Abstract

Land surface temperature (LST) is one of the key parameters in the physics of land surface processes at local/global scales. In this paper, a LST retrieval method was proposed from airborne multispectral scanner data comparing one mid-infrared (MIR) channel and one thermal infrared (TIR) channel with the land surface emissivity given as a priori knowledge. To remove the influence of the direct solar radiance efficiently, a relationship between the direct solar radiance and water vapor content and the view zenith angle and solar zenith angle was established. Then, LST could be retrieved with a split-window algorithm from MIR/TIR data. Finally, the proposed algorithm was applied to the actual airborne flight data and validated with in situ measurements of land surface types in the Baotou site in China on 17 October 2014. The results demonstrate that the difference between the retrieved and in situ LST was less than 1.5 K. The bais, RMSE, and standard deviation of the retrieved LST were 0.156 K, 0.883 K, and 0.869 K, respectively, for samples.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z.-L. Li and F. Becker, “Feasibility of land surface temperature and emissivity determination from AVHRR data,” Remote Sens. Environ. 43(1), 67–85 (1993).
    [Crossref]
  2. W. Kustas and M. Anderson, “Advances in thermal infrared remote sensing for land surface modeling,” Agric. For. Meteorol. 149(12), 2071–2081 (2009).
    [Crossref]
  3. R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel Switzerland) 8(10), 6165–6187 (2008).
    [Crossref]
  4. H. Mannstein, “Surface energy budget, surface temperature and thermal inertia in Remote Sensing Applications,” Remote Sens. Appl. Meteorol. Climatol. 201, 391–410 (1987).
    [Crossref]
  5. P. J. Sellers, F. G. Hall, G. Asrar, D. E. Strebel, and R. E. Murphy, “The first ISLSEP Field, Experiment (FIFE),” Bull. Am. Meteorol. Soc. 69(1), 22–27 (1988).
    [Crossref]
  6. Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
    [Crossref]
  7. J. C. Jiménez-Muñoz and J. A. Sobrino, “A generalized single-channel method for retrieving land surface temperature from remote sensing data,” J. Geophys. Res. 108(D22), 4688 (2003).
    [Crossref]
  8. F. Becker and Z.-L. Li, “Temperature independent spectral indices in thermal infrared bands,” Remote Sens. Environ.32(1), 17–33 (1990a).
    [Crossref]
  9. J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax test site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
    [Crossref]
  10. Y. G. Qian, S. Qiu, N. Wang, X. S. Kong, H. Wu, and L. L. Ma, “Land surface temperature and emissivity retrieval from time-series mid-infrared and thermal infrared data of SVISSR/FY-2C,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 6(3), 1552–1563 (2013).
    [Crossref]
  11. Y. G. Qian, E. Y. Zhao, C. X. Gao, N. Wang, and L. L. Ma, “Land surface temperature retrieval using nighttime mid-infrared channels data from Airborne Hyperspectral Scanner,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8(3), 1208–1216 (2015).
  12. F. Becker and Z.-L. Li, “Towards a local split window method over land surfaces,” Int. J. Remote Sens.11(3), 369–393 (1990b).
    [Crossref]
  13. K. Watson, “Spectral ration methods for measuring emissivity,” Remote Sens. Environ.42(2), 113–116 (1992b).
    [Crossref]
  14. Z.-L. Li, F. Petitcolin, and R. H. Zhang, “A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data,” Sci. China43(S1), 23–33 (2000) (Series E).
    [Crossref] [PubMed]
  15. K. Watson, “Spectral ration methods for measuring emissivity,” Remote Sens. Environ.42(2), 113–116 (1992b).
    [Crossref]
  16. T. Matsunaga, “A Temperature-Emissivity Separation Method Using an Empirical Relationship between the Mean, the Maximum, and the Minimum of the Thermal Infrared Emissivity Spectrum,” J. Remote Sens. Soc. Japan 14(2), 230–241 (1994).
  17. A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1113–1126 (1998).
    [Crossref]
  18. S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
    [Crossref] [PubMed]
  19. B. Neal, “Polar satellite system (JPSS) VIIRS land surface temperature algorithm theoretical basis document (atbd) gsfc jpss,” Goddard Space Flight Center Greenbelt, Maryland, (2013).
  20. E.-Y. Zhao, Y. G. Qian, C. X. Gao, H. Huo, X. G. Jiang, and X. S. Kong, “Land Surface Temperature Retrieval Using Airborne Hyperspectral Scanner Daytime Mid-Infrared Data,” Remote Sens. 6(12), 12667–12685 (2014).
    [Crossref]
  21. S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
    [Crossref] [PubMed]
  22. J. A. Sobrino, J. C. Jiménez-Muñoz, P. J. Zarco-Tejada, G. Sepulcre-Cantó, and E. de Miguel, “Land surface temperature derived from airborne hyperspectral scanner thermal infrared data,” Remote Sens. Environ. 102(1-2), 99–115 (2006).
    [Crossref]
  23. C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
    [Crossref]
  24. J. A. Sobrino and J. C. Jiménez-Muñoz, “Land surface temperature retrieval from thermal infrared data: An assessment in the context of the Surface Processes and Ecosystem Changes Through Response Analysis (SPECTRA) mission,” J. Geophys. Res. 110(D16), D16103 (2005).
    [Crossref]
  25. Z. M. Wan and Z.-L. Li, “Radiance-based validation of the V5 MODIS land-surface temperature product,” Int. J. Remote Sens. 29(17–18), 5373–5395 (2008).
    [Crossref]
  26. N. Wang, H. Wu, F. Nerry, C. Li, and Z.-L. Li, “Temperature and Emissivity Retrievals from Hyperspectral Thermal Infrared Data Using Linear Spectral Emissivity Constraint,” IEEE Trans. Geosci. Rem. Sens. 49(4), 1291–1303 (2011).
    [Crossref]
  27. Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B.-H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
    [Crossref]
  28. F. Li, C. R. Li, L. L. Tang, and Y. Guo, “Elastic band-to-band registration for airborne multispectral scanners with large field of view,” Proc. SPIE 8537, 85371G (2012).
    [Crossref]

2015 (1)

Y. G. Qian, E. Y. Zhao, C. X. Gao, N. Wang, and L. L. Ma, “Land surface temperature retrieval using nighttime mid-infrared channels data from Airborne Hyperspectral Scanner,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8(3), 1208–1216 (2015).

2014 (1)

E.-Y. Zhao, Y. G. Qian, C. X. Gao, H. Huo, X. G. Jiang, and X. S. Kong, “Land Surface Temperature Retrieval Using Airborne Hyperspectral Scanner Daytime Mid-Infrared Data,” Remote Sens. 6(12), 12667–12685 (2014).
[Crossref]

2013 (5)

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

Y. G. Qian, S. Qiu, N. Wang, X. S. Kong, H. Wu, and L. L. Ma, “Land surface temperature and emissivity retrieval from time-series mid-infrared and thermal infrared data of SVISSR/FY-2C,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 6(3), 1552–1563 (2013).
[Crossref]

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B.-H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

2012 (1)

F. Li, C. R. Li, L. L. Tang, and Y. Guo, “Elastic band-to-band registration for airborne multispectral scanners with large field of view,” Proc. SPIE 8537, 85371G (2012).
[Crossref]

2011 (1)

N. Wang, H. Wu, F. Nerry, C. Li, and Z.-L. Li, “Temperature and Emissivity Retrievals from Hyperspectral Thermal Infrared Data Using Linear Spectral Emissivity Constraint,” IEEE Trans. Geosci. Rem. Sens. 49(4), 1291–1303 (2011).
[Crossref]

2009 (1)

W. Kustas and M. Anderson, “Advances in thermal infrared remote sensing for land surface modeling,” Agric. For. Meteorol. 149(12), 2071–2081 (2009).
[Crossref]

2008 (2)

R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel Switzerland) 8(10), 6165–6187 (2008).
[Crossref]

Z. M. Wan and Z.-L. Li, “Radiance-based validation of the V5 MODIS land-surface temperature product,” Int. J. Remote Sens. 29(17–18), 5373–5395 (2008).
[Crossref]

2006 (1)

J. A. Sobrino, J. C. Jiménez-Muñoz, P. J. Zarco-Tejada, G. Sepulcre-Cantó, and E. de Miguel, “Land surface temperature derived from airborne hyperspectral scanner thermal infrared data,” Remote Sens. Environ. 102(1-2), 99–115 (2006).
[Crossref]

2005 (2)

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

J. A. Sobrino and J. C. Jiménez-Muñoz, “Land surface temperature retrieval from thermal infrared data: An assessment in the context of the Surface Processes and Ecosystem Changes Through Response Analysis (SPECTRA) mission,” J. Geophys. Res. 110(D16), D16103 (2005).
[Crossref]

2004 (1)

J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax test site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
[Crossref]

2003 (1)

J. C. Jiménez-Muñoz and J. A. Sobrino, “A generalized single-channel method for retrieving land surface temperature from remote sensing data,” J. Geophys. Res. 108(D22), 4688 (2003).
[Crossref]

1998 (1)

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1113–1126 (1998).
[Crossref]

1994 (1)

T. Matsunaga, “A Temperature-Emissivity Separation Method Using an Empirical Relationship between the Mean, the Maximum, and the Minimum of the Thermal Infrared Emissivity Spectrum,” J. Remote Sens. Soc. Japan 14(2), 230–241 (1994).

1993 (1)

Z.-L. Li and F. Becker, “Feasibility of land surface temperature and emissivity determination from AVHRR data,” Remote Sens. Environ. 43(1), 67–85 (1993).
[Crossref]

1988 (1)

P. J. Sellers, F. G. Hall, G. Asrar, D. E. Strebel, and R. E. Murphy, “The first ISLSEP Field, Experiment (FIFE),” Bull. Am. Meteorol. Soc. 69(1), 22–27 (1988).
[Crossref]

1987 (1)

H. Mannstein, “Surface energy budget, surface temperature and thermal inertia in Remote Sensing Applications,” Remote Sens. Appl. Meteorol. Climatol. 201, 391–410 (1987).
[Crossref]

Anderson, M.

W. Kustas and M. Anderson, “Advances in thermal infrared remote sensing for land surface modeling,” Agric. For. Meteorol. 149(12), 2071–2081 (2009).
[Crossref]

Asrar, G.

P. J. Sellers, F. G. Hall, G. Asrar, D. E. Strebel, and R. E. Murphy, “The first ISLSEP Field, Experiment (FIFE),” Bull. Am. Meteorol. Soc. 69(1), 22–27 (1988).
[Crossref]

Becker, F.

Z.-L. Li and F. Becker, “Feasibility of land surface temperature and emissivity determination from AVHRR data,” Remote Sens. Environ. 43(1), 67–85 (1993).
[Crossref]

F. Becker and Z.-L. Li, “Temperature independent spectral indices in thermal infrared bands,” Remote Sens. Environ.32(1), 17–33 (1990a).
[Crossref]

F. Becker and Z.-L. Li, “Towards a local split window method over land surfaces,” Int. J. Remote Sens.11(3), 369–393 (1990b).
[Crossref]

Caselles, V.

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

Chen, S.

R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel Switzerland) 8(10), 6165–6187 (2008).
[Crossref]

Coll, C.

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

Cothern, J. S.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1113–1126 (1998).
[Crossref]

de Miguel, E.

J. A. Sobrino, J. C. Jiménez-Muñoz, P. J. Zarco-Tejada, G. Sepulcre-Cantó, and E. de Miguel, “Land surface temperature derived from airborne hyperspectral scanner thermal infrared data,” Remote Sens. Environ. 102(1-2), 99–115 (2006).
[Crossref]

Duan, S. B.

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

El-Kharraz, J.

J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax test site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
[Crossref]

Galve, J. M.

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

Gao, C. X.

Y. G. Qian, E. Y. Zhao, C. X. Gao, N. Wang, and L. L. Ma, “Land surface temperature retrieval using nighttime mid-infrared channels data from Airborne Hyperspectral Scanner,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8(3), 1208–1216 (2015).

E.-Y. Zhao, Y. G. Qian, C. X. Gao, H. Huo, X. G. Jiang, and X. S. Kong, “Land Surface Temperature Retrieval Using Airborne Hyperspectral Scanner Daytime Mid-Infrared Data,” Remote Sens. 6(12), 12667–12685 (2014).
[Crossref]

Gillespie, A.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1113–1126 (1998).
[Crossref]

Gómez, M.

J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax test site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
[Crossref]

Guo, Y.

F. Li, C. R. Li, L. L. Tang, and Y. Guo, “Elastic band-to-band registration for airborne multispectral scanners with large field of view,” Proc. SPIE 8537, 85371G (2012).
[Crossref]

Hall, F. G.

P. J. Sellers, F. G. Hall, G. Asrar, D. E. Strebel, and R. E. Murphy, “The first ISLSEP Field, Experiment (FIFE),” Bull. Am. Meteorol. Soc. 69(1), 22–27 (1988).
[Crossref]

Hook, S.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1113–1126 (1998).
[Crossref]

Huo, H.

E.-Y. Zhao, Y. G. Qian, C. X. Gao, H. Huo, X. G. Jiang, and X. S. Kong, “Land Surface Temperature Retrieval Using Airborne Hyperspectral Scanner Daytime Mid-Infrared Data,” Remote Sens. 6(12), 12667–12685 (2014).
[Crossref]

Jiang, X. G.

E.-Y. Zhao, Y. G. Qian, C. X. Gao, H. Huo, X. G. Jiang, and X. S. Kong, “Land Surface Temperature Retrieval Using Airborne Hyperspectral Scanner Daytime Mid-Infrared Data,” Remote Sens. 6(12), 12667–12685 (2014).
[Crossref]

Jiménez-Muñoz, J. C.

J. A. Sobrino, J. C. Jiménez-Muñoz, P. J. Zarco-Tejada, G. Sepulcre-Cantó, and E. de Miguel, “Land surface temperature derived from airborne hyperspectral scanner thermal infrared data,” Remote Sens. Environ. 102(1-2), 99–115 (2006).
[Crossref]

J. A. Sobrino and J. C. Jiménez-Muñoz, “Land surface temperature retrieval from thermal infrared data: An assessment in the context of the Surface Processes and Ecosystem Changes Through Response Analysis (SPECTRA) mission,” J. Geophys. Res. 110(D16), D16103 (2005).
[Crossref]

J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax test site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
[Crossref]

J. C. Jiménez-Muñoz and J. A. Sobrino, “A generalized single-channel method for retrieving land surface temperature from remote sensing data,” J. Geophys. Res. 108(D22), 4688 (2003).
[Crossref]

Kahle, A. B.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1113–1126 (1998).
[Crossref]

Kong, X. S.

E.-Y. Zhao, Y. G. Qian, C. X. Gao, H. Huo, X. G. Jiang, and X. S. Kong, “Land Surface Temperature Retrieval Using Airborne Hyperspectral Scanner Daytime Mid-Infrared Data,” Remote Sens. 6(12), 12667–12685 (2014).
[Crossref]

Y. G. Qian, S. Qiu, N. Wang, X. S. Kong, H. Wu, and L. L. Ma, “Land surface temperature and emissivity retrieval from time-series mid-infrared and thermal infrared data of SVISSR/FY-2C,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 6(3), 1552–1563 (2013).
[Crossref]

Kustas, W.

W. Kustas and M. Anderson, “Advances in thermal infrared remote sensing for land surface modeling,” Agric. For. Meteorol. 149(12), 2071–2081 (2009).
[Crossref]

Li, C.

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

N. Wang, H. Wu, F. Nerry, C. Li, and Z.-L. Li, “Temperature and Emissivity Retrievals from Hyperspectral Thermal Infrared Data Using Linear Spectral Emissivity Constraint,” IEEE Trans. Geosci. Rem. Sens. 49(4), 1291–1303 (2011).
[Crossref]

Li, C. R.

F. Li, C. R. Li, L. L. Tang, and Y. Guo, “Elastic band-to-band registration for airborne multispectral scanners with large field of view,” Proc. SPIE 8537, 85371G (2012).
[Crossref]

Li, F.

F. Li, C. R. Li, L. L. Tang, and Y. Guo, “Elastic band-to-band registration for airborne multispectral scanners with large field of view,” Proc. SPIE 8537, 85371G (2012).
[Crossref]

Li, Z.-L.

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B.-H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

N. Wang, H. Wu, F. Nerry, C. Li, and Z.-L. Li, “Temperature and Emissivity Retrievals from Hyperspectral Thermal Infrared Data Using Linear Spectral Emissivity Constraint,” IEEE Trans. Geosci. Rem. Sens. 49(4), 1291–1303 (2011).
[Crossref]

Z. M. Wan and Z.-L. Li, “Radiance-based validation of the V5 MODIS land-surface temperature product,” Int. J. Remote Sens. 29(17–18), 5373–5395 (2008).
[Crossref]

Z.-L. Li and F. Becker, “Feasibility of land surface temperature and emissivity determination from AVHRR data,” Remote Sens. Environ. 43(1), 67–85 (1993).
[Crossref]

F. Becker and Z.-L. Li, “Temperature independent spectral indices in thermal infrared bands,” Remote Sens. Environ.32(1), 17–33 (1990a).
[Crossref]

F. Becker and Z.-L. Li, “Towards a local split window method over land surfaces,” Int. J. Remote Sens.11(3), 369–393 (1990b).
[Crossref]

Z.-L. Li, F. Petitcolin, and R. H. Zhang, “A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data,” Sci. China43(S1), 23–33 (2000) (Series E).
[Crossref] [PubMed]

Ma, L.

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

Ma, L. L.

Y. G. Qian, E. Y. Zhao, C. X. Gao, N. Wang, and L. L. Ma, “Land surface temperature retrieval using nighttime mid-infrared channels data from Airborne Hyperspectral Scanner,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8(3), 1208–1216 (2015).

Y. G. Qian, S. Qiu, N. Wang, X. S. Kong, H. Wu, and L. L. Ma, “Land surface temperature and emissivity retrieval from time-series mid-infrared and thermal infrared data of SVISSR/FY-2C,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 6(3), 1552–1563 (2013).
[Crossref]

Mannstein, H.

H. Mannstein, “Surface energy budget, surface temperature and thermal inertia in Remote Sensing Applications,” Remote Sens. Appl. Meteorol. Climatol. 201, 391–410 (1987).
[Crossref]

Matsunaga, T.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1113–1126 (1998).
[Crossref]

T. Matsunaga, “A Temperature-Emissivity Separation Method Using an Empirical Relationship between the Mean, the Maximum, and the Minimum of the Thermal Infrared Emissivity Spectrum,” J. Remote Sens. Soc. Japan 14(2), 230–241 (1994).

Murphy, R. E.

P. J. Sellers, F. G. Hall, G. Asrar, D. E. Strebel, and R. E. Murphy, “The first ISLSEP Field, Experiment (FIFE),” Bull. Am. Meteorol. Soc. 69(1), 22–27 (1988).
[Crossref]

Nerry, F.

N. Wang, H. Wu, F. Nerry, C. Li, and Z.-L. Li, “Temperature and Emissivity Retrievals from Hyperspectral Thermal Infrared Data Using Linear Spectral Emissivity Constraint,” IEEE Trans. Geosci. Rem. Sens. 49(4), 1291–1303 (2011).
[Crossref]

Niclòs, R.

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

Petitcolin, F.

Z.-L. Li, F. Petitcolin, and R. H. Zhang, “A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data,” Sci. China43(S1), 23–33 (2000) (Series E).
[Crossref] [PubMed]

Qian, Y. G.

Y. G. Qian, E. Y. Zhao, C. X. Gao, N. Wang, and L. L. Ma, “Land surface temperature retrieval using nighttime mid-infrared channels data from Airborne Hyperspectral Scanner,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8(3), 1208–1216 (2015).

E.-Y. Zhao, Y. G. Qian, C. X. Gao, H. Huo, X. G. Jiang, and X. S. Kong, “Land Surface Temperature Retrieval Using Airborne Hyperspectral Scanner Daytime Mid-Infrared Data,” Remote Sens. 6(12), 12667–12685 (2014).
[Crossref]

Y. G. Qian, S. Qiu, N. Wang, X. S. Kong, H. Wu, and L. L. Ma, “Land surface temperature and emissivity retrieval from time-series mid-infrared and thermal infrared data of SVISSR/FY-2C,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 6(3), 1552–1563 (2013).
[Crossref]

Qiu, S.

Y. G. Qian, S. Qiu, N. Wang, X. S. Kong, H. Wu, and L. L. Ma, “Land surface temperature and emissivity retrieval from time-series mid-infrared and thermal infrared data of SVISSR/FY-2C,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 6(3), 1552–1563 (2013).
[Crossref]

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B.-H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Ren, H.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

Rivas, R.

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

Rokugawa, S.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1113–1126 (1998).
[Crossref]

Romaguera, M.

J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax test site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
[Crossref]

Sánchez, J. M.

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

Sellers, P. J.

P. J. Sellers, F. G. Hall, G. Asrar, D. E. Strebel, and R. E. Murphy, “The first ISLSEP Field, Experiment (FIFE),” Bull. Am. Meteorol. Soc. 69(1), 22–27 (1988).
[Crossref]

Sepulcre-Cantó, G.

J. A. Sobrino, J. C. Jiménez-Muñoz, P. J. Zarco-Tejada, G. Sepulcre-Cantó, and E. de Miguel, “Land surface temperature derived from airborne hyperspectral scanner thermal infrared data,” Remote Sens. Environ. 102(1-2), 99–115 (2006).
[Crossref]

Sobrino, J. A.

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B.-H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

J. A. Sobrino, J. C. Jiménez-Muñoz, P. J. Zarco-Tejada, G. Sepulcre-Cantó, and E. de Miguel, “Land surface temperature derived from airborne hyperspectral scanner thermal infrared data,” Remote Sens. Environ. 102(1-2), 99–115 (2006).
[Crossref]

J. A. Sobrino and J. C. Jiménez-Muñoz, “Land surface temperature retrieval from thermal infrared data: An assessment in the context of the Surface Processes and Ecosystem Changes Through Response Analysis (SPECTRA) mission,” J. Geophys. Res. 110(D16), D16103 (2005).
[Crossref]

J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax test site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
[Crossref]

J. C. Jiménez-Muñoz and J. A. Sobrino, “A generalized single-channel method for retrieving land surface temperature from remote sensing data,” J. Geophys. Res. 108(D22), 4688 (2003).
[Crossref]

Sòria, G.

J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax test site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
[Crossref]

Strebel, D. E.

P. J. Sellers, F. G. Hall, G. Asrar, D. E. Strebel, and R. E. Murphy, “The first ISLSEP Field, Experiment (FIFE),” Bull. Am. Meteorol. Soc. 69(1), 22–27 (1988).
[Crossref]

Su, H.

R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel Switzerland) 8(10), 6165–6187 (2008).
[Crossref]

Sun, X.

R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel Switzerland) 8(10), 6165–6187 (2008).
[Crossref]

Tang, B.-H.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B.-H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Tang, L. L.

F. Li, C. R. Li, L. L. Tang, and Y. Guo, “Elastic band-to-band registration for airborne multispectral scanners with large field of view,” Proc. SPIE 8537, 85371G (2012).
[Crossref]

Tian, J.

R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel Switzerland) 8(10), 6165–6187 (2008).
[Crossref]

Trigo, I. F.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

Valor, E.

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

Wan, Z.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

Wan, Z. M.

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B.-H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Z. M. Wan and Z.-L. Li, “Radiance-based validation of the V5 MODIS land-surface temperature product,” Int. J. Remote Sens. 29(17–18), 5373–5395 (2008).
[Crossref]

Wang, N.

Y. G. Qian, E. Y. Zhao, C. X. Gao, N. Wang, and L. L. Ma, “Land surface temperature retrieval using nighttime mid-infrared channels data from Airborne Hyperspectral Scanner,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8(3), 1208–1216 (2015).

Y. G. Qian, S. Qiu, N. Wang, X. S. Kong, H. Wu, and L. L. Ma, “Land surface temperature and emissivity retrieval from time-series mid-infrared and thermal infrared data of SVISSR/FY-2C,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 6(3), 1552–1563 (2013).
[Crossref]

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B.-H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

N. Wang, H. Wu, F. Nerry, C. Li, and Z.-L. Li, “Temperature and Emissivity Retrievals from Hyperspectral Thermal Infrared Data Using Linear Spectral Emissivity Constraint,” IEEE Trans. Geosci. Rem. Sens. 49(4), 1291–1303 (2011).
[Crossref]

Watson, K.

K. Watson, “Spectral ration methods for measuring emissivity,” Remote Sens. Environ.42(2), 113–116 (1992b).
[Crossref]

K. Watson, “Spectral ration methods for measuring emissivity,” Remote Sens. Environ.42(2), 113–116 (1992b).
[Crossref]

Wu, H.

Y. G. Qian, S. Qiu, N. Wang, X. S. Kong, H. Wu, and L. L. Ma, “Land surface temperature and emissivity retrieval from time-series mid-infrared and thermal infrared data of SVISSR/FY-2C,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 6(3), 1552–1563 (2013).
[Crossref]

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B.-H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

N. Wang, H. Wu, F. Nerry, C. Li, and Z.-L. Li, “Temperature and Emissivity Retrievals from Hyperspectral Thermal Infrared Data Using Linear Spectral Emissivity Constraint,” IEEE Trans. Geosci. Rem. Sens. 49(4), 1291–1303 (2011).
[Crossref]

Xia, J.

R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel Switzerland) 8(10), 6165–6187 (2008).
[Crossref]

Yan, G.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

Yan, G. J.

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B.-H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Zarco-Tejada, P. J.

J. A. Sobrino, J. C. Jiménez-Muñoz, P. J. Zarco-Tejada, G. Sepulcre-Cantó, and E. de Miguel, “Land surface temperature derived from airborne hyperspectral scanner thermal infrared data,” Remote Sens. Environ. 102(1-2), 99–115 (2006).
[Crossref]

Zhang, R.

R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel Switzerland) 8(10), 6165–6187 (2008).
[Crossref]

Zhang, R. H.

Z.-L. Li, F. Petitcolin, and R. H. Zhang, “A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data,” Sci. China43(S1), 23–33 (2000) (Series E).
[Crossref] [PubMed]

Zhao, E.

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

Zhao, E. Y.

Y. G. Qian, E. Y. Zhao, C. X. Gao, N. Wang, and L. L. Ma, “Land surface temperature retrieval using nighttime mid-infrared channels data from Airborne Hyperspectral Scanner,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8(3), 1208–1216 (2015).

Zhao, E.-Y.

E.-Y. Zhao, Y. G. Qian, C. X. Gao, H. Huo, X. G. Jiang, and X. S. Kong, “Land Surface Temperature Retrieval Using Airborne Hyperspectral Scanner Daytime Mid-Infrared Data,” Remote Sens. 6(12), 12667–12685 (2014).
[Crossref]

Agric. For. Meteorol. (1)

W. Kustas and M. Anderson, “Advances in thermal infrared remote sensing for land surface modeling,” Agric. For. Meteorol. 149(12), 2071–2081 (2009).
[Crossref]

Bull. Am. Meteorol. Soc. (1)

P. J. Sellers, F. G. Hall, G. Asrar, D. E. Strebel, and R. E. Murphy, “The first ISLSEP Field, Experiment (FIFE),” Bull. Am. Meteorol. Soc. 69(1), 22–27 (1988).
[Crossref]

IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. (2)

Y. G. Qian, S. Qiu, N. Wang, X. S. Kong, H. Wu, and L. L. Ma, “Land surface temperature and emissivity retrieval from time-series mid-infrared and thermal infrared data of SVISSR/FY-2C,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 6(3), 1552–1563 (2013).
[Crossref]

Y. G. Qian, E. Y. Zhao, C. X. Gao, N. Wang, and L. L. Ma, “Land surface temperature retrieval using nighttime mid-infrared channels data from Airborne Hyperspectral Scanner,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8(3), 1208–1216 (2015).

IEEE Trans. Geosci. Rem. Sens. (2)

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens. 36(4), 1113–1126 (1998).
[Crossref]

N. Wang, H. Wu, F. Nerry, C. Li, and Z.-L. Li, “Temperature and Emissivity Retrievals from Hyperspectral Thermal Infrared Data Using Linear Spectral Emissivity Constraint,” IEEE Trans. Geosci. Rem. Sens. 49(4), 1291–1303 (2011).
[Crossref]

Int. J. Remote Sens. (3)

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. M. Wan, B.-H. Tang, and G. J. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Z. M. Wan and Z.-L. Li, “Radiance-based validation of the V5 MODIS land-surface temperature product,” Int. J. Remote Sens. 29(17–18), 5373–5395 (2008).
[Crossref]

J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax test site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
[Crossref]

J. Geophys. Res. (2)

J. C. Jiménez-Muñoz and J. A. Sobrino, “A generalized single-channel method for retrieving land surface temperature from remote sensing data,” J. Geophys. Res. 108(D22), 4688 (2003).
[Crossref]

J. A. Sobrino and J. C. Jiménez-Muñoz, “Land surface temperature retrieval from thermal infrared data: An assessment in the context of the Surface Processes and Ecosystem Changes Through Response Analysis (SPECTRA) mission,” J. Geophys. Res. 110(D16), D16103 (2005).
[Crossref]

J. Remote Sens. Soc. Japan (1)

T. Matsunaga, “A Temperature-Emissivity Separation Method Using an Empirical Relationship between the Mean, the Maximum, and the Minimum of the Thermal Infrared Emissivity Spectrum,” J. Remote Sens. Soc. Japan 14(2), 230–241 (1994).

PLoS One (2)

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

S. B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, L. Ma, E. Zhao, and C. Li, “Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site,” PLoS One 8(6), e66972 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

F. Li, C. R. Li, L. L. Tang, and Y. Guo, “Elastic band-to-band registration for airborne multispectral scanners with large field of view,” Proc. SPIE 8537, 85371G (2012).
[Crossref]

Remote Sens. (1)

E.-Y. Zhao, Y. G. Qian, C. X. Gao, H. Huo, X. G. Jiang, and X. S. Kong, “Land Surface Temperature Retrieval Using Airborne Hyperspectral Scanner Daytime Mid-Infrared Data,” Remote Sens. 6(12), 12667–12685 (2014).
[Crossref]

Remote Sens. Appl. Meteorol. Climatol. (1)

H. Mannstein, “Surface energy budget, surface temperature and thermal inertia in Remote Sensing Applications,” Remote Sens. Appl. Meteorol. Climatol. 201, 391–410 (1987).
[Crossref]

Remote Sens. Environ. (4)

Z.-L. Li and F. Becker, “Feasibility of land surface temperature and emissivity determination from AVHRR data,” Remote Sens. Environ. 43(1), 67–85 (1993).
[Crossref]

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131, 14–37 (2013).
[Crossref]

J. A. Sobrino, J. C. Jiménez-Muñoz, P. J. Zarco-Tejada, G. Sepulcre-Cantó, and E. de Miguel, “Land surface temperature derived from airborne hyperspectral scanner thermal infrared data,” Remote Sens. Environ. 102(1-2), 99–115 (2006).
[Crossref]

C. Coll, V. Caselles, J. M. Galve, E. Valor, R. Niclòs, J. M. Sánchez, and R. Rivas, “Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data,” Remote Sens. Environ. 97(3), 288–300 (2005).
[Crossref]

Sensors (Basel Switzerland) (1)

R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval,” Sensors (Basel Switzerland) 8(10), 6165–6187 (2008).
[Crossref]

Other (6)

F. Becker and Z.-L. Li, “Temperature independent spectral indices in thermal infrared bands,” Remote Sens. Environ.32(1), 17–33 (1990a).
[Crossref]

B. Neal, “Polar satellite system (JPSS) VIIRS land surface temperature algorithm theoretical basis document (atbd) gsfc jpss,” Goddard Space Flight Center Greenbelt, Maryland, (2013).

F. Becker and Z.-L. Li, “Towards a local split window method over land surfaces,” Int. J. Remote Sens.11(3), 369–393 (1990b).
[Crossref]

K. Watson, “Spectral ration methods for measuring emissivity,” Remote Sens. Environ.42(2), 113–116 (1992b).
[Crossref]

Z.-L. Li, F. Petitcolin, and R. H. Zhang, “A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data,” Sci. China43(S1), 23–33 (2000) (Series E).
[Crossref] [PubMed]

K. Watson, “Spectral ration methods for measuring emissivity,” Remote Sens. Environ.42(2), 113–116 (1992b).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The statistical relationship between cos(SZA) or 1/cos(VZA) and the direct solar radiation simulated by MODTRAN code under the Mid-Latitude Summer atmosphere.

Fig. 2
Fig. 2

The location of the study area (Baotou site).

Fig. 3
Fig. 3

The main study area of Baotou site. The images were obtained from the at-sensor radiance in visible bands acquired on October 17, 2014 at 12:40 (local time).

Fig. 4
Fig. 4

Photos of targets in Baotou site

Fig. 5
Fig. 5

The relationship between the estimated and true direct solar radiance.

Fig. 6
Fig. 6

RMSEs between the actual and estimated LST for different sub-ranges

Fig. 7
Fig. 7

Comparison of the LST retrieved using our proposed method with the validating LST for different samples.

Tables (6)

Tables Icon

Table 1 Main specifications of the thermal sensors

Tables Icon

Table 2 Main specifications of the measurement targets

Tables Icon

Table 3 Main technical specifications of the thermal instruments

Tables Icon

Table 4 Fitting coefficients for the direct solar radiance estimation

Tables Icon

Table 5 Effect of the emissivity uncertainty (Δε = 0.01) on LST retrieval (VZA = 0°)

Tables Icon

Table 6 Validation results in the study area

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

L i ( T i , θ v ,λ)=[ ε i ( θ v ,λ) B i ( T s ,λ)+(1 ε i ( θ v ,λ))( R atm_i ( θ v ,λ)+ R atm_i s ( θ v ,λ))] τ i ( θ v ,λ) + ρ bi ( θ v , θ s ,φ,λ) R i s τ i ( θ v ,λ)+ R atm_i ( θ v ,λ)+ R atm_i s ( θ v ,λ)
L i ( T i , θ v ,λ)=[ ε i ( θ v ,λ) B i ( T s ,λ)+(1 ε i ( θ v ,λ)) R atm_i ( θ v ,λ)] τ i ( θ v ,λ)+ R atm_i ( θ v ,λ)
L i ( T i ' , θ v ,λ)= L i ( T i , θ v ,λ) ρ bi ( θ v , θ s ,φ,λ) R i s τ i ( θ s ,λ) τ i ( θ v ,λ) =[ ε i ( θ v ,λ) B i ( T s ,λ)+(1 ε i ( θ v ,λ))( R atm_i ( θ v ,λ)+ R atm_i s ( θ v ,λ))] τ i ( θ v ,λ) + R atm_i ( θ v ,λ)+ R atm_i s ( θ v ,λ)
R dir_solar ( θ s )= R i s τ i ( θ s ,λ)
τ i (θ,λ)=a+bln(WVC)+c (ln(WVC)) 2
R dir_solar = a 0 + a 1 cos(SZA)+( a 2 cos(SZA)+ a 3 )/cos(VZA)+ [ b 0 + b 1 cos(SZA)+( b 2 cos(SZA)+ b 3 )/cos(VZA)]ln(WVC)+ [ c 0 + c 1 cos(SZA)+( c 2 cos(SZA)+ c 3 )/cos(VZA)] [ln(WVC)] 2
T s = a 0 +( a 1 + a 2 1ε ε + a 3 Δε ε 2 ) T i ' T j ' 2 +( a 4 + a 5 1ε ε + a 6 Δε ε 2 ) T i ' + T j ' 2
B( T g )=εB( T s )+(1-ε) R atm

Metrics