. Yevlampieva, “Variation of the orientational order parameter in a nematic liquid crystal–COANP–C70 composite structure,” Tech. Phys. Lett. 31(6), 478–480 (2005).
[Crossref]

Theoret. Appl. Mech. (1)

N. V. Kamanina, P. Ya. Vasilyev, and V. I. Studeonov, “Orientation of liquid crystalline materials by using carbon nanotubes,” Theoret. Appl. Mech. 38(1), 37–46 (2011).
[Crossref]

Other (1)

N. V. Kamanina, “Nonlinear optical study of fullerene-doped conjugated systems: new materials for nanophotonics applications,” Proceedings of the NATO Advanced Research Workshop on Organic Nanophotonics II/100, 177–192 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Transmittance spectra of the LC-cells: pure LC and LC doped with the lanthanide NPs. 1 – spectral of the pure LC-cell; 2,3,4 - spectral characteristics of the LC-cells with the lanthanide NPs when ITO coatings have been treated with SEW; 2*,3*,4*- spectral characteristics of the LC-cells with the lanthanide NPs when CNTs have been deposited on the ITO coatings and then have been treated with SEW
Fig. 2
Fig. 2 1 - He-Ne laser; 2 – microscope objective; 3 – lens or objective to make the parallel laser beam; 4 – diaphragm to correct the laser beam; 5 – rectangular diaphragm with the relation of the sides as 16:9 in order to find the coinciding conditions between diameter of the laser bean and the dimension of the camera; 6 – lens to collect the beam on the entrance of the camera; 7 – studied LC-cells; 8 – camera.
Fig. 3
Fig. 3 Observation of the self-arrangement 2D dimentional LC-mesophase by the doping process via using the lanthanoids nanoparticles, such as praseodymium one.
Fig. 4
Fig. 4 AFM-images of the relief regarded to ITO treated with SEW (a) and one connected with the ITO with oriented CNTs and treated by SEW.

Metrics