Abstract

Measurements of the volume scattering function (VSF) of hydrosols is of primary importance to investigate the interaction of light with hydrosols and to further interpret in situ and remote sensing data of ocean color. In this paper, a laboratory inter-comparison experiment of three recently developed VSF meters that are able to measure the scattered light for a wide range of scattering angle at 515 nm wavelength is performed using phytoplankton cultures and mineral-like hydrosols. A rigorous measurement protocol was employed to ensure good quality data. In particular, the protocol enabled removing the influence of bacteria on the hydrosols within the sample. The differences in the VSF measurements between the instruments vary from 10 to 25% depending on the composition of the hydrosols. The analysis of the angular features of the VSF revealed a sharp increase of the VSF beyond the scattering angle of 150° for some phytoplankton species. Such behavior is observed for two of the three VSF meters, thus suggesting that it is not due to instrumental artifacts but more likely to phytoplankton optical properties themselves. Moreover, comparisons with currently used theoretical phase functions show that the models are not able to reproduce satisfactorily the directional patterns in the backscattering region. This study suggests that a better modelling of the VSF shape of phytoplankton at high scattering angles is required to correctly represent the angular shape of the VSF in the backscattering hemisphere. Tabulated values of the measured phase functions are provided for scattering angles from 0.1 to 175°.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chlorophyll-a specific volume scattering function of phytoplankton

Hiroyuki Tan, Tomohiko Oishi, Akihiko Tanaka, Roland Doerffer, and Yasuhiro Tan
Opt. Express 25(12) A564-A573 (2017)

Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment

Malik Chami, Eugeny B. Shybanov, Gueorgui A. Khomenko, Michael E.-G. Lee, Oleg V. Martynov, and Gennady K. Korotaev
Appl. Opt. 45(15) 3605-3619 (2006)

References

  • View by:
  • |
  • |
  • |

  1. T. Dickey, M. Lewis, and G. Chang, “Optical oceanography: recent advances and future directions using global remote sensing and in situ observations,” Rev. Geophys. 44(1), RG1001 (2006), doi:.
    [Crossref]
  2. M. J. Behrenfeld, R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss, “Climate-driven trends in contemporary ocean productivity,” Nature 444(7120), 752–755 (2006).
    [Crossref] [PubMed]
  3. C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
    [Crossref] [PubMed]
  4. J. Dauchet, S. Blanco, J.-F. Cornet, and R. Fournier, “Calculation of the radiative properties of photosynthetic microorganisms,” J. Quant. Spectrosc. Radiat. Transf. 161, 60–84 (2015).
    [Crossref]
  5. X. Zhang, M. Twardowski, and M. Lewis, “Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function,” Appl. Opt. 50(9), 1240–1259 (2011).
    [Crossref] [PubMed]
  6. M. Babin, D. Stramski, R. A. Reynolds, V. M. Wright, and E. Leymarie, “Determination of the volume scattering function of aqueous particle suspensions with a laboratory multi-angle light scattering instrument,” Appl. Opt. 51(17), 3853–3873 (2012).
    [Crossref] [PubMed]
  7. M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20(4), 563–571 (2003).
    [Crossref]
  8. J. Sullivan, M. Twardowski, J. Ronald, V. Zaneveld, and C. Moore, “Measuring optical backscattering in water,” in Light Scattering Reviews 7, Springer Praxis Books (Springer Berlin Heidelberg, 2013), pp. 189–224.
  9. T. J. Petzold, Volume Scattering Functions for Selected Ocean Waters (DTIC Document, 1972).
  10. G. Kullenberg, “Scattering of light by Sargasso Sea water,” Deep-Sea Res. 15, 425–432 (1968).
  11. H. Tan, T. Oishi, A. Tanaka, and R. Doerffer, “Accurate estimation of the backscattering coefficient by light scattering at two backward angles,” Appl. Opt. 54(25), 7718–7733 (2015).
    [Crossref] [PubMed]
  12. W. H. Slade, Y. C. Agrawal, and O. A. Mikkelsen, “Comparison of measured and theoretical scattering and polarization properties of narrow size range irregular sediment particles,” in Oceans (2013), pp. 23–27.
  13. J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).
    [Crossref]
  14. M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
    [Crossref]
  15. J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48(35), 6811–6819 (2009).
    [Crossref] [PubMed]
  16. B. Shao, J. S. Jaffe, M. Chachisvilis, and S. C. Esener, “Angular resolved light scattering for discriminating among marine picoplankton: modeling and experimental measurements,” Opt. Express 14(25), 12473–12484 (2006).
    [Crossref] [PubMed]
  17. M. Chami, A. Thirouard, and T. Harmel, “POLVSM (Polarized Volume Scattering Meter) instrument: an innovative device to measure the directional and polarized scattering properties of hydrosols,” Opt. Express 22(21), 26403–26428 (2014).
    [Crossref] [PubMed]
  18. Ø. Svensen, J. J. Stamnes, M. Kildemo, L. M. S. Aas, S. R. Erga, and Ø. Frette, “Mueller matrix measurements of algae with different shape and size distributions,” Appl. Opt. 50(26), 5149–5157 (2011).
    [Crossref] [PubMed]
  19. H. Tan, R. Doerffer, T. Oishi, and A. Tanaka, “A new approach to measure the volume scattering function,” Opt. Express 21(16), 18697–18711 (2013).
    [Crossref] [PubMed]
  20. H. Tan, “A new method for the simultaneous determination of volume scattering functions,” PhD dissertation, Universität Hamburg (2014).
  21. Y. C. Agrawal, “The optical volume scattering function: Temporal and vertical variability in the water column off the New Jersey coast,” Limnol. Oceanogr. 50(6), 1787–1794 (2005).
    [Crossref]
  22. W. H. Slade and E. S. Boss, “Calibrated near-forward volume scattering function obtained from the LISST particle sizer,” Opt. Express 14(8), 3602–3615 (2006).
    [Crossref] [PubMed]
  23. R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
    [Crossref]
  24. R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22(21), 25093–25108 (2014).
    [Crossref] [PubMed]
  25. X. Zhang and L. Hu, “Scattering by pure seawater at high salinity,” Opt. Express 17(15), 12685–12691 (2009).
    [Crossref] [PubMed]
  26. R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).
    [Crossref]
  27. I. Shihira and R. W. Krauss, Chlorella: Physiology and Taxonomy of Forty-One Isolates (University of Maryland, 1965).
  28. B. E. F. Reimann and J. C. Lewin, “The diatom genus Cylindrotheca Rabenhorst,” J. R. Microsc. Soc. 83(3), 283–296 (1964).
    [Crossref]
  29. E. C. Teodoresco, “Organisation et développement du Dunaliella. nouveau genre de Volvocacée-Polyblépharidée.,” Beihefte zum Bot. Cent. 18, 215–232 (1905).
  30. N. Daugbjerg, G. Hansen, J. Larsen, and Ø. Moestrup, “Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates,” Phycologia 39(4), 302–317 (2000).
    [Crossref]
  31. P. T. Cleve, “Examination of diatoms found on the surface of the sea of Java,” Bih. Kongl. Sven. Vetensk.- Akad. Handl. 1, 1–13 (1873).
  32. G. Mie, “Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. 330(3), 377–445 (1908).
    [Crossref]
  33. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
    [Crossref]
  34. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41(6), 1035–1050 (2002).
    [Crossref] [PubMed]
  35. A. L. Whitmire, W. S. Pegau, L. Karp-Boss, E. Boss, and T. J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express 18(14), 15073–15093 (2010).
    [Crossref] [PubMed]
  36. R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
    [Crossref]
  37. A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15(11), 7019–7031 (2007).
    [Crossref] [PubMed]
  38. G. R. Fournier and J. L. Forand, “Analytic phase function for ocean water,” in Ocean Optics XII (International Society for Optics and Photonics, 1994), pp. 194–201.
  39. H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
    [Crossref]
  40. X. Zhang, E. Boss, and D. J. Gray, “Significance of scattering by oceanic particles at angles around 120 degree,” Opt. Express 22(25), 31329–31336 (2014).
    [Crossref] [PubMed]
  41. D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic Light Scattering from Single Cells: Orientational Dynamics in Optical Trap,” Biophys. J. 87(2), 1298–1306 (2004).
    [Crossref] [PubMed]
  42. K. J. Voss and E. S. Fry, “Measurement Of The Mueller Matrix For Ocean Water,” Appl. Opt. 23(23), 4427–4439 (1984).
    [Crossref] [PubMed]
  43. M. Chami, D. McKee, E. Leymarie, and G. Khomenko, “Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance,” Appl. Opt. 45(36), 9210–9220 (2006).
    [Crossref] [PubMed]
  44. J. K. Lotsberg and J. J. Stamnes, “Impact of particulate oceanic composition on the radiance and polarization of underwater and backscattered light,” Opt. Express 18(10), 10432–10445 (2010).
    [Crossref] [PubMed]
  45. J. C. Kitchen and J. R. V. Zaneveld, “A three layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992).
    [Crossref]
  46. T. Oishi, “Significant relationship between the backward scattering coefficient of sea water and the scatterance at 120 °,” Appl. Opt. 29(31), 4658–4665 (1990).
    [Crossref] [PubMed]
  47. E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40(30), 5503–5507 (2001).
    [Crossref] [PubMed]
  48. J.-F. Berthon, E. Shybanov, M. E.-G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46(22), 5189–5203 (2007).
    [Crossref] [PubMed]
  49. M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111(C5), C05013 (2006).
    [Crossref]
  50. H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29(10), 107–111 (2002).
    [Crossref]
  51. G. Volpe, V. F. Banzon, R. H. Evans, R. Santoleri, A. J. Mariano, and R. Sciarra, “Satellite observations of the impact of dust in a low-nutrient, low-chlorophyll region: Fertilization or artifact?” Global Biogeochem. Cycles 23(3), GB3007 (2009).
    [Crossref]

2015 (2)

J. Dauchet, S. Blanco, J.-F. Cornet, and R. Fournier, “Calculation of the radiative properties of photosynthetic microorganisms,” J. Quant. Spectrosc. Radiat. Transf. 161, 60–84 (2015).
[Crossref]

H. Tan, T. Oishi, A. Tanaka, and R. Doerffer, “Accurate estimation of the backscattering coefficient by light scattering at two backward angles,” Appl. Opt. 54(25), 7718–7733 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

2012 (1)

2011 (2)

2010 (2)

2009 (4)

G. Volpe, V. F. Banzon, R. H. Evans, R. Santoleri, A. J. Mariano, and R. Sciarra, “Satellite observations of the impact of dust in a low-nutrient, low-chlorophyll region: Fertilization or artifact?” Global Biogeochem. Cycles 23(3), GB3007 (2009).
[Crossref]

X. Zhang and L. Hu, “Scattering by pure seawater at high salinity,” Opt. Express 17(15), 12685–12691 (2009).
[Crossref] [PubMed]

C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
[Crossref] [PubMed]

J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48(35), 6811–6819 (2009).
[Crossref] [PubMed]

2008 (1)

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

2007 (5)

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).
[Crossref]

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).
[Crossref]

R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
[Crossref]

A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15(11), 7019–7031 (2007).
[Crossref] [PubMed]

J.-F. Berthon, E. Shybanov, M. E.-G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46(22), 5189–5203 (2007).
[Crossref] [PubMed]

2006 (6)

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111(C5), C05013 (2006).
[Crossref]

M. Chami, D. McKee, E. Leymarie, and G. Khomenko, “Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance,” Appl. Opt. 45(36), 9210–9220 (2006).
[Crossref] [PubMed]

W. H. Slade and E. S. Boss, “Calibrated near-forward volume scattering function obtained from the LISST particle sizer,” Opt. Express 14(8), 3602–3615 (2006).
[Crossref] [PubMed]

T. Dickey, M. Lewis, and G. Chang, “Optical oceanography: recent advances and future directions using global remote sensing and in situ observations,” Rev. Geophys. 44(1), RG1001 (2006), doi:.
[Crossref]

M. J. Behrenfeld, R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss, “Climate-driven trends in contemporary ocean productivity,” Nature 444(7120), 752–755 (2006).
[Crossref] [PubMed]

B. Shao, J. S. Jaffe, M. Chachisvilis, and S. C. Esener, “Angular resolved light scattering for discriminating among marine picoplankton: modeling and experimental measurements,” Opt. Express 14(25), 12473–12484 (2006).
[Crossref] [PubMed]

2005 (1)

Y. C. Agrawal, “The optical volume scattering function: Temporal and vertical variability in the water column off the New Jersey coast,” Limnol. Oceanogr. 50(6), 1787–1794 (2005).
[Crossref]

2004 (3)

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic Light Scattering from Single Cells: Orientational Dynamics in Optical Trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
[Crossref]

2003 (1)

M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20(4), 563–571 (2003).
[Crossref]

2002 (2)

C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41(6), 1035–1050 (2002).
[Crossref] [PubMed]

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29(10), 107–111 (2002).
[Crossref]

2001 (1)

2000 (1)

N. Daugbjerg, G. Hansen, J. Larsen, and Ø. Moestrup, “Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates,” Phycologia 39(4), 302–317 (2000).
[Crossref]

1998 (1)

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[Crossref]

1992 (1)

J. C. Kitchen and J. R. V. Zaneveld, “A three layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992).
[Crossref]

1990 (1)

1984 (1)

1968 (1)

G. Kullenberg, “Scattering of light by Sargasso Sea water,” Deep-Sea Res. 15, 425–432 (1968).

1964 (1)

B. E. F. Reimann and J. C. Lewin, “The diatom genus Cylindrotheca Rabenhorst,” J. R. Microsc. Soc. 83(3), 283–296 (1964).
[Crossref]

1908 (1)

G. Mie, “Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

1905 (1)

E. C. Teodoresco, “Organisation et développement du Dunaliella. nouveau genre de Volvocacée-Polyblépharidée.,” Beihefte zum Bot. Cent. 18, 215–232 (1905).

1873 (1)

P. T. Cleve, “Examination of diatoms found on the surface of the sea of Java,” Bih. Kongl. Sven. Vetensk.- Akad. Handl. 1, 1–13 (1873).

Aas, L. M. S.

Agrawal, Y. C.

Y. C. Agrawal, “The optical volume scattering function: Temporal and vertical variability in the water column off the New Jersey coast,” Limnol. Oceanogr. 50(6), 1787–1794 (2005).
[Crossref]

Antoine, D.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29(10), 107–111 (2002).
[Crossref]

Aursland, K.

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).
[Crossref]

Babin, M.

M. Babin, D. Stramski, R. A. Reynolds, V. M. Wright, and E. Leymarie, “Determination of the volume scattering function of aqueous particle suspensions with a laboratory multi-angle light scattering instrument,” Appl. Opt. 51(17), 3853–3873 (2012).
[Crossref] [PubMed]

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29(10), 107–111 (2002).
[Crossref]

Balch, W. M.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

Banzon, V. F.

G. Volpe, V. F. Banzon, R. H. Evans, R. Santoleri, A. J. Mariano, and R. Sciarra, “Satellite observations of the impact of dust in a low-nutrient, low-chlorophyll region: Fertilization or artifact?” Global Biogeochem. Cycles 23(3), GB3007 (2009).
[Crossref]

Behrenfeld, M. J.

M. J. Behrenfeld, R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss, “Climate-driven trends in contemporary ocean productivity,” Nature 444(7120), 752–755 (2006).
[Crossref] [PubMed]

Berthon, J.-F.

Blanco, S.

J. Dauchet, S. Blanco, J.-F. Cornet, and R. Fournier, “Calculation of the radiative properties of photosynthetic microorganisms,” J. Quant. Spectrosc. Radiat. Transf. 161, 60–84 (2015).
[Crossref]

Bogucki, D.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
[Crossref]

Boss, E.

Boss, E. S.

W. H. Slade and E. S. Boss, “Calibrated near-forward volume scattering function obtained from the LISST particle sizer,” Opt. Express 14(8), 3602–3615 (2006).
[Crossref] [PubMed]

M. J. Behrenfeld, R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss, “Climate-driven trends in contemporary ocean productivity,” Nature 444(7120), 752–755 (2006).
[Crossref] [PubMed]

Bricaud, A.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29(10), 107–111 (2002).
[Crossref]

Brown, C. W.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

Chachisvilis, M.

B. Shao, J. S. Jaffe, M. Chachisvilis, and S. C. Esener, “Angular resolved light scattering for discriminating among marine picoplankton: modeling and experimental measurements,” Opt. Express 14(25), 12473–12484 (2006).
[Crossref] [PubMed]

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic Light Scattering from Single Cells: Orientational Dynamics in Optical Trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Chami, M.

Chang, G.

T. Dickey, M. Lewis, and G. Chang, “Optical oceanography: recent advances and future directions using global remote sensing and in situ observations,” Rev. Geophys. 44(1), RG1001 (2006), doi:.
[Crossref]

Charlton, F.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[Crossref]

Claustre, H.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29(10), 107–111 (2002).
[Crossref]

Cleve, P. T.

P. T. Cleve, “Examination of diatoms found on the surface of the sea of Java,” Bih. Kongl. Sven. Vetensk.- Akad. Handl. 1, 1–13 (1873).

Concannon, B.

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

Cornet, J.-F.

J. Dauchet, S. Blanco, J.-F. Cornet, and R. Fournier, “Calculation of the radiative properties of photosynthetic microorganisms,” J. Quant. Spectrosc. Radiat. Transf. 161, 60–84 (2015).
[Crossref]

Cowles, T. J.

Dauchet, J.

J. Dauchet, S. Blanco, J.-F. Cornet, and R. Fournier, “Calculation of the radiative properties of photosynthetic microorganisms,” J. Quant. Spectrosc. Radiat. Transf. 161, 60–84 (2015).
[Crossref]

Daugbjerg, N.

N. Daugbjerg, G. Hansen, J. Larsen, and Ø. Moestrup, “Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates,” Phycologia 39(4), 302–317 (2000).
[Crossref]

Dekker, A. G.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[Crossref]

Dickey, T.

T. Dickey, M. Lewis, and G. Chang, “Optical oceanography: recent advances and future directions using global remote sensing and in situ observations,” Rev. Geophys. 44(1), RG1001 (2006), doi:.
[Crossref]

Diver, J.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic Light Scattering from Single Cells: Orientational Dynamics in Optical Trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Doerffer, R.

H. Tan, T. Oishi, A. Tanaka, and R. Doerffer, “Accurate estimation of the backscattering coefficient by light scattering at two backward angles,” Appl. Opt. 54(25), 7718–7733 (2015).
[Crossref] [PubMed]

H. Tan, R. Doerffer, T. Oishi, and A. Tanaka, “A new approach to measure the volume scattering function,” Opt. Express 21(16), 18697–18711 (2013).
[Crossref] [PubMed]

R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
[Crossref]

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).
[Crossref]

Erga, S. R.

Ø. Svensen, J. J. Stamnes, M. Kildemo, L. M. S. Aas, S. R. Erga, and Ø. Frette, “Mueller matrix measurements of algae with different shape and size distributions,” Appl. Opt. 50(26), 5149–5157 (2011).
[Crossref] [PubMed]

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).
[Crossref]

Esener, S. C.

Evans, R. H.

G. Volpe, V. F. Banzon, R. H. Evans, R. Santoleri, A. J. Mariano, and R. Sciarra, “Satellite observations of the impact of dust in a low-nutrient, low-chlorophyll region: Fertilization or artifact?” Global Biogeochem. Cycles 23(3), GB3007 (2009).
[Crossref]

Falkowski, P. G.

M. J. Behrenfeld, R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss, “Climate-driven trends in contemporary ocean productivity,” Nature 444(7120), 752–755 (2006).
[Crossref] [PubMed]

Feldman, G. C.

M. J. Behrenfeld, R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss, “Climate-driven trends in contemporary ocean productivity,” Nature 444(7120), 752–755 (2006).
[Crossref] [PubMed]

Fournier, R.

J. Dauchet, S. Blanco, J.-F. Cornet, and R. Fournier, “Calculation of the radiative properties of photosynthetic microorganisms,” J. Quant. Spectrosc. Radiat. Transf. 161, 60–84 (2015).
[Crossref]

Frette, Ø.

Fry, E. S.

Gray, D. J.

Guillard, R. R. L.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

Haan, J. F.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[Crossref]

Hagen, N.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic Light Scattering from Single Cells: Orientational Dynamics in Optical Trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Hansen, G.

N. Daugbjerg, G. Hansen, J. Larsen, and Ø. Moestrup, “Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates,” Phycologia 39(4), 302–317 (2000).
[Crossref]

Harmel, T.

Häse, C.

R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
[Crossref]

Hoogenboom, H. J.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[Crossref]

Hooker, S. B.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29(10), 107–111 (2002).
[Crossref]

Hovenier, J. W.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[Crossref]

Hu, L.

Jaffe, J. S.

Kane, T. J.

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

Karp-Boss, L.

Khomenko, G.

M. Chami, D. McKee, E. Leymarie, and G. Khomenko, “Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance,” Appl. Opt. 45(36), 9210–9220 (2006).
[Crossref] [PubMed]

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111(C5), C05013 (2006).
[Crossref]

Kildemo, M.

Kitchen, J. C.

J. C. Kitchen and J. R. V. Zaneveld, “A three layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992).
[Crossref]

Korotaev, G.

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111(C5), C05013 (2006).
[Crossref]

Kullenberg, G.

G. Kullenberg, “Scattering of light by Sargasso Sea water,” Deep-Sea Res. 15, 425–432 (1968).

Larsen, J.

N. Daugbjerg, G. Hansen, J. Larsen, and Ø. Moestrup, “Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates,” Phycologia 39(4), 302–317 (2000).
[Crossref]

Laux, A.

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

Leblanc, K.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29(10), 107–111 (2002).
[Crossref]

Lee, M. E.

M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20(4), 563–571 (2003).
[Crossref]

Lee, M. E.-G.

Letelier, R. M.

M. J. Behrenfeld, R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss, “Climate-driven trends in contemporary ocean productivity,” Nature 444(7120), 752–755 (2006).
[Crossref] [PubMed]

Lewin, J. C.

B. E. F. Reimann and J. C. Lewin, “The diatom genus Cylindrotheca Rabenhorst,” J. R. Microsc. Soc. 83(3), 283–296 (1964).
[Crossref]

Lewis, M.

X. Zhang, M. Twardowski, and M. Lewis, “Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function,” Appl. Opt. 50(9), 1240–1259 (2011).
[Crossref] [PubMed]

T. Dickey, M. Lewis, and G. Chang, “Optical oceanography: recent advances and future directions using global remote sensing and in situ observations,” Rev. Geophys. 44(1), RG1001 (2006), doi:.
[Crossref]

Lewis, M. R.

M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20(4), 563–571 (2003).
[Crossref]

Leymarie, E.

Lotsberg, J. K.

J. K. Lotsberg and J. J. Stamnes, “Impact of particulate oceanic composition on the radiance and polarization of underwater and backscattered light,” Opt. Express 18(10), 10432–10445 (2010).
[Crossref] [PubMed]

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).
[Crossref]

Marchand, P.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic Light Scattering from Single Cells: Orientational Dynamics in Optical Trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Mariano, A. J.

G. Volpe, V. F. Banzon, R. H. Evans, R. Santoleri, A. J. Mariano, and R. Sciarra, “Satellite observations of the impact of dust in a low-nutrient, low-chlorophyll region: Fertilization or artifact?” Global Biogeochem. Cycles 23(3), GB3007 (2009).
[Crossref]

Maritorena, S.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29(10), 107–111 (2002).
[Crossref]

Marken, E.

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).
[Crossref]

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111(C5), C05013 (2006).
[Crossref]

McClain, C. R.

C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
[Crossref] [PubMed]

M. J. Behrenfeld, R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss, “Climate-driven trends in contemporary ocean productivity,” Nature 444(7120), 752–755 (2006).
[Crossref] [PubMed]

McKee, D.

Messmer, A.

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

Mie, G.

G. Mie, “Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Milligan, A. J.

M. J. Behrenfeld, R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss, “Climate-driven trends in contemporary ocean productivity,” Nature 444(7120), 752–755 (2006).
[Crossref] [PubMed]

Mobley, C. D.

Moestrup, Ø.

N. Daugbjerg, G. Hansen, J. Larsen, and Ø. Moestrup, “Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates,” Phycologia 39(4), 302–317 (2000).
[Crossref]

Morel, A.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29(10), 107–111 (2002).
[Crossref]

Mullen, L.

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

O’Malley, R. T.

M. J. Behrenfeld, R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss, “Climate-driven trends in contemporary ocean productivity,” Nature 444(7120), 752–755 (2006).
[Crossref] [PubMed]

Oishi, T.

Olseng, C.

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).
[Crossref]

Oubelkheir, K.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29(10), 107–111 (2002).
[Crossref]

Pegau, W. S.

Prentice, J.

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

Quéguiner, B.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29(10), 107–111 (2002).
[Crossref]

Reimann, B. E. F.

B. E. F. Reimann and J. C. Lewin, “The diatom genus Cylindrotheca Rabenhorst,” J. R. Microsc. Soc. 83(3), 283–296 (1964).
[Crossref]

Reynolds, R. A.

Röttgers, R.

R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22(21), 25093–25108 (2014).
[Crossref] [PubMed]

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).
[Crossref]

R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
[Crossref]

Santoleri, R.

G. Volpe, V. F. Banzon, R. H. Evans, R. Santoleri, A. J. Mariano, and R. Sciarra, “Satellite observations of the impact of dust in a low-nutrient, low-chlorophyll region: Fertilization or artifact?” Global Biogeochem. Cycles 23(3), GB3007 (2009).
[Crossref]

Sarmiento, J. L.

M. J. Behrenfeld, R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss, “Climate-driven trends in contemporary ocean productivity,” Nature 444(7120), 752–755 (2006).
[Crossref] [PubMed]

Schreurs, R.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[Crossref]

Sciarra, R.

G. Volpe, V. F. Banzon, R. H. Evans, R. Santoleri, A. J. Mariano, and R. Sciarra, “Satellite observations of the impact of dust in a low-nutrient, low-chlorophyll region: Fertilization or artifact?” Global Biogeochem. Cycles 23(3), GB3007 (2009).
[Crossref]

Shao, B.

Shybanov, E.

Siegel, D. A.

M. J. Behrenfeld, R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss, “Climate-driven trends in contemporary ocean productivity,” Nature 444(7120), 752–755 (2006).
[Crossref] [PubMed]

Slade, W. H.

Stamnes, J. J.

Ø. Svensen, J. J. Stamnes, M. Kildemo, L. M. S. Aas, S. R. Erga, and Ø. Frette, “Mueller matrix measurements of algae with different shape and size distributions,” Appl. Opt. 50(26), 5149–5157 (2011).
[Crossref] [PubMed]

J. K. Lotsberg and J. J. Stamnes, “Impact of particulate oceanic composition on the radiance and polarization of underwater and backscattered light,” Opt. Express 18(10), 10432–10445 (2010).
[Crossref] [PubMed]

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).
[Crossref]

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111(C5), C05013 (2006).
[Crossref]

Stramski, D.

Sullivan, J. M.

Sundman, L. K.

Svensen, Ø.

Tan, H.

Tanaka, A.

Teodoresco, E. C.

E. C. Teodoresco, “Organisation et développement du Dunaliella. nouveau genre de Volvocacée-Polyblépharidée.,” Beihefte zum Bot. Cent. 18, 215–232 (1905).

Thirouard, A.

Twardowski, M.

Twardowski, M. S.

Utschig, C.

Vaillancourt, R. D.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

Vassen, W.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[Crossref]

Volpe, G.

G. Volpe, V. F. Banzon, R. H. Evans, R. Santoleri, A. J. Mariano, and R. Sciarra, “Satellite observations of the impact of dust in a low-nutrient, low-chlorophyll region: Fertilization or artifact?” Global Biogeochem. Cycles 23(3), GB3007 (2009).
[Crossref]

Volten, H.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[Crossref]

Voss, K. J.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
[Crossref]

K. J. Voss and E. S. Fry, “Measurement Of The Mueller Matrix For Ocean Water,” Appl. Opt. 23(23), 4427–4439 (1984).
[Crossref] [PubMed]

Watson, D.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic Light Scattering from Single Cells: Orientational Dynamics in Optical Trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Whitmire, A. L.

Wouts, R.

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[Crossref]

Wright, V. M.

Zaneveld, J. R. V.

J. C. Kitchen and J. R. V. Zaneveld, “A three layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992).
[Crossref]

Zhang, X.

Zibordi, G.

Zugger, M. E.

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

Ann. Phys. (1)

G. Mie, “Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Annu. Rev. Mar. Sci. (1)

C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
[Crossref] [PubMed]

Appl. Opt. (11)

X. Zhang, M. Twardowski, and M. Lewis, “Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function,” Appl. Opt. 50(9), 1240–1259 (2011).
[Crossref] [PubMed]

M. Babin, D. Stramski, R. A. Reynolds, V. M. Wright, and E. Leymarie, “Determination of the volume scattering function of aqueous particle suspensions with a laboratory multi-angle light scattering instrument,” Appl. Opt. 51(17), 3853–3873 (2012).
[Crossref] [PubMed]

H. Tan, T. Oishi, A. Tanaka, and R. Doerffer, “Accurate estimation of the backscattering coefficient by light scattering at two backward angles,” Appl. Opt. 54(25), 7718–7733 (2015).
[Crossref] [PubMed]

J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48(35), 6811–6819 (2009).
[Crossref] [PubMed]

Ø. Svensen, J. J. Stamnes, M. Kildemo, L. M. S. Aas, S. R. Erga, and Ø. Frette, “Mueller matrix measurements of algae with different shape and size distributions,” Appl. Opt. 50(26), 5149–5157 (2011).
[Crossref] [PubMed]

C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41(6), 1035–1050 (2002).
[Crossref] [PubMed]

T. Oishi, “Significant relationship between the backward scattering coefficient of sea water and the scatterance at 120 °,” Appl. Opt. 29(31), 4658–4665 (1990).
[Crossref] [PubMed]

E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40(30), 5503–5507 (2001).
[Crossref] [PubMed]

J.-F. Berthon, E. Shybanov, M. E.-G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46(22), 5189–5203 (2007).
[Crossref] [PubMed]

K. J. Voss and E. S. Fry, “Measurement Of The Mueller Matrix For Ocean Water,” Appl. Opt. 23(23), 4427–4439 (1984).
[Crossref] [PubMed]

M. Chami, D. McKee, E. Leymarie, and G. Khomenko, “Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance,” Appl. Opt. 45(36), 9210–9220 (2006).
[Crossref] [PubMed]

Beihefte zum Bot. Cent. (1)

E. C. Teodoresco, “Organisation et développement du Dunaliella. nouveau genre de Volvocacée-Polyblépharidée.,” Beihefte zum Bot. Cent. 18, 215–232 (1905).

Bih. Kongl. Sven. Vetensk.- Akad. Handl. (1)

P. T. Cleve, “Examination of diatoms found on the surface of the sea of Java,” Bih. Kongl. Sven. Vetensk.- Akad. Handl. 1, 1–13 (1873).

Biophys. J. (1)

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic Light Scattering from Single Cells: Orientational Dynamics in Optical Trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Deep-Sea Res. (1)

G. Kullenberg, “Scattering of light by Sargasso Sea water,” Deep-Sea Res. 15, 425–432 (1968).

Geophys. Res. Lett. (1)

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?” Geophys. Res. Lett. 29(10), 107–111 (2002).
[Crossref]

Global Biogeochem. Cycles (1)

G. Volpe, V. F. Banzon, R. H. Evans, R. Santoleri, A. J. Mariano, and R. Sciarra, “Satellite observations of the impact of dust in a low-nutrient, low-chlorophyll region: Fertilization or artifact?” Global Biogeochem. Cycles 23(3), GB3007 (2009).
[Crossref]

J. Atmos. Ocean. Technol. (1)

M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20(4), 563–571 (2003).
[Crossref]

J. Geophys. Res. (1)

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111(C5), C05013 (2006).
[Crossref]

J. Plankton Res. (1)

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

J. Dauchet, S. Blanco, J.-F. Cornet, and R. Fournier, “Calculation of the radiative properties of photosynthetic microorganisms,” J. Quant. Spectrosc. Radiat. Transf. 161, 60–84 (2015).
[Crossref]

J. R. Microsc. Soc. (1)

B. E. F. Reimann and J. C. Lewin, “The diatom genus Cylindrotheca Rabenhorst,” J. R. Microsc. Soc. 83(3), 283–296 (1964).
[Crossref]

Limnol. Oceanogr. (4)

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

Y. C. Agrawal, “The optical volume scattering function: Temporal and vertical variability in the water column off the New Jersey coast,” Limnol. Oceanogr. 50(6), 1787–1794 (2005).
[Crossref]

H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[Crossref]

J. C. Kitchen and J. R. V. Zaneveld, “A three layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992).
[Crossref]

Limnol. Oceanogr. Methods (3)

R. Röttgers, C. Häse, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5, 1–12 (2007).
[Crossref]

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).
[Crossref]

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).
[Crossref]

Nature (1)

M. J. Behrenfeld, R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss, “Climate-driven trends in contemporary ocean productivity,” Nature 444(7120), 752–755 (2006).
[Crossref] [PubMed]

Opt. Express (10)

H. Tan, R. Doerffer, T. Oishi, and A. Tanaka, “A new approach to measure the volume scattering function,” Opt. Express 21(16), 18697–18711 (2013).
[Crossref] [PubMed]

B. Shao, J. S. Jaffe, M. Chachisvilis, and S. C. Esener, “Angular resolved light scattering for discriminating among marine picoplankton: modeling and experimental measurements,” Opt. Express 14(25), 12473–12484 (2006).
[Crossref] [PubMed]

M. Chami, A. Thirouard, and T. Harmel, “POLVSM (Polarized Volume Scattering Meter) instrument: an innovative device to measure the directional and polarized scattering properties of hydrosols,” Opt. Express 22(21), 26403–26428 (2014).
[Crossref] [PubMed]

R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22(21), 25093–25108 (2014).
[Crossref] [PubMed]

X. Zhang and L. Hu, “Scattering by pure seawater at high salinity,” Opt. Express 17(15), 12685–12691 (2009).
[Crossref] [PubMed]

W. H. Slade and E. S. Boss, “Calibrated near-forward volume scattering function obtained from the LISST particle sizer,” Opt. Express 14(8), 3602–3615 (2006).
[Crossref] [PubMed]

A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15(11), 7019–7031 (2007).
[Crossref] [PubMed]

A. L. Whitmire, W. S. Pegau, L. Karp-Boss, E. Boss, and T. J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express 18(14), 15073–15093 (2010).
[Crossref] [PubMed]

J. K. Lotsberg and J. J. Stamnes, “Impact of particulate oceanic composition on the radiance and polarization of underwater and backscattered light,” Opt. Express 18(10), 10432–10445 (2010).
[Crossref] [PubMed]

X. Zhang, E. Boss, and D. J. Gray, “Significance of scattering by oceanic particles at angles around 120 degree,” Opt. Express 22(25), 31329–31336 (2014).
[Crossref] [PubMed]

Phycologia (1)

N. Daugbjerg, G. Hansen, J. Larsen, and Ø. Moestrup, “Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates,” Phycologia 39(4), 302–317 (2000).
[Crossref]

Prog. Oceanogr. (1)

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
[Crossref]

Rev. Geophys. (1)

T. Dickey, M. Lewis, and G. Chang, “Optical oceanography: recent advances and future directions using global remote sensing and in situ observations,” Rev. Geophys. 44(1), RG1001 (2006), doi:.
[Crossref]

Other (6)

J. Sullivan, M. Twardowski, J. Ronald, V. Zaneveld, and C. Moore, “Measuring optical backscattering in water,” in Light Scattering Reviews 7, Springer Praxis Books (Springer Berlin Heidelberg, 2013), pp. 189–224.

T. J. Petzold, Volume Scattering Functions for Selected Ocean Waters (DTIC Document, 1972).

H. Tan, “A new method for the simultaneous determination of volume scattering functions,” PhD dissertation, Universität Hamburg (2014).

W. H. Slade, Y. C. Agrawal, and O. A. Mikkelsen, “Comparison of measured and theoretical scattering and polarization properties of narrow size range irregular sediment particles,” in Oceans (2013), pp. 23–27.

G. R. Fournier and J. L. Forand, “Analytic phase function for ocean water,” in Ocean Optics XII (International Society for Optics and Photonics, 1994), pp. 194–201.

I. Shihira and R. W. Krauss, Chlorella: Physiology and Taxonomy of Forty-One Isolates (University of Maryland, 1965).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

General overview of the protocol of the inter-comparison laboratory experiments between POLVSM (LOV), I-VSF (HZG), and LISST-VSF (Sequoia) instruments.

Fig. 2
Fig. 2

Particle size distribution (PSD) of the hydrosols analyzed during the experiment obtained from the particle number concentration measured by Coulter counter.

Fig. 3
Fig. 3

Comparison in semi-log and log-log scale of the I-VSF (red line), LISST-VSF (orange dots) and POLVSM (green line) phase function (i.e. VSF/bp) with Mie theory (black line) based on 3-µm polystyrene beads.

Fig. 4
Fig. 4

Volume scattering functions (VSF) in m−1 sr−1 measured by the I-VSF (in red), LISST-VSF (in orange) and POLVSM (in green) instruments for all the samples, namely, the mineral-like sample (Arizona dust) and the five different algal samples. Filtrate measurements of VSF (blanks) are also shown (grey lines) for phytoplankton species (i.e., Arizona dust particles are not biogenic so, this sample was not filtrated).

Fig. 5
Fig. 5

Normalized volume scattering functions (VSF, in sr−1) of the species C. Autotrophica measured by the I-VSF (in red) and POLVSM (in green) instruments. The normalized VSF was calculated by dividing the VSF by the integrated value over the angular distribution available for each instrument. Filtrate measurements of VSF (blanks) are also shown (grey lines) for this species.

Fig. 6
Fig. 6

Relative standard deviation rSTD(θ) between VSF measurements of each instrument and the VSF averaged over the three instruments as a function of angle (a) for the hydrosols Arizona dust, C. Autotrophica, C. Closterium, (b) for the hydrosols K. Mikomotoi, D. Salina and S.cf., costatum; (c) mean relative standard deviation (rSTDmean) calculated over the scattering angles for each hydrosol sample.

Fig. 7
Fig. 7

Comparison of the particulate scattering coefficient bp measured from the combination of transmissiometer/PSICAM instruments (x-axis) with bp derived from angular integration of the VSF (averaged over the three VSF meters instruments). Equation of the regression line (blue lines), coefficient of determination (R2) and root-mean-square error (rmse) are given in the upper left part. Note that the data obtained for the species C. autotrophica were not taken into account to establish the equation of the regression (solid blue line, see text).

Fig. 8
Fig. 8

Comparison of the backscattering ratio b ˜ bp as derived from the POLVSM and the I-VSF instruments, for all the samples and for the standard beads.

Fig. 9
Fig. 9

Comparison of the phase function measured using the VSF averaged over the three VSF meters (in red) with the Fournier-Forand (FF) phase function (in black). Note that FF phase function has been calculated for a value of the backscattering ratio that is similar as those obtained from the measurements. The 2-standard-deviation interval that is related to the measurements is shown in green. The refractive index (nr) and the Junge power law exponent that are used to compute the FF phase functions are also reported. The Petzold’s phase functions are also shown in blue for clear (solid), coastal (dash) and turbid (dot-dash) conditions for hydrosols samples having similar backscattering ratio, namely, Arizona dust, D. salina, K. mikimotoi (see text for details).

Fig. 10
Fig. 10

Angular variation of χp factor from the combined I-VSF and POLVSM measurements (mean values, black line); the shaded area represents the two-standard-deviation interval. For comparison, χp factors taken from literature are shown: Berthon et al. [48] (B), Boss and Pegau [47] (BP), Chami et al. [49] (C), Fournier and Forand [38] (FF), Petzold [9] (P), Sullivan and Twardowski [15] (ST), Tan et al. [11] (T) and, Whitmire et al. [35] (W).

Fig. 11
Fig. 11

Comparison of (a) the phase function and (b) the χp factor obtained from the Arizona dust measurements (black line) with Mie theory calculations (colored lines) performed for several refractive indices, nr, from 1.14 to 1.18.

Tables (3)

Tables Icon

Table 1 Summary of phytoplankton characteristics that are analyzed in this study.

Tables Icon

Table 2 Particle size distribution parameters of the hydrosols as measured by Beckman-Coulter counter: rg and νg are mean radius and variance, reff and νeff are the effective radius and variance, respectively. Absorption (a) and particulate scattering (bp) coefficients at 515 nm as retrieved from the PSICAM and transmissiometer measurements are reported as well.

Tables Icon

Table 3 Phase functions from 0.1° to 175° scattering angle for mineral-like hydrosol (Arizona dust 2 to 4.5 µm fraction) and phytoplankton species at the wavelength of 515 nm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β( θ )= I( θ ) Er ,
rSTD( θ )= 1 VSF ¯ ( θ ) 1 N instr instr ( VSF( θ,instr ) VSF ¯ ( θ ) ) 2 ,
b p =2π 0 π β( θ ) sinθdθ,
b bp =2π π 2 π β( θ ) sinθdθ.
χ p ( θ )= b bp 2πβ( θ ) .

Metrics